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Abstract

Background: The capabilities of large language models (LLMs) to self-assess their own confidence in answering questions
within the biomedical realm remain underexplored.

Objective: This study evaluates the confidence levels of 12 LLMs across 5 medical specialties to assess LLMs’ ability to
accurately judge their own responses.

Methods: We used 1965 multiple-choice questions that assessed clinical knowledge in the following areas: internal medicine,
obstetrics and gynecology, psychiatry, pediatrics, and general surgery. Models were prompted to provide answers and to also
provide their confidence for the correct answers (score: range 0%-100%). We calculated the correlation between each model’s
mean confidence score for correct answers and the overall accuracy of each model across all questions. The confidence scores
for correct and incorrect answers were also analyzed to determine the mean difference in confidence, using 2-sample, 2-tailed ¢
tests.

Results: The correlation between the mean confidence scores for correct answers and model accuracy was inverse and
statistically significant (r=—0.40; P=.001), indicating that worse-performing models exhibited paradoxically higher confidence.
For instance, a top-performing model —GPT-40—had a mean accuracy of 74% (SD 9.4%), with a mean confidence of
63% (SD 8.3%), whereas a low-performing model —Qwen2-7B —showed a mean accuracy of 46% (SD 10.5%) but a mean
confidence of 76% (SD 11.7%). The mean difference in confidence between correct and incorrect responses was low for all
models, ranging from 0.6% to 5.4%, with GPT-40 having the highest mean difference (5.4%, SD 2.3%; P=.003).

Conclusions: Better-performing LLMs show more aligned overall confidence levels. However, even the most accurate models
still show minimal variation in confidence between right and wrong answers. This may limit their safe use in clinical settings.
Addressing overconfidence could involve refining calibration methods, performing domain-specific fine-tuning, and involving
human oversight when decisions carry high risks. Further research is needed to improve these strategies before broader clinical
adoption of LLMs.
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Methods

With their capacity to understand and generate human-like
text, large language models (LLMs) are poised to support
health care professionals in complex clinical decisions [1-3].
A wide array of LLMs is now accessible, including open-
source models, offering solutions that cater to both the public
and medical professionals [1,4].

The efficacy of these models has been demonstrated
in a variety of tasks, albeit with some limitations [5,6].
For instance, LLMs, such as GPT, have shown promise
in providing diagnostic assistance and answering medical
queries [5,7-9]. Katz et al [10] demonstrated that GPT-4
not only improved clinically when compared to its predeces-
sor, GPT-3.5, but also matched physician performance in
certain areas. However, there is evidence of hallucinations
and inaccuracies in model outputs, which could lead to harm
in clinical decision-making [11,12]. Specifically, LLMs have
occasionally generated completely fabricated evidence (eg,
information and references) and have presented such evidence
as factual [11,12].

One way of building confidence in applying models within
health care is the use of explainable artificial intelligence
(AI) [13,14]. However, easily explainable outputs are difficult
to evaluate due to the complexity of how LLMs process
and output data [13,15,16]. Recent work revealed that these
models often exhibit high confidence even when presenting
incorrect information [17]. This raises questions about the
underlying mechanisms that prompt an LLM to label certain
statements as “more factual.” For example, one possible
explanation could be that data-rich or frequently discussed
topics in training sets may be perceived as more certain
[18], even if this does not translate into clinical accuracy.
Additionally, retrieval-augmented generation (RAG) has been
proposed to ground LLM outputs in external data, which
potentially mitigates hallucinations [19]. Nevertheless, these
approaches do not fully resolve whether models can reliably
judge their own correctness. Accurate and well-calibrated
confidence scores may be vital for establishing trust in these
systems, as such scores can alert users to approach certain
responses with caution. If a model consistently shows undue
confidence in wrong answers, it poses a subtle but poten-
tially dangerous form of hallucination. Clinicians might adopt
decisions based on erroneous advice that is delivered with
overt certainty. By investigating how these models generate
and express their confidence, we aimed to illuminate whether
LLMs can reliably self-assess correctness.

