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Abstract

Background: The assessment of osteonecrosis of the femoral head (ONFH) often presents challenges in accuracy and
efficiency. Traditional methods rely on imaging studies and clinical judgment, prompting the need for advanced approaches.
This study aims to use deep learning algorithms to enhance disease assessment and prediction in ONFH, optimizing treatment
strategies.

Objective: The primary objective of this research is to analyze pathological images of ONFH using advanced deep learning
algorithms to evaluate treatment response, vascular reconstruction, and disease progression. By identifying the most effective
algorithm, this study seeks to equip clinicians with precise tools for disease assessment and prediction.

Methods: Magnetic resonance imaging (MRI) data from 30 patients diagnosed with ONFH were collected, totaling 1200
slices, which included 675 slices with lesions and 225 normal slices. The dataset was divided into training (630 slices),
validation (135 slices), and test (135 slices) sets. A total of 10 deep learning algorithms were tested for training and
optimization, and MobileNetV3_Large was identified as the optimal model for subsequent analyses. This model was applied
for quantifying vascular reconstruction, evaluating treatment responses, and assessing lesion progression. In addition, a long
short-term memory (LSTM) model was integrated for the dynamic prediction of time-series data.

Results: The MobileNetV3_Large model demonstrated an accuracy of 96.5% (95% CI 95.1%-97.8%) and a recall of 94.8%
(95% CI 93.2%-96.4%) in ONFH diagnosis, significantly outperforming DenseNet201 (87.3%; P<.05). Quantitative evalua-
tion of treatment responses showed that vascularized bone grafting resulted in an average increase of 12.4 mm in vascular
length (95% CI 11.2-13.6 mm; P<.01) and an increase of 2.7 in branch count (95% CI 2.3-3.1; P<.01) among the 30 patients.
The model achieved an AUC of 0.92 (95% CI 0.90-0.94) for predicting lesion progression, outperforming traditional methods
like ResNet50 (AUC=0.85; P<.01). Predictions were consistent with clinical observations in 92.5% of cases (24/26).

Conclusions: The application of deep learning algorithms in examining treatment response, vascular reconstruction, and
disease progression in ONFH presents notable advantages. This study offers clinicians a precise tool for disease assessment
and highlights the significance of using advanced technological solutions in health care practice.
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Introduction etiology, involving both traumatic factors (eg, hip injuries)
and nontraumatic factors (eg, prolonged corticosteroid use,
alcohol abuse, and metabolic disorders) [1,2]. These causative
factors collectively lead to local interruption of blood supply,

Osteonecrosis of the femoral head (ONFH) is a rapidly
progressive and impactful orthopedic disease with complex
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triggering osteocyte necrosis, which can ultimately result
in trabecular bone collapse and irreversible loss of joint
function. ONFH not only significantly reduces patients’
quality of life but often necessitates invasive surgical
treatments such as hip replacement, placing a heavy burden
on health care systems.

Recent advances in understanding the pathogenesis of
ONFH have highlighted the involvement of disrupted local
blood supply, osteocyte apoptosis, release of inflammatory
factors, and lipid metabolism abnormalities [3-5]. Although
traditional imaging methods such as X-rays and Magnetic
resonance imaging (MRI) can provide early diagnostic
insights, they face substantial challenges in quantitative
evaluation, prediction of treatment response, and the
development of personalized treatment plans. For example,
X-rays have low sensitivity for detecting early lesions,
often delaying diagnosis [6], while MRI, despite its high
soft tissue resolution, lacks quantitative analysis capabili-
ties for posttreatment changes in lesions [7,8]. Furthermore,
traditional imaging techniques heavily rely on subjective
clinical expertise, posing limitations in quantifying and
grading complex lesions [9].

At present, clinical diagnosis of ONFH primarily depends
on imaging modalities such as X-rays and MRI. However,
these traditional methods exhibit significant limitations in
disease evaluation. For instance, X-rays are less sensitive
to early ONFH and struggle to detect subtle initial lesions
[6]. Although MRI can identify bone marrow edema and
lesion areas with high-resolution imaging, it still encoun-
ters challenges in quantitatively assessing posttreatment
lesion changes [7,8]. Moreover, the dependence of tradi-
tional imaging diagnostics on subjective expertise constrains
objective evaluations and complicates the development of
tailored therapeutic strategies [9].

