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Abstract
Background: Depression is a critical psychological disorder necessitating urgent assessment and treatment, given its strong
association with increased suicide risk (SR). Effective management hinges on promptly identifying individuals with high
depression severity (DS) and SR. While machine learning and deep learning have advanced the identification of DS and SR,
research focusing on both aspects simultaneously remains limited and requires further refinement.
Objective: This study aimed to evaluate whether our proposed methods, which integrate multitask learning (MTL), multimo-
dal learning, and transfer learning, enhance the efficacy of deep learning models in the joint classification of DS and SR.
Methods: This study proposed a multitask framework employing a multimodal fusion strategy for pretrained audio and text
embeddings to concurrently assess DS and SR. Data encompassing Chinese audio recordings and clinical questionnaire scores
from 100 patients with depression and 100 healthy controls were used. Preprocessed audio and text data were transformed into
pretrained embeddings and integrated using concatenation and hard parameter sharing. Single-task learning (STL) models (DS
and SR tasks) were evaluated with different embeddings and further compared with the MTL models.
Results: The STL models demonstrated exceptional DS prediction (area under the curve [AUC]=0.878) using wav2vec 2.0
combined with ERNIE-health, and SR prediction (AUC=0.876) using HuBERT combined with ERNIE-health. The MTL
models significantly improved SR prediction over DS prediction, achieving the highest DS classification (AUC=0.887) with
wav2vec 2.0 combined with ERNIE-health, and SR classification (AUC=0.883) with HuBERT combined with ERNIE-health.
Conclusions: The findings of this study underscore the effectiveness of the proposed MTL models using specific pretrained
audio and text embeddings in enhancing model performance. However, we advocate for cautious implementation of MTL to
mitigate potential negative transfer effects. Our research presents a method that is both promising and effective, offering an
objective approach for accurate clinical decision support in the parallel diagnosis of DS and SR.
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Introduction
Background
In its pervasive embrace, depression, an ever-expanding
mental malady, reaches across the globe, leaving its mark on
approximately 280 million lives [1]. Neglecting proper care
of patients with depression can lead to dire consequences, as
research has shown that individuals with this condition face
a staggering 20-fold higher risk of suicide than the general
population [2,3], exposing a troubling link between depres-
sion and suicide [4-6].

In clinical practice, regular and comprehensive assess-
ments of depression severity (DS) and suicide risk (SR)
remain challenging due to time and resource constraints
[7,8]. Traditional evaluations often rely on subjective and
infrequent self-reports from patients or caregivers, which are
susceptible to recall bias, cognitive limitations, and social
stigma [9,10]. These issues are particularly acute in high-vol-
ume settings, where limited consultation time may hinder
the timely identification of critical warning signs related to
mental health deterioration or suicidal ideation.

Machine learning has demonstrated strong potential in
predicting DS and SR, using text and audio data (eg, [11,12]).
Text-based approaches have extracted clinically meaning-
ful insights from medical narratives [13,14], while speech
analysis has improved predictive accuracy by identifying
vocal biomarkers linked to depression and suicide, such as
reduced intensity, slower tempo, and increased hesitation
[15-17]. These advances have driven the development of
multimodal learning (MML) frameworks for mental health
prediction. Although effective in detecting depression [18,
19], applications of MML to SR prediction remain limited—
likely due to the scarcity of high-quality annotated data in this
sensitive domain [20,21].

Given the frequent co-occurrence of depression and
suicide in clinical populations [22-24], SR prediction is
inherently linked to depression assessment. This conceptual
interdependence highlights the potential of multitask learning
(MTL) for simultaneously modeling related mental health
outcomes. Benton et al [25] demonstrated the utility of
MTL by jointly predicting SR and other psychiatric condi-
tions using social media data. With the rapid advancement
of deep learning, transfer learning (TL) has also emerged
as a promising strategy to address data scarcity, with
recent studies showing that fine-tuning pretrained models on
downstream mental health tasks can significantly enhance
predictive performance (eg, [26,27]).

However, the current literature reveals several gaps. First,
data source diversity remains limited, with most studies
relying on datasets from English-speaking populations (eg,
[28,29]). In addition, many analyses are based on social
media platforms (eg, [25,30]) or public datasets (eg, [27,31]),

which often lack clinical relevance. Second, most SR
prediction studies have underutilized TL for audio process-
ing, despite its successful application in related domains such
as speech emotion recognition [32,33]. Third, although the
comorbidity and shared clinical features of DS and SR are
well documented [22-24], few studies have applied MTL to
model these outcomes jointly.

While recent advances in MML and MTL have shown
promise in mental health prediction, few studies have jointly
modeled DS and SR using clinically grounded, non-English
data. Furthermore, the potential of TL to improve model
generalizability across tasks and modalities remains under-
explored in Chinese-language clinical contexts. These gaps
motivate this study’s unified framework, which integrates
MML, MTL, and TL to support scalable and efficient mental
health screening in real-world clinical settings for Chinese-
speaking populations.

The key contributions of this work are three-fold: (1) the
development of the first integrated framework that com-
bines MML, MTL, and TL for the joint prediction of DS
and SR in Chinese contexts; (2) empirical validation of
MML approaches compared to single modality baselines
in a non-English clinical setting; and (3) demonstration of
the effectiveness of MTL in modeling related mental health
constructs. By addressing linguistic, cultural, and resource-
specific challenges, this framework supports scalable and
efficient screening in high-volume clinical environments,
addressing an urgent need in early mental health assessments
and targeted interventions.
Related Work
Research on predictive models in mental health has tradi-
tionally adopted single-task approaches, predicting either
depression or suicide independently [34-38]. These studies
have primarily relied on text, audio, or other features, such
as structured electronic health records [39] and social media
images [40], to build predictive models. Recent advance-
ments in text processing technologies have facilitated a shift
from conventional hand-crafted features toward sophistica-
ted automated feature learning approaches, exemplified by
the heterogeneous graph convolutional network of Wang et
al [14]. Concurrently, speech-based analyses have gained
prominence for their capacity to capture nuanced vocal
markers indicative of mental health conditions [11,15].