The goal of this study was to benchmark LLMs (both
proprietary LLMs, like GPT-40 and Claude 3.5 Sonnet, and
open-source LLMs, like Qwen) in terms of accuracy and
associated confidence in answering clinical questions. Our
aim was to determine if these models can accurately judge
when to be confident in their responses and, in doing so,
allow for better explainability in their application.

https://medinform.jmir.org/2025/1/e66917

Study Design and Data Source

This study used a public compiled dataset from a previous
study by Katz et al [10], which includes 655 questions for
the following five medical specialties: internal medicine,
obstetrics and gynecology (OBGYN), psychiatry, pediatrics,
and general surgery. These questions were sourced from
official 2023 licensing examinations for each field and
were crafted from internationally recognized textbooks and
guidelines. This dataset serves as a standardized framework
for assessment [20-24].

To enhance benchmarking reliability, each original
question was rephrased twice by using the GPT-4 application
programming interface (API) in Python (Python Software
Foundation), yielding 1965 questions (we include the full
prompt in Multimedia Appendix 1). The prompts were
carefully designed to modify only the writing style, without
altering any clinical details, such as medical terms, labora-
tory values, or answer choices [25]. This approach aimed to
preserve all clinical details, ensuring that rephrased questions
stayed faithful to the original intent and information. To
confirm this, 2 board-certified physicians separately reviewed
a 20% random sample of questions from each specialty. They
compared the rephrased and original questions side by side,
focusing on consistency in medical terminology, laboratory
values, and answer choices. Both reviewers concluded that
the paraphrased items remained unchanged in terms of
clinical meaning and required no further edits, thereby
confirming overall integrity and accuracy.

Model Setup and Configuration

The LLMs used in this study were prompted (using 1
structured prompt) to return the correct answer, along with
a confidence score for each choice (“A,” “B,” “C,” and “D”),
in JSON format. These confidence scores were expressed as
percentages between 0% and 100% for each option, resulting
in a total confidence score of 100% for all options combined.
The open access models were executed by using API codes
in a dedicated server with 4 H100 80-GB graphics processing
units; the corresponding codebase is accessible on GitHub
for the original database by Katz et al [10], and we pro-
vide the full prompts, which can be used locally, in Multi-
media Appendix 1. We used Python 3.10 for data analyses.
The commercial models were used via the corresponding
companies’ API interfaces. We used several Python libraries
to facilitate data processing, model interaction, and analysis—
NumPy 1.26.4, Pandas 2.1.4, Scikit-Learn 1.3.0, Hugging
Face’s Transformers 4.37.2, and torch 2.2.2+cul21—as well
as JSON module 2.0.9. We used the default hyperparameters
for each model to reflect typical user settings and provide a
balanced baseline [26]. For the open access models, we used
the “instruct” versions, which perform better on zero-shot
questioning.
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Benchmarked LLMs

We selected 12 LLMs that varied in terms of size, architec-
tures, and intended domains (Figure 1). This set included
established “household” models and newly introduced
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or domain-focused alternatives, ensuring diverse coverage
(Figure 1). The benchmarked models are shown in Table S1
in Multimedia Appendix 1.

Figure 1. A flowchart representing the evaluation methodology. The 655 questions were sourced from a study by Katz et al [10]. MCQ: multiple-

choice question.

Utilizing a medical MCQ ’ J
database with 655 questions N—r
from 5 medical fields (Katzetal)

Rephrasing each question
twice, for a total of 1965
questions.

Correlation, performance,
and consistency analyses

Statistical Analysis

The Pearson correlation coefficient was used to correlate
models’ mean confidence scores for correct answers and
accuracies across models and medical fields. Chi-square tests
assessed overall performance differences within each field,
using proportions of correct responses. Post hoc pairwise
comparisons with Bonferroni correction identified specific
intermodel differences. Confidence levels were compared
between correct and incorrect responses for each model,
using 2-sample, 2-tailed ¢ tests. Mean confidence scores were
calculated for higher-tier and lower-tier models, as well as
across all models. Performance consistency was evaluated
by comparing confidence gaps between correct and incorrect
responses. All statistical tests used a significance level of

Table 1. Accuracies and confidence levels across the models.

-

Deploying models

Llama3-OpenBio-70B GPT-40
GPT-3.5 GPT-4
Llama-3-8B Claude 3.5 Sonnet
Mixtral-8x7B Gemini 1.5 pro
Qwen2-7B Llama-3-70B
Qwen2-72B Claude 3 opus

Parsing results and
confidence

{

0=.05. Analyses were performed using R version 4.1.2 (R
Foundation for Statistical Computing).