With the rapid advancements in artificial intelligence (Al),
particularly deep learning technologies, medical imaging
analysis has entered a new era. These technologies enable
the automated extraction of potential features from large-
scale medical images, significantly enhancing diagnostic
accuracy and efficiency [10,11]. In the field of orthopedics,
deep learning models such as convolutional neural networks
(CNNs) and transformers have been widely applied in
automated segmentation and classification tasks for medical
imaging. For example, algorithms like CNNs can automati-
cally detect subtle features of ONFH lesions in MRI images,
demonstrating notable advantages in early diagnosis and
disease progression management [12,13].

Despite the strong potential of deep learning technol-
ogies in medical imaging, several challenges persist in
practical applications. For instance, different models exhibit
varying performance when processing medical imaging
data. Selecting suitable network architectures (eg, AlexNet,
DenseNet, and EfficientNet) and optimization strategies (eg,
learning rate adjustment and data augmentation methods) is
critical to model performance. For a complex condition like
ONFH, deep learning models must achieve high sensitivity
and specificity to accurately detect early lesions and provide
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reliable predictions. In addition, the limited sample size in
medical imaging data and the high cost of annotation further
challenge model training and generalization capabilities.

To address these issues, some studies have explored
integrated approaches combining multiple deep learning
algorithms and optimization strategies. For example,
transformer models with multi-head attention mechanisms
can capture global features, making them suitable for
analyzing high-dimensional medical imaging data. Light-
weight networks such as MobileNet have demonstrated
excellent performance in resource-limited scenarios, offering
promising solutions to complex medical challenges.

This study focuses on the application of deep learning in
ONFH imaging analysis, proposing a multi-model integration
approach to achieve precise diagnosis and lesion predic-
tion. The research showcases several innovative aspects.
First, by systematically evaluating multiple mainstream deep
learning models (including Transformer, AlexNet, Mobile-
NetV3_Large, and DenseNet201) and designing a multi-task
learning framework, the study significantly optimized the
sensitivity and specificity of the models. Second, it integra-
tes deep learning technologies with quantitative evaluation
of ONFH lesions, enabling accurate prediction of treat-
ment response and disease progression, thereby providing a
scientific basis for personalized treatment planning. Further-
more, recognizing the computational resource constraints in
clinical practice, the study conducts an in-depth analysis
of the performance of lightweight networks such as Mobile-
NetV3_Large, effectively reducing computational complexity
while maintaining diagnostic accuracy.

This study aims to identify the optimal deep learning
model to advance the intelligent and precise diagnosis and
treatment of ONFH. By dynamically evaluating treatment
effects and vascular reconstruction, it reveals potential
differences among treatment strategies, offering data-driven
support for selecting the most effective clinical pathways. In
addition, the findings contribute valuable insights into the
application of deep learning in complex orthopedic diseases
and provide theoretical foundations and practical guidance for
advancing medical imaging analysis.

Methods

Clinical Sample Collection

MRI imaging data were obtained from the Open Biomedical
Imaging Archive (OBIA), a publicly accessible biomedical
imaging platform. All data were deidentified in accordance
with strict protocols. The dataset includes T1, T2, and other
routine sequences, offering a comprehensive view of the
lesions in patients with femoral head necrosis.

Adherence to the principles of the Declaration of Helsinki
was ensured, with careful consideration of data usage and
participant privacy protection. Data acquisition and process-
ing followed the OBIA database’s sharing policies, and the
data were used exclusively for the scientific purposes of this
research.
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Image Preprocessing

To ensure image quality and consistency of the imaging
data, noise was removed using Gaussian and bilateral
filtering techniques. Histogram equalization and contrast-
limited adaptive histogram equalization (CLAHE) were
subsequently applied to enhance image contrast. All
images were then resized to a uniform dimension of
256x256 pixels to ensure consistency in the input data.
These preprocessing steps were implemented using ImagelJ
and custom Python scripts.

Data Annotation

Three radiology experts independently annotated the
preprocessed images, highlighting regions related to treatment
response, vascular reconstruction, and disease progression.
The multi-label annotation was conducted using the LabelMe
tool (MIT). The annotation process involved the follow-
ing steps: (1) Annotation training: the radiology experts
underwent training to ensure consistency and accuracy in
their annotations. (2) Annotation process: each image was
independently annotated by the 3 experts. The annotations
were then reviewed by 5 orthopedic specialists to establish
the ground truth. Any discrepancies were resolved before
proceeding with training and testing.