MTL has emerged as a promising framework for men-
tal health assessment, as summarized in Table 1, aligning
with the clinical observation that psychiatric conditions often
co-occur and share common underlying mechanisms [22-24].
By jointly learning related tasks, MTL facilitates represen-
tation sharing and information transfer, thereby mitigating
data sparsity and overfitting issues [41-43]. Benton et al [25]
pioneered the use of deep neural networks to simultaneously
predict depression and SR using Twitter data.
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Table 1. Summary of key literature on multitask learning for depression severity and suicide risk prediction.
Study Dataset Language Sample Modality TLa Task Method

Ab Tc DSd SRe

Benton et al [25] Multiple Twitter datasets English 9611 users No Yes No Yes Yes DNNf

Qureshi et al [31] DAIC-WOZg English 189 recordings Yes Yes No Yes No LSTMh

Ophir et al [30] Facebook posts English 83,292 postings No Yes No No Yes ANNi

Qureshi et al [28] DAIC-WOZ, CMU-MOSEIj English 189 recordings No Yes Yes Yes No LSTM
Dumpala et al [44] FORBOWk English 526 recordings Yes No Yes Yes No CNNl

Yang et al [45] Chinese micro-blog Chinese 6100 comments No Yes Yes Yes No DNN
Ghosh et al [46] CEASE English 2539 sentences No Yes Yes Yes No Bi-GRUm

Buddhitha and
Inkpen [29]

CLPsych 2015 Twitter,
UMDn, SMHDo

English —p No Yes No No Yes CNN

Teng et al [26] AVECq 2019 DDS Challenge
Dataset, CMU-MOSEI

English 23,454 video clips and
275 users

Yes Yes Yes Yes No DNN

Yang et al [27] CEASE English 2393 sentences No Yes Yes No Yes BERTr

This study Self-collected Chinese 200 users Yes Yes Yes Yes Yes DNN
aTL: transfer learning.
bA: audio modality.
cT: text modality.
dDS: depression severity.
eSR: suicide risk.
fDNN: deep neural network.
gDAIC-WOZ: distress analysis interview corpus-Wizard of Oz.
hLSTM: long short-term memory.
iANN: artificial neural network.
jCMU-MOSEI: CMU multimodal opinion sentiment and emotion intensity.
kFORBOW: families overcoming risks and building opportunities for wellbeing.
lCNN: convolutional neural network.
mBi-GRU: bidirectional GRU.
nUMD: University of Maryland Reddit suicidality dataset.
oSMHD: self-reported mental health diagnoses dataset.
pNot applicable.
qAVEC: audio/visual emotion challenge.
rBERT: bidirectional encoder representations from transformers.

Several studies listed in Table 1 have incorporated MML to
improve predictive performance. By integrating diverse data
types, MML leverages complementary information to enable
a more comprehensive characterization of mental states.
Qureshi et al [31], for example, demonstrated enhanced
depression prediction accuracy using long short-term memory
models trained on combined textual and acoustic features
from the DAIC-WOZ (distress analysis interview corpus-
Wizard of Oz) dataset. Additionally, TL has also been
increasingly adopted in these frameworks to address the
challenge of limited labeled data. Teng et al [26] applied
depression detection with sentiment assistance through deep
neural networks and TL techniques on the AVEC (audio/
visual emotion challenge) 2019 DDS Challenge and CMU-
MOSEI (CMU multimodal opinion sentiment and emotion
intensity) datasets. Similarly, Yang et al [27] used MTL with
a BERT-based model to incorporate time-perspective cues for
suicidal ideation detection on the CEASE dataset.

Despite these advances, key limitations persist. First,
most studies rely on English-language data. Furthermore,
text-based models are often trained on social media content
[25,30,45], while audio models rely on public datasets [26-
29,31,44,46] that may lack relevance to real-world clinical
scenarios, thereby potentially limiting their applicability.

Second, most SR prediction models are still trained from
scratch, with only a few studies (eg, [27]) leveraging TL
to enhance model performance. Most critically, empirical
research exploring MTL’s effectiveness for simultaneously
predicting both DS and SR remains scarce. To our knowl-
edge, only Benton et al [25] have conducted similar research,
though their work was conducted exclusively in English on
social media data.

To address these gaps, this study introduces a uni-
fied MML, MTL, and TL framework for the simultane-
ous prediction of DS and SR using Chinese-language
data collected in clinical settings. This approach facil-
itates the development of culturally and linguistically
tailored predictive models for Chinese-speaking populations.
Moreover, by incorporating TL, the proposed framework
retains knowledge acquired from source tasks, enabling
efficient adaptation to downstream applications.
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Methods
Ethical Considerations
This study received approval from the Institutional Review
Board of Taichung Veterans General Hospital (approval
number: SE21183B).