Results

Confidence Analysis

Table 1 summarizes accuracies and confidence levels across
the models, and Table S2 in Multimedia Appendix 1 presents
the data across all inspected fields and all models. An inverse
correlation between the mean confidence scores for correct
answers and the overall accuracy of the models is demonstra-
ted (r=-0.40; P=.001); better-performing models generally
showed lower confidence.

Model Accuracy, %  Total confidence, %

Confidence for correct answer, % Confidence for incorrect answer, %

Claude 3.5 Sonnet 74 69.7
GPT-4o0 73.8 63

Claude 3 Opus 71.7 68.5
GPT-4 66 84.1
Llama-3-70B 634 573
Llama OpenBio 592 779
Gemini 59.1 86.5
Qwen2-72B 57.8 5717

70.5 674
64.4 59

68.9 67.3
84.5 833
595 53.6
717 78.1
87.2 855
58.6 56.5
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Model Accuracy, %  Total confidence, %  Confidence for correct answer, % Confidence for incorrect answer, %
Mixtral-8x7B 50.6 84.3 855 83

GPT-3.5 49 823 81.6 829

Llama-3-8B 484 80 79.7 80.3

Qwen2-7B 46 755 744 76.4

The mean confidence score for all 12 models was 76.1%
when they were correct and 74.4% when they were incor-
rect. The 6 top-performing models showed a mean confi-
dence score of 72.5% when they were correct and a mean

confidence score of 69.4% when incorrect, while the 6
lowest-performing models displayed 79.6% confidence when
they were correct and 79.5% confidence when they were
incorrect (Table 2).

Table 2. Large language models’ mean confidence scores for correct and incorrect answers.

Model Confidence when incorrect (%), mean (SD) Confidence when correct (%), mean (SD) P value
GPT-40 58.99 (14.31) 64.38 (16.11) 006
Llama-3-70B 53.59 (22.38) 59.50 (23.54) 006
Claude 3.5 Sonnet 67.37 (9.08) 70.52 (11.07) 003
Gemini 85.55(16.23) 87.17 (16.58) 35
Claude 3 Opus 67.32 (13.06) 68.90 (15.65) 61
GPT-4 83.34 (23.30) 84.52 (22.43) 07
Qwen2-72B 56.49 (18.55) 58.59 (20.03) 004
Qwen2-7B 76.37 (17.11) 7445 (20.30) 01
Mixtral-8x7B 82.99 (16.52) 8549 (14.62) 04
Llama-3-8B 80.25 (17.40) 79.67 (21.59) 31
Llama OpenBio 78.14 (27.59) 77.73 (28.78) .83
GPT-3.5 82.85(27.17) 81.63 (28.66) 81

Four models (GPT-40, Llama-3-70B, Claude 3.5 Sonnet, and
Qwen2-72B) demonstrated significantly higher confidence
when they were correct (all P values were <.01) across the
different fields and subsets. Gemini exhibited the highest
overall confidence levels (when incorrect: mean 85.6%, SD
16.2%; when correct: mean 87.2%, SD 16.6%). Qwen2-7B
was unique in that it displayed higher confidence when
incorrect (mean 76.4%, SD 17.1% vs mean 74.5%, SD 20.3%
when correct; P=.01).

https://medinform.jmir.org/2025/1/e66917

GPT-3.5 and Llama-OpenBio-70B revealed minimal
differences in confidence between correct and incorrect
answers (P=.80). The largest confidence gap was observed
in GPT-4 (54%, SD 2.3%; P=.003), while Llama-3-8B had
the smallest gap (0.6%; Figure 2).