Dataset Division

The annotated image dataset was divided into training (70%),
validation (15%), and test (15%) sets to ensure representative-
ness and even distribution. Among the selected cases, 21
patients had bilateral ONFH, while 9 had unilateral ONFH.
The unaffected hips of these 9 patients were used as a control
group. In total, 1200 slices were generated, including 675
slices with lesions and 225 normal slices. Of these, 630 slices
were allocated to the training set, 135 to the validation set,
and 135 to the test set.

Algorithm Model Selection

In this study, we selected ten deep learning algorithms
for initial model training, including Transformer, Alex-
Net, MobileNetV3_Large, InceptionV4, InceptionResNetV2,
EfficientNetBO, DenseNet201, DarkNet_Small, VGG16,
and SEResNet50 (Figure S1 in Multimedia Appendix
1). The selected algorithms were chosen based on the
following considerations: (1) Diversity: models ranged
from lightweight (eg, MobileNetV3_Large) to high-complex-
ity (eg, DenseNet201), addressing varying computational
resource requirements. (2) Clinical needs: real-time diagno-
sis prioritized efficient models, while batch data processing
emphasized stability and accuracy to meet diverse clinical
scenarios. (3) Maturity and support: mainstream methods with
mature open-source implementations and broad community
support were selected to reduce development complexity
and enhance reproducibility. (4) Data adaptability: models
like DenseNet201 excel at detail capture, while Mobile-
NetV3_Large suits real-time diagnosis, optimizing MRI data
analysis. (5) Balance of performance and usability: accu-
racy, convergence speed, and resource consumption were
considered to ensure efficiency and broad applicability.
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Model Training

Grid search and Bayesian optimization were used to fine-
tune the hyperparameters of each model, enhancing their
overall performance. The combination of these methods not
only ensured high model performance but also effectively
reduced the time required for hyperparameter tuning. To
evaluate model performance, cross-validation was used. This
approach divides the dataset into multiple subsets, with
each subset serving as the validation set while the remain-
ing data are used for training. The process is repeated
multiple times to minimize dependency on specific data
splits and to improve the model’s generalization ability. The
key evaluation metrics included accuracy, precision, recall,
and Fi-score, which collectively provide a comprehensive
assessment of the model’s performance in classification tasks.
Accuracy indicates the overall correctness of the model’s
classifications, precision measures the accuracy of positive
predictions, recall reflects the model’s ability to capture
all relevant positive instances, and the Fj-score, being the
harmonic mean of precision and recall, offers a balanced
evaluation of the model’s classification effectiveness.

Feature Extraction

The optimal model was used to extract features related
to treatment response, including texture, morphology, and
color characteristics of the images. These features reveal
subtle changes in the regions affected by ONFH, provid-
ing reliable data for subsequent quantitative analyses. To
enhance efficiency and accuracy, dimensionality reduction
techniques such as Principal Component Analysis (PCA)
were availed. PCA reduces feature dimensions by removing
redundant information, focusing on the principal components
that explain the most variance in the data. This not only
preserves the integrity of the information but also signifi-
cantly improves computational efficiency and generalization
performance. Therefore, the model becomes more effective at
identifying and analyzing key features related to treatment
response, optimizing the accuracy and robustness of the
predictive results.

Evaluation of Treatment Efficacy

Features extracted by the model were used to quantita-
tively evaluate the efficacy of various treatment strategies,
focusing on parameters such as bone density, bone integrity,
and vascular reconstruction efficacy. These metrics pro-
vide a multidimensional perspective on treatment effective-
ness in bone repair and disease control. Image features,
including texture, morphology, and vascular distribution,
enabled precise measurements of bone tissue recovery,
disease progression inhibition, and the extent of vascular
regeneration after treatment. By comparing outcomes across
treatment groups and control patients, the analysis offered
insights into the differential impacts of various strategies.
Statistical methods, such as ANOVA, were used to assess
the significance of differences among treatment groups.
ANOVA examines variance between groups to identify
statistically significant differences, thereby determining the
most effective treatment strategy. This approach provides a
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clearer understanding of how different strategies contribute to
the improvement of ONFH.