Every participant was required to complete and sign a
participant consent form before their involvement. This form
outlined the purpose and procedures of the study, potential
risks and benefits, confidentiality measures, and voluntary
participation rights. The completion of this form indicated
their informed and voluntary consent to partake in the
study. In the section of the participant consent form dedi-
cated to “consent to participate,” participants were explic-
itly informed about the inclusion of a clause seeking their
agreement to employ their personal data, information, or
research outcomes for publication purposes. By complet-
ing and signing the participant consent form, participants
signified their understanding and acceptance of the terms
outlined, thereby granting their “consent for publication.”
This agreement encompassed the use of their anonymized
data and contributions in academic papers, reports, presenta-
tions, or other forms of scholarly dissemination.
Study Population
We collected a Chinese chief complaint dataset, which
includes data from 100 patients with depression from a
regional hospital in southern Taiwan, along with 100 age- and
sex-matched nondepressed counterparts selected at random,
resulting in a total of 200 cases. To verify the matching
process, we conducted tests. The chi-square test for gender in
relation to the prevalence of the condition was not signifi-
cant (P=.88). Similarly, the t test for age in relation to the
prevalence of the condition was not significant (P=.60).

Each case in the dataset includes personal data, an audio
recording describing the current situation, transcripts, and
clinical questionnaire results. The audio recordings were

acquired by instructing participants as follows: “Please take
a minute to elucidate your recent emotions, life circumstan-
ces, and other states.” Subsequently, participants initiated the
recording of their spoken expressions. Based on the question-
naire results, we conducted 2 specific clinical assessments:
Hamilton Depression Rating Scale-17 (HAMD-17) [47] and
SAD PERSONS scale [48]. DS was categorized into 3 levels:
no depression (HAMD-17 score of 0‐7; sample size of 106),
low/moderate depression (HAMD-17 score of 8-16/17-23;
sample size of 21), and high depression (HAMD-17 score
of ≥24; sample size of 73). SR was classified into 2 levels:
low risk (SAD PERSONS score of 0‐3; sample size of 110)
and moderate/high risk (SAD PERSONS score of 4-7/8-10;
sample size of 90).

The demographic data for both groups can be found
in Tables 2 and 3. In the 3 DS groups, there were statis-
tically significant differences between the 2 study groups
regarding age (P=.048), educational level (P<.001), occu-
pation (P=.01), and marriage (P=.001). In terms of educa-
tional level, the HAMD-17≤7 group exhibited higher levels
compared to the 8<HAMD-17≤23 and HAMD-17≥24 groups,
and the proportion of individuals employed was also higher
in the HAMD-17≤7 group than in the 8<HAMD-17≤23 and
HAMD-17≥24 groups (64/97, 66% vs 13/30, 43% and 33/73,
45%). In terms of marital status, the HAMD-17≤7 group
had a higher proportion of married individuals and a lower
proportion of divorced individuals. In the 2 SR groups,
there were statistically significant differences between the 2
study groups regarding educational level (P<.001), occupa-
tion (P=.02), and marriage (P<.001). In terms of educational
level, the SAD PERSONS≤3 group exhibited higher levels
compared to the SAD PERSONS≥4 group. In terms of
occupation, the proportion of individuals was also higher in
the SAD PERSONS≤3 group than in the SAD PERSONS≥4
group (69/110, 62.7% vs 41/90, 45.6%). In terms of marital
status, the SAD PERSONS≥4 group had a higher proportion
of unmarried individuals.

Table 2. Demographic data of patients in the 3 depression severity groups.

Variable
HAMD-17a≤7 group
(n=97)

8<HAMD-17≤23 group
(n=30)

HAMD-17≥24 group
(n=73) P value

Sex, n (%) .99
  Male 29 (30) 9 (30) 21 (29)
  Female 68 (70) 21 (70) 52 (71)
Age (years), mean (SD) 44 (17) 38 (19) 47 (18) .048b

Education level, n (%) <.001b

  Elementary school 0 (0) 2 (7) 6 (8)
  Junior high school 2 (2) 2 (7) 8 (11)
  Senior high school 12 (12) 6 (20) 29 (40)
  College degree or higher 83 (86) 20 (67) 30 (41)
Occupation, n (%) .01b

  Yes 64 (66) 13 (43) 33 (45)
  No 33 (34) 17 (57) 40 (55)
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Variable
HAMD-17a≤7 group
(n=97)

8<HAMD-17≤23 group
(n=30)

HAMD-17≥24 group
(n=73) P value

Marriage, n (%) .001b

  Unmarried 36 (37) 20 (67) 27 (37)
  Married 61 (63) 9 (30) 39 (53)
  Divorced 0 (0) 1 (3) 7 (10)

aHAMD-17: Hamilton Depression Rating Scale-17.
bStatistical significance.

Table 3. Demographic data of patients in the 2 suicide risk groups.
Variable SAD PERSONS≤3 group (n=110) SAD PERSONS≥4 group (n=90) P value
Sex, n (%) .09
  Male 27 (24.5) 32 (35.6)
  Female 83 (75.5) 58 (64.4)
Age (years), mean (SD) 45 (16.7) 42 (19.3) .26
Education level, n (%) <.001a

  Elementary school 0 (0) 8 (8.9)
  Junior high school 4 (3.6) 8 (8.9)
  Senior high school 17 (15.5) 30 (33.3)
  College degree or higher 89 (80.9) 44 (48.9)
Occupation, n (%) .02a

  Yes 69 (62.7) 41 (45.6)
  No 41 (37.3) 49 (54.4)
Marriage, n (%) <.001a

  Unmarried 34 (30.9) 49 (54.4)
  Married 75 (68.2) 34 (37.8)
  Divorced 1 (0.9) 7 (7.8)

aStatistical significance.