JMIR Med Inform 2025 | vol. 13 166917 | p. 4
(page number not for citation purposes)


https://medinform.jmir.org/2025/1/e66917

JMIR MEDICAL INFORMATICS Omar et al

Figure 2. Large language models’ confidence results for correct and incorrect answers. The left graph displays the average confidence and 95% Cls
for each model, categorized by correct answers (green) and incorrect answers (red). The right graph shows the differences in average confidence for

each model, where green indicates higher confidence in correct answers, and red indicates higher confidence in incorrect answers.
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Models’ Performances Across Fields

Significant differences were seen in model performance
across all 5 medical specialties (at the P<.01 Ilevel).
GPT-40 and Claude 3.5 Sonnet consistently outperformed
other models. For internal medicine, GPT-40 (accuracy:
70.9%) and Claude 3.5 Sonnet (accuracy: 73.5%) showed
no significant difference (P>.99) but outperformed lower-tier
models, such as Qwen-7b (accuracy: 43.7%; P<.001). For
OBGYN, Claude 3.5 Sonnet (accuracy: 71.0%) significantly
outperformed most models, including GPT-4 (accuracy:
54.0%; P<.001). For pediatrics, the top 5 models (GPT-4o,
Llama-3-70b, Claude 3.5 Sonnet, Claude 3 Opus, and
GPT-4) showed no significant differences among them-
selves (all P values were >.05) but outperformed lower-
tier models. Psychiatry results mirrored this pattern, with
GPT-40 (accuracy: 84.4%) and Claude 3.5 Sonnet (accu-
racy: 82.4%) showing the best performance. For surgery,
GPT-40 (accuracy: 70.9%) and Claude 3.5 Sonnet (accuracy:
70.5%) again showed no significant difference (P>.99) but
outperformed lower-performing models, such as Qwen-7b
(accuracy: 45.6%; P<.01; Tables S3 and S4 in Multimedia
Appendix 1).

Discussion

In our evaluation, accuracy and confidence were inver-
sely correlated for LLMs. Some lower-complexity models
were notably more confident in incorrect answers. Despite
GPT-40 showing the best performance, its largest observed
gap between confidence scores for correct and incorrect
answers was only 54%. This indicates that it may be
insufficient for reliably guiding clinical choices, although
the difference was statistically significant, and the model’s
confidence levels for correct and incorrect responses were
generally high. Consequently, this gap does not provide a

https://medinform.jmir.org/2025/1/e66917

Confidence Difference (Correct - Incorrect)

Llama-70B

Model

Confidence Difference (%)

meaningful threshold for differentiating safe decision-mak-
ing from potentially harmful decision-making in real-world
practice. These results highlight potential risks in clinical
applications, where model confidence, regardless of answer
correctness, could lead to misinformed decisions.

We think that the observed miscalibration between
correctness and confidence may pose risks in daily clini-
cal practice if it remains unresolved. Overconfident mod-
els may recommend unsafe dosages or overlook key signs
in a patient’s presentation, especially under the fast-paced
pressures of modern practice. This could lead to incorrect
prescriptions or treatments. For example, the model might
prescribe an incorrect antibiotic for a resistant infection,
thereby delaying proper care. In other cases, a model’s
unwarranted confidence in a wrong triage decision could
divert urgent attention from a critical patient. Such errors can
increase morbidity and may undermine trust in Al-assisted
clinical tools.

A brief comparison across models of various sizes did
not reveal a consistent relationship between model size and
confidence gaps. For instance, Qwen2-72B showed about
a 2% difference in confidence between correct and incor-
rect responses, while Qwen2-7B exhibited a similarly small
difference. This pattern was noted across multiple specialties,
suggesting that architecture or domain-specific factors may
play a more pivotal role than sheer model size in determining
confidence behaviors.

Katz et al [10] reported that GPT-4 outperformed
physicians in psychiatry and performed comparably to
physicians in general surgery and internal medicine. Our
study corroborates GPT-4’s strong performance, particularly
in psychiatry, where GPT-40 achieved 84.4% accuracy.
However, our findings suggest that more cautious interpreta-
tion is needed, given the high confidence levels observed for
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incorrect answers. Xiong et al’s [17] work on LLM confi-
dence elicitation aligns with our observations of overconfi-
dence. They noted improved calibration and failure prediction
as model capability increased, which parallels our finding of
better confidence calibration in more complex models.

If prompted confidence scores are truly driven by a
model’s internal representations and are not random or
uncontextualized outputs, then consistently arbitrary numbers
would suggest a disconnect between the model’s knowledge
state and its confidence estimates. Such misalignment can
arise if the model’s architecture, training data, or prompting
strategies do not calibrate confidence with genuine certainty
[17]. In other words, a system might systematically generate
high confidence, regardless of accuracy, if it lacks mech-
anisms or fine-tuning for self-regulating uncertainty [27].
Even larger models sometimes yield small or inconsistent
confidence gaps, indicating that domain-specific refinements
or improved calibration may be required. Without such
refinements, confidence levels may remain weakly tied to
actual reasoning processes, meaning that they would not
reflect well-grounded internal assessments.