Proposed Framework
The framework comprises 3 components: feature extrac-
tion, multimodal fusion, and MTL architecture, which are
discussed sequentially in the following sections (Figure 1).
First, audio and text data undergo processing by pretrained
models to extract their embeddings. Second, the embeddings
obtained from the previous step are fused using a modality
fusion layer. The resulting fused representations are then fed

into a fully connected (FC) network to project them into
lower-dimensional vectors. Lastly, these representations are
shared between the 2 classification tasks (DS and SR) and
are input into 2 task-specific layers implemented as multi-
layer perceptron classifiers to generate output probabilities
separately. The details of the 3 components are presented
below.
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Figure 1. Overview of our proposed framework. FC: fully connected.

First, considering the small sample size in our study and
recognizing the potential of TL in predicting DS and SR,
we used 4 advanced pretrained models for feature extraction:
wav2vec 2.0 and HuBERT for audio analysis [49,50], and
Longformer and ERNIE-health for text analysis [51,52]. Each
method has distinct advantages, rendering them especially
suitable for our research objectives, as elaborated upon in the
following sections.

• wav2vec 2.0: It is developed by Facebook AI Research,
uses a multilayer convolutional neural network (CNN)
for audio encoding, and is supplemented by latent
representation masking and contextualization through a
Transformer network trained with contrastive learn-
ing methods [49]. This self-supervised model excels
with minimal labeled data, consistently surpassing
state-of-the-art models, as demonstrated in the tasks of
depression detection [52] and emotion recognition [53].

• HuBERT: It extends self-supervised learning to audio
data, using a CNN for encoding and a BERT encoder
for contextualization, enhanced by masked prediction
and cluster refinement [50]. HuBERT has demonstra-
ted superior performance in audio classification tasks
for detecting depression [54] and assessing cognitive
function [55].

• Longformer: It stands out as a transformer-based
language model designed to capture extended depend-
encies using sliding window and global attention
mechanisms [51]. This design enables Longformer
to effectively integrate local and global information
while mitigating challenges associated with traditional
attention mechanisms.

• ERNIE-health: It is a Chinese biomedical lan-
guage model tailored for biomedical text process-
ing, enhancing tokenization and comprehension of
biomedical content through in-domain text [56].
ERNIE-health consistently outperforms other models
across various biomedical tasks [57], underscoring its
effectiveness in this domain.

Second, these pretrained models were used to generate audio
embeddings, xa, and text embeddings, xt, by feeding the

preprocessed audio recordings and transcripts as their inputs.
To combine the information from text and audio modalities,
we adopted the early fusion approach by concatenating the
audio embedding (xa) and text embedding (xt) into a single
vector (x), using Eq. (1). This fusion strategy, also known
as feature-level fusion, is characterized by its simplicity,
its computational efficiency, and the potential to capture
intricate interactive details. We adopted this approach due
to its aforementioned advantages and its ability to circum-
vent the risk of information overlap or cancellation inherent
in more complex operations such as addition, deduction,
inner product, and outer product. This approach has been
widely used in prior studies on audio-text fusion, consistently
yielding improved accuracy [58-60].

(1)x = xa⊕ xt
Lastly, our proposed framework adopted the hard parame-
ter sharing scheme for MTL of DS and SR classification
using deep learning. This scheme involves a shared encoder
with multiple task-specific decoding heads [46]. This MTL
technique enables our framework to learn multiple related
tasks simultaneously while improving the generalization
performance. In our framework, an FC network acts as the
shared encoder, and dense layers act as the task-specific
heads. The FC network f learns a condensed representa-
tion x` from the fused input x, as shown in Eq. (2). Subse-
quently, a softmax function is applied to 2 task-specific dense
layers, gd and gs, to transform x` into output probabilities for
DS classification (Eq. (3)) and SR classification (Eq. (4)),
respectively.

(2)x` = f x
(3)yd = Softmax gd x′
(4)ys = Softmax gs x′

In the context of an MTL model, the design of loss func-
tions for multiple objectives is crucial. Instead of using
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weighted sum of loss functions, which can be influenced by
weights and time-consuming to determine, we adopted the
automatic weighted loss approach introduced by [47]. This
method considers the homoscedastic uncertainty of each task
and derives appropriate weights based on task uncertainties.
Tasks with higher uncertainties are assigned lower weights,
allowing the model to effectively learn across tasks in a more
balanced manner.

For the loss calculation, our proposed method involves
a 2-stage approach. In the first stage, we compute task-spe-
cific losses, Ld and Ls, for DS and SR tasks, respectively,
using cross entropy, as described in Eq. (5) (C represents the
number of labels in the corresponding task). In the second
stage, the total loss, Ltotal, is determined using the auto-
matic weighted loss method proposed by [47], as depicted
in Eq. (6). The goal is to minimize the total loss, enhanc-
ing the model’s performance in DS and SR classification
tasks, which can enable effective learning from the data and
accurate predictions for both tasks.

(5)L = − i = 1
C yi ⋅ log(yi)

(6)Ltotal = 12σd2Ld + 12σs2Ls + log σd2 + log σs2
Implementation Details
We implemented our approach using PyTorch [61] and the
Transformers library from Hugging Face [62]. Pretrained

models were loaded by specifying the model version string
in the application programming interface. Refer to Table S1
in Multimedia Appendix 1 for details of the Chinese versions
of the 4 models selected for this study.

To extract features from the audio and text modalities,
we configured several parameters. The audio features were
generated with a sampling rate of 16,000 and a duration of
6.25 seconds, resulting in a 100,000-dimensional feature. For
the text modality, transcripts were tokenized into a fixed
length of 512 tokens, with truncation or padding applied
if necessary. The audio features were then transformed
into 1024-dimensional embeddings, while the tokenized text
inputs were represented as 768-dimensional embeddings.

To prevent overfitting during training, batch normalization
and rectified linear unit activation were applied to linear
layers that did not act as classifiers. A batch size of 8 was
used, and the models were trained for 20 epochs with an early
stopping patience of 3. Cross-entropy was used to calcu-
late the loss for single-task learning (STL), while automatic
weighted loss was used for MTL. The AdamW optimizer was
used for optimizing the losses. The parameter details for each
model, including the modality used (single or multiple) and
the learning architecture adopted (single task or multitask),
are presented in Table 4.

Table 4. Parameter settings.
Parameter SMSTLa MMSTLb SMMTLc MMMTLd

Epochs 20 20 20 20
Early stopping patience 3 3 3 3
Batch size 8 8 8 8
Learning rate 0.0005 0.0005 0.0005 0.0005
Warmup ratio 0.3 0.35 0.35 0.25
Dropout probability 0.2 0.1 0.1 0.1

aSMSTL: single modality with single-task learning.
bMMSTL: multimodal with single-task learning.
cSMMTL: single modality with multitask learning.
dMMMTL: multimodal with multitask learning.

Experimental Evaluation
Our proposed framework is built using the 3 data types in
the dataset: audio recordings, transcripts, and questionnaire
results, as shown in the flow diagram in Figure 2.

During preprocessing, the audio data underwent 3 steps:
removal of file-edge silence, denoising using Podcastle [63],
and feature extraction. We used Podcastle’s Magic Dust AI
technology for its advanced denoising capabilities, which
integrate spectral filtering, adaptive noise cancellation, and
machine learning algorithms [64]. Specifically, we used
the “noise reduction” mode to automatically detect and
suppress nonstationary background noises, such as coughs,

sniffles, and microphone taps, while preserving speech clarity
and signal integrity [65]. This step minimized noise-related
distortions prior to feature extraction and analysis.

Feature extraction was then applied to both audio and
text data using pretrained models, yielding their respective
embeddings as described earlier. The processed dataset was
partitioned into 10 subsets for cross-validation, with 1 subset
used for testing and the remaining 9 for training in each fold.
Final performance metrics were averaged across all 10 trials.
In parallel, questionnaire responses were one-hot encoded to
represent discrete class labels, serving as the output variables
for prediction.
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Figure 2. Flow diagram. MLP: multilayer perceptron; MTL: multitask learning; STL: single-task learning.

Our study consisted of 3 experiments. In experiments 1 and
2, we built STL models for DS and SR tasks, using differ-
ent combinations of embeddings. The primary aim was to
identify the best pretrained models for extracting text and
audio embeddings in each task and assess the advantages of
using multimodal data compared to unimodal data for each
task. In experiment 3, we developed several MTL models
with hard parameter sharing to combine information from
both tasks. The performance of these MTL models was then
compared to the STL models from experiments 1 and 2,
providing insights into the potential benefits of MTL for the 2
tasks.
Performance Measure
To assess the effectiveness of our classification models,
we used a range of standard metrics, including accuracy,
recall, precision, specificity, F1-score, and area under the
curve (AUC). These metrics were derived from the confu-
sion matrix, with AUC serving as the primary metric for
comprehensive performance evaluation. In cases where the
difference in AUC between models was not significant, we
also considered other metrics, such as accuracy, F1-score, and
recall, to ensure a thorough assessment of model perform-
ance.

In the SR prediction task, the positive class (eg, “at risk”)
encompassed individuals with a moderate or high risk of
suicide, as detailed earlier. In contrast, for the DS prediction
task, the models’ performance across all classes (eg, none,
low/moderate, and high) was evaluated using the macro-aver-
age approach, rather than focusing solely on a specific
positive class.

Results
Experiment 1: STL Models for DS
Prediction
In experiment 1, we aimed to find the best STL model for
DS classification by using various pretrained embeddings
to differentiate between the 3 severity levels. These mod-
els employed a multilayer perceptron classifier for classifi-
cation and were categorized into audio-only, text-only, and
combined audio and text modalities based on the embeddings
used. The classification performance of these DS prediction
models on each metric is presented in Figure 3.
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Figure 3. Performance comparison of single-task learning models for depression severity (DS) and suicide risk (SR) prediction. Performance metrics
are presented as a heatmap, where color gradients reflect the relative magnitude of values, ranging from red (lower values) to green (higher values).
A: audio only; A+T: combined audio and text; ACC: accuracy; AUC: area under the curve; E: ERNIE-health; F1: F1-score; H: HuBERT; L:
Longformer; P: precision; R: recall; S: specificity; T: text only; W: wav2vec 2.0.

Regarding DS prediction models, we obtained several
findings (Figure 3). First, the results demonstrated that most
embeddings, except those of the audio modality, performed
well in terms of AUC, with scores exceeding 0.8. In the
audio modality, the wav2vec 2.0 embedding outperformed the
HuBERT embedding. In the text modality, the ERNIE-health
embedding demonstrated superior performance in terms of
AUC (0.877), accuracy (0.780), recall (0.609), and specific-
ity (0.868), indicating its effectiveness in capturing specific
aspects of DS in textual data. Second, combining embed-
dings from different modalities led to improvements across
all metrics for most embeddings. Notably, the addition of
the ERNIE-health embedding to the HuBERT embedding
resulted in a substantial performance boost, with an 11.5%
increase in AUC and up to 27.79% improvement in pre-
cision. Third, our comprehensive evaluation of multiple
metrics showed that the multimodal models outperformed
the single-modality models, except for the combination that
included the HuBERT embedding, which may impair the
ability of text embeddings. Lastly, among all the embed-
dings analyzed, the wav2vec 2.0+ERNIE-health and wav2vec
2.0+Longformer embeddings achieved the highest AUC
scores of 0.878 and 0.873, respectively.
Experiment 2: STL Models for SR
Prediction
In experiment 2, our objective was to identify the best
STL model for SR classification by using different pre-
trained embeddings. Similar to experiment 1, multilayer

perceptron classifiers were used to analyze the embeddings
from different modalities. The evaluation results of these
embeddings for SR classification are presented in Figure 3.