The implications for clinical practice warrant careful
consideration. Although the performance leap of newer
models is promising, their inability to accurately self-assess
confidence across wrong answers poses risks. Two possible
strategies for addressing these challenges can be the use
of human-in-the-loop protocols and the implementation of
ensemble methods [28].

Human-AlI collaboration may offer a balanced approach to
leveraging Al strengths while maintaining necessary human
oversight in health care [29]. Sezgin [29] suggested a
human-in-the-loop approach for ensuring that AI systems
are supervised via human expertise. However, the effective
implementation of this approach faces challenges. The careful
design of user interfaces is important for preventing automa-
tion bias [29,30]. There are also concerns about the potential
erosion of clinical skills as a result of overreliance on Al [31].

Emerging evidence also suggests that some prompt
engineering techniques can reduce but not completely
eliminate sociodemographic bias in model outputs [32].
However, studies continue to reveal significant sociodemo-
graphic biases in LLMs, such as a large-scale study by
Omar et al [33]. These biases may affect patient prioritiza-
tion, treatment recommendations, and mental health screening
across different groups, potentially driving disparities in care
[33]. Simply removing demographic variables (eg, gender and
race) may also risk overlooking clinically relevant distinc-
tions. In the context of our study, better-calibrated confidence
outputs may help to mitigate such biases by allowing models
to reliably signal uncertainty, which is especially important
for sensitive medical decisions. Nonetheless, the compre-
hensive evaluation of these strategies requires longitudinal
studies that monitor the evolution of biases and large-scale,
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globally diverse datasets, which can be used to refine
mitigation approaches.

Ensemble methods, which aggregate multiple models,
present another possible strategy [34]. Mahajan et al [35]
conducted a review of ensemble learning techniques for
disease prediction. They found that stacking—an ensemble
method that combines multiple classifiers—showed the most
accurate performance in 19 out of 23 cases. The voting
approach was identified as the second-best ensemble method.
However, ensemble methods are computationally intensive
and may introduce latency in real-time clinical applications
[36]. In some scenarios, a slight increase in overall accuracy
might justify extra processing time, yet in urgent applications
(eg, emergency triage), even brief delays can be problem-
atic. Ensemble methods aggregate outputs from multiple
models, distributing the “confidence load” so that individual
sources of skewed certainty are less influential. However, our
findings suggest that many current models show miscalibra-
ted confidence levels. If all component models in an ensemble
are prone to the same calibration issues, combining them may
amplify rather than correct erroneous certainty.

Both strategies—human-in-the-loop protocols and the
implementation of ensemble methods—would require
extensive clinical trials for validation and the development of
model-specific calibration curves for each medical specialty.

Our study has several limitations. The dataset was limited
to 1965 multiple-choice questions for 5 medical specialties;
therefore, the dataset may not fully represent the breadth
of clinical scenarios. Further, the combination of automatic
rephrasing and manual validation could have introduced bias
[25]. We also used default model hyperparameters, which
potentially limited performance optimization. To address
these constraints, future work could expand the question sets
(eg, by including a broader array of medical domains) and
adopt real-world clinical data rather than purely examina-
tion-style questions. Additionally, custom hyperparameter
tuning or advanced methods, such as RAG and fine-tuning,
could be used to further refine model accuracy and confi-
dence calibration [37], as the use of default hyperparameters,
which may have varied across the evaluated LLMs, could
have influenced their reported confidence levels. Finally,
investigating computational cost and the time efficiency of
deploying these models in clinical workflows would help to
clarify practical feasibility.

In conclusion, better-performing LLMs show more aligned
overall confidence levels, yet even the most accurate models
still display minimal variation between right and wrong
answers. This highlights a limitation in current self-assess-
ment mechanisms and calls for further research. Future
efforts could include larger and more diverse clinical datasets,
domain-specific calibration strategies, and real-world testing
to refine confidence estimates. Such work is critical before
broader implementation of LLMs in clinical settings.
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