Based on the data presented in Figure 3, regarding SR
prediction models, several findings were obtained. First, the
results demonstrated that most embeddings achieved AUC
values greater than 0.8, except for audio modality embed-
dings and the Longformer embedding. In the audio modal-
ity, the HuBERT embedding outperformed the wav2vec
2.0 embedding on most metrics, except for precision and
specificity. This suggests that the HuBERT embedding
may be a better choice for overall SR classification, while
the wav2vec 2.0 embedding may be more effective in
correctly identifying individuals who are not at risk of
suicide. In the text modality, the ERNIE-health embed-
ding outperformed the Longformer embedding, obtaining
higher values on all metrics, indicating that the ERNIE-
health embedding is more effective for SR classification.
Second, combining embeddings from different modalities
consistently improved AUC, precision, and specificity.
Specifically, incorporating multimodal embeddings led to
significant performance improvements, with increased AUC
(2.28% to 15.60%), precision (3.32% to 20.81%), and
specificity (2.73% to 10.19%) across all single-modality
models, indicating improved accuracy in identifying nonrisk
individuals. Third, the HuBERT+ERNIE-health embedding
achieved the highest performance in terms of AUC (0.876)
among all embeddings.
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Experiment 3: MTL Models for DS and
SR Predictions
In experiment 3, we aimed to explore the potential of MTL
models in improving DS and SR predictions by leveraging

shared information between the 2 tasks. Figure 4 provides a
comprehensive summary of the performance metrics, and the
subsequent content further discusses the results of experi-
ments 1 and 2 for comparison.

Figure 4. Performance comparison of multitask learning models for depression severity (DS) and suicide risk (SR) prediction. Performance metrics
are presented as a heatmap, where color gradients reflect the relative magnitude of values, ranging from red (lower values) to green (higher values).
A: audio only; A+T: combined audio and text; ACC: accuracy; AUC: area under the curve; E: ERNIE-health; F1: F1-score; H: HuBERT; L:
Longformer; P: precision; R: recall; S: specificity; T: text only; W: wav2vec 2.0.

From Figures 3 and 4, we found that all models,
except the ones using the wav2vec 2.0+Longformer embed-
ding, demonstrated an increase in AUC ranging from
0.25% to 3.88% with MTL, indicating the potential of
MTL in enhancing performance for DS. Additionally, we
observed that when adopting MTL for SR prediction, all
models, except for the wav2vec 2.0+ERNIE-health and
HuBERT+Longformer embeddings, demonstrated an increase
in AUC ranging from 0.96% to 10.18%. On the other
hand, what stands out is that when applying the MTL
framework, there was a consistent enhancement in accu-
racy, F1-score, and recall among the combined audio and
text models, including the aforementioned 2 models using
the wav2vec 2.0+ERNIE-health and HuBERT+Longformer
embeddings. These findings suggest that combined audio
and text embeddings are well-suited for the MTL approach,
although they may increase false positives while better
identifying individuals at risk for suicide.

Discussion
Principal Findings
This study proposes a multitask framework that integrates a
multimodal fusion strategy using pretrained audio and text
embeddings to concurrently assess DS and SR. The efficacy
of the proposed method has been validated using real-world
clinical data.

Some of the significant findings of this study are as
follows. First, we introduced and investigated renowned
pretrained models for their effectiveness in audio and text
classification tasks. The findings demonstrated that the
ERNIE-health text modality embedding, specifically trained
on a medical corpus, consistently outperformed the Long-
former text modality embedding in both STL models (for DS
prediction and SR prediction) and MTL models. On the other
hand, the wav2vec 2.0 audio modality embedding performed
better than the HuBERT embedding in STL models for DS
prediction and MTL models for both tasks, but performed
worse than the HuBERT embedding in STL models for SR
prediction.
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Second, our results underscore the effectiveness of
multimodal approaches over single-modality ones in
classifying DS and SR in the majority of cases. Even
straightforward fusion techniques, such as concatenation,
improve performance by integrating richer information,
consistent with previous research [30,31,66]. This implies
that the combination of audio and text embeddings pro-
vides a more comprehensive representation of the underlying
phenomena than using each modality independently.

Third, the results indicated that the performance of
text modality models significantly surpassed that of audio
modality models, except in MTL models using the Long-
former embedding for SR prediction. Several potential
explanations can be considered for this observation. Despite
preprocessing efforts to reduce noise, the audio modality
model remains susceptible to variations in speaker accents or
weaker emotional expressiveness [67], which can adversely
affect the model’s performance. In contrast, text data are
not influenced by such variations. Additionally, techniques
for processing and embedding text data are highly advanced,
such as ERNIE-health, which can contribute to the superior
performance of most text modality models. This demonstrates
that ERNIE-health can effectively bridge the gap between
pretraining goals and downstream tasks [56]. Conversely,
processing and feature extraction for audio data in our dataset
may not be as efficient as for text embeddings. Furthermore,

research indicates that suicidal tendencies and depressive
symptoms are explicitly conveyed through syntactic and
semantic patterns in text, which are efficiently captured
by text embeddings [68]. On the contrary, extracting and
interpreting these signals from audio data are inherently more
complex and less robust.

Fourth, our findings demonstrated that the proposed MTL
framework, using specific pretrained audio and text embed-
dings, significantly enhanced the classification performance
for DS and SR. Considering the common class imbalance in
clinical datasets, we selected AUC as our primary evalu-
ation metric to provide a reliable and clinically meaning-
ful representation of model performance [69,70]. However,
our experiments also revealed that not all models benefited
from its use, with 3 multimodal models showing no improve-
ment in AUC (Table 5). Interestingly, MTL improved the
performance of all single-modality models on both tasks.
However, among the 4 multimodal models, only 1 (ie,
using the HuBERT+ERNIE-health embeddings) exhibited
improvement in AUC for both tasks when using MTL. The
remaining 3 models demonstrated mixed results, with 1 task
showing improvement, and the others experiencing a drop
in performance. This highlights the phenomenon of negative
transfer [71], suggesting that transferred knowledge may not
always have a positive impact on other tasks, even if they
share similarities [71].

Table 5. Performance comparison of STLa and MTLb models for depression severity and suicide risk prediction.
Task, modality, and embedding AUCc Improvement

STL MTL
Depression severity prediction
  Audio only
   wav2vec 0.791 0.793 +0.002
   HuBERT 0.765 0.771 +0.006
  Text only
   Longformer 0.802 0.810 +0.008
   ERNIE-health 0.877 0.885 +0.008
  Combination of audio and text
   wav2vec+ERNIE-health 0.878 0.912d +0.034
   wav2vec+Longformer 0.873 0.866 −0.007
   HuBERT+ERNIE-health 0.853 0.866 +0.013
   HuBERT+Longformer 0.820 0.844 +0.024
Suicide risk prediction
  Audio only
   wav2vec 0.737 0.812 +0.075
   HuBERT 0.762 0.803 +0.041
  Text only
   Longformer 0.784 0.799 +0.015
   ERNIE-health 0.833 0.861 +0.028
  Combination of audio and text
   wav2vec+ERNIE-health 0.852 0.829 −0.023
   wav2vec+Longformer 0.838 0.846 +0.008
   HuBERT+ERNIE-health 0.876 0.901d +0.025
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Task, modality, and embedding AUCc Improvement

STL MTL
   HuBERT+Longformer 0.822 0.821 −0.001

aSTL: single-task learning.
bMTL: multitask learning.
cAUC: area under the curve.
dHighest AUC values for each task.

Finally, our study revealed that MTL models led to more
substantial improvements in the SR prediction task com-
pared to the DS prediction task, with all multimodal MTL
models demonstrating higher recall than their STL counter-
parts in predicting SR. These findings may be attributed to
several aspects. On one hand, the SR prediction task may
involve information or patterns different from those in the DS
prediction task. For instance, text modalities might convey
clearer linguistic patterns, such as specific word choices,
pronoun usage, and negative terms [17], which could be more
predictive of SR than DS. However, MTL allows models
to share learned representations across tasks. If the features
relevant to the SR prediction task benefit from certain text
or audio modality representations, these features may also aid
the DS task, even if the latter shows less improvement. On
the other hand, the prediction of DS may be more influ-
enced by sample variability [72,73], whereas the prediction
of SR might exhibit stronger commonalities across samples.
These findings further underscore the value of MTL, as it
enables the model to address such differences through shared
representations, thereby enhancing prediction accuracy.

To contextualize our work within current state-of-the-art
techniques, we compared our multitask framework with
recent studies on depression and suicide prediction, as
summarized in Table S2 in Multimedia Appendix 1. Our
proposed MTL model, which integrates audio and text
modalities with pretrained embeddings, achieved competitive
performance (DS: AUC=0.91; accuracy=0.81; F1-score=0.69
with wav2vec 2.0+ERNIE-health; SR: AUC=0.90; accu-
racy=0.78; F1-score=0.77 with HuBERT+ERNIE-health),
outperforming several prominent MTL models. These include
models by Benton et al [25] (depression: AUC=0.77; suicide:
AUC=0.83), Ghosh et al [46] (depression: accuracy=0.74),
and Yang et al [27] (suicide: accuracy=0.74). While
Buddhitha and Inkpen [29] reported slightly higher perform-
ance for suicide prediction (AUC=0.88; accuracy=0.84), their
approach relied on Reddit posts rather than clinical data.

Our study also outperformed all single-task depression
prediction studies presented in Table S2 in Multimedia
Appendix 1, which predominantly used binary classification
(ie, depressed vs nondepressed). In contrast, our multitask
framework enabled a more nuanced assessment by explic-
itly predicting the severity of depressive symptoms rather
than merely classifying their presence or absence. Although
some single-task suicide prediction models reported higher
metrics, including models by Chen et al [38] (F1-score=0.76),
Tsui et al [39] (AUC=0.93), and Bouktif et al [36] (accu-
racy=0.94), they used substantially larger datasets (1284

subjects, 45,238 patients, and 3,48,110 posts, respectively)
and focused exclusively on single-task prediction. Similarly,
Ramírez-Cifuentes et al [40] achieved an AUC of 0.94 for
suicide prediction using social media data, which suffered
from known limitations, including self-presentation biases,
language ambiguities, and an inability to detect offline SR
[30].

Our study uniquely applied MTL to simultaneously predict
DS and SR using multimodal data from clinical interviews.
Unlike prior work that focused on single tasks or unimodal
inputs, often derived from electronic health records or social
media, our approach captured direct clinical interactions,
yielding more authentic behavioral signals. Comparative
analyses demonstrated that our model effectively predicted
both DS and SR, offering clear advantages over existing
methods for this clinically important objective.
Theoretical Implications
This study makes substantial contributions to existing
literature from 2 main perspectives. First, this study delinea-
ted the efficacy of integrating MML, MTL, and TL in
simultaneously identifying DS and SR, thereby advancing
the understanding of depression and suicide detection. While
existing research, such as [25], has explored the impact and
importance of MTL in DS and SR prediction, studies have
predominantly focused on social media contexts. Limited
research has evaluated the effectiveness of MTL in clinical
settings. This study addressed this gap through empirical
experiments using real-world clinical datasets, demonstrating
that the proposed multimodal multitask approach, integrating
pretrained embeddings, is applicable to clinical settings.

Furthermore, our findings underscore that MTL generally
enhances model performance, consistent with prior litera-
ture (eg, [25,45,46]), highlighting the benefits of knowledge
sharing across domains [25]. However, our experiments also
revealed instances of negative transfer [71], emphasizing
the importance of selecting optimal MTL strategies based
on embeddings, tasks, and application scenarios. Moreover,
further thoughtful evaluation should consider balancing the
costs associated with false positives and false negatives, using
more comprehensive metrics.

Second, we discussed and presented a comparison of
popular pretrained models (Longformer and ERNIE-health
for text modality, and wav2vec 2.0 and HuBERT for
audio modality) to evaluate their effectiveness with clinical
data, providing a valuable addition to the existing literature
on depression and suicide prediction research. Our find-
ings revealed that ERNIE-health outperformed Longformer
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in text modality embedding, and wav2vec 2.0 generally
surpassed HuBERT, although there were instances where the
reverse was true. This underscores the necessity of judicious
pretrained model selection and thorough testing for clini-
cal applicability in the future. Nevertheless, we still affirm
the efficacy of TL, as even single-task and single-modality
models exhibited commendable performance, although our
dataset included only 200 samples.
Practical Implications
This study has several important practical implications. First,
the persistent challenge of data scarcity has limited progress
in both academic research and clinical practice. Through
techniques like MML, TL, and MTL, we propose promis-
ing solutions. Second, by integrating multimodal data from
speech and text and applying TL methods, our approach can
facilitate clinical diagnosis with objective and quantitative
measurements. This enables a rapid, efficient, and cost-effec-
tive assessment of DS and SR based solely on patients’ verbal
disclosures to health care providers. Third, the effectiveness
of our method suggests a promising avenue for automated
SR detection through the development of innovative tools,
thereby making a significant contribution to early suicide
prevention efforts.
Limitations and Future Research
This study has certain limitations that warrant further
research. First, our dataset of 200 participants (100 patients
with depression and 100 healthy individuals) represents a
significant limitation that severely constrains the general-
izability of our findings to broader populations. Despite
implementing cross-validation techniques, this small sample
size introduces considerable risks of overfitting, where the
model may capture dataset-specific characteristics rather than
robust, generalizable patterns for DS and SR detection. This
limitation necessitates external validation with larger, more
diverse cohorts from different clinical settings and demo-
graphic backgrounds to establish the true clinical utility and
robustness of our proposed method. The incorporation of
larger external datasets is therefore essential to not only
enhance robustness but also refine and validate our approach
across varied populations.

Furthermore, addressing data imbalance has emerged
as a critical challenge in accurately identifying and
classifying depression cases across varying severity levels.

Our comprehensive analysis revealed significant perform-
ance disparities among “none,” “low/moderate,” and
“high” severity subcategories, with particularly pronounced
difficulties in classifying “low/moderate” severity cases
(Table S3 in Multimedia Appendix 1). This variability
underscores the intricate complexity of developing a robust
diagnostic approach capable of consistently discerning
nuanced variations in DS. Future research should, therefore,
focus on advancing MTL strategies that integrate multimodal
feature representations with targeted sampling techniques and
refined weighting mechanisms to enhance the robustness of
model predictive performance across varying severity levels
of depression.

Furthermore, the exploration of diverse fusion strategies
and weight adjustments in MTL, along with the investigation
of various pretrained models, warrants further investigation
to potentially enhance model performance in future studies.
However, while our implementation was straightforward, our
primary objective was to develop a computationally efficient
and effective method that prioritizes resource efficiency.
Finally, exploring the applicability of these techniques to a
broader spectrum of mental health disorders is essential. This
includes leveraging MML and MTL approaches to integrate
information across different disorders, thereby expanding the
scope of potential applications in mental health diagnostics.
Conclusion
Early detection and accurate diagnosis are crucial for
implementing timely interventions and alleviating the societal
and economic burdens associated with mental health
conditions. This study proposes an effective approach to
improving model performance by integrating MTL, MML,
and TL for concurrent depression and suicide detection. Our
empirical findings, obtained by fine-tuning MTL models
on clinical datasets, provide compelling evidence for the
effectiveness of integrating MTL, MML, and TL methods in
addressing mental health tasks. However, we advocate for
cautious MTL implementation to mitigate potential nega-
tive transfer effects. Additionally, we recommend careful
consideration for the selection of pretrained models and
rigorous validation to ensure their clinical applicability. Our
proposed methods offer a promising pathway for future
research and clinical applications in mental health diagnos-
tics.
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