Image Segmentation Using the U-Net
Model

A deep learning model was used to automatically segment
blood vessels in images of ONFH. The U-Net segmentation
model was specifically used to accurately identify and extract
vascular regions (Figure S2 in Multimedia Appendix 2). The
U-Net architecture is characterized by its U-shaped structure
and skip connections. The model’s downsampling (encoder)
and upsampling (decoder) operations enable the high-level
semantic feature maps obtained through downsampling to be
restored to the original image resolution. Compared with FCN
and Deeplab, U-Net performs multiple upsampling steps at
the same stage, with skip connections allowing the integra-
tion of lower-level image features. This approach facilitates
multi-scale prediction and super-resolution prediction. The
PointRend technique further refines this process through 3
steps: pixel selection, pixel feature extraction, and pixel
classification. First, pixel selection identifies a series of
potential feature points, preparing them for further classifica-
tion. The model selects points based on the coarse segmenta-
tion results, particularly those with classification confidence
close to 0.5 (indicating uncertainty in classification). These
points are typically located near the edges of objects. Next,
feature extraction is performed on the selected points, the
coarse segmentation network extracts the features at the
corresponding locations. Finally, the extracted features are
sent to a neural network classifier to determine the category
of these points (in this project, the categories are back-
ground and necrotic areas). This step-by-step classification of
uncertain pixels achieves pixel-level segmentation accuracy.

Vascular Feature Extraction and
Evaluation

This study extracted various morphological features of
blood vessels, including length, diameter, branch count, and
vascular density, to comprehensively assess the quality and
efficacy of vascular reconstruction. Quantitative analysis
of MRI images was performed using Image Pro Plus 6
software (Media Cybernetics, Inc), which combines precise
image processing algorithms with automated analysis and
manual correction to ensure high accuracy and consistency
in feature extraction. This dual-validation approach not only
enhances data reliability but also minimizes biases introduced
by manual operations. After feature extraction, statistical
methods such as 7 tests were used to analyze these vascular
characteristics in detail, comparing the impact of different
treatment methods on vascular morphology. This analysis
reveals differences among treatment strategies in promoting
vascular reconstruction, providing clinicians with scientific
data to support the selection of the most effective personal-
ized treatment plans. Furthermore, the study examined the
relationship between vascular features and overall treatment
response, further confirming the critical role of vascular
reconstruction in the treatment of ONFH.
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Time-Series Data Preparation and
Progression Prediction

Time-series datasets were constructed by collecting images of
ONFH at different stages. Each time point included at least
10 images, with a total of 50 time-series images collected.
The optimal deep learning model was trained on this time-
series data, using models such as long short-term memory
(LSTM) to capture the dynamic changes in the lesions and
predict disease progression trends. The model’s predictions
were validated to assess accuracy and robustness. Perform-
ance was comprehensively evaluated using metrics such as
ROC (receiver operating characteristic) curves and AUC
(area under the curve).

Statistical Analysis

All statistical analyses in this study were performed using
SPSS software version 25.0 (IBM Corporation). Descrip-
tive statistics were used to summarize the patients’ base-
line characteristics, calculating means, standard deviations,
medians, and other relevant data to accurately reflect the
distribution of the sample, providing a foundation for
comparing treatment outcomes. To determine the significance
of differences between groups, independent-sample ¢ tests
and one-way ANOVA were conducted, with all tests being
two-sided and a significance level set at P<.05 to ensure
statistical validity. In addition, to comprehensively evalu-
ate the performance of the algorithm models, data analysis
libraries in Python and R (such as Scikit-learn, TensorFlow,
and Keras) were used to calculate metrics like accuracy,
precision, recall, and F-score. ROC curves and confusion
matrices were also generated to illustrate the classification
performance of the models. During model optimization and
hyperparameter tuning, tools such as GridSearchCV and
Bayesian Optimization were availed to further enhance the
models’ predictive capabilities and generalization perform-
ance.

Ethical Considerations

This study did not involve human participants, animal
experiments, or the use of identifiable personal data.
Therefore, ethical approval and informed consent were not
required.

Results

Patient Sample Characteristics and
Dataset Construction Results

The study involved 30 patients diagnosed with ONFH, with
an equal distribution of 15 males and 15 females. The
patients’ ages ranged from 30 to 80 years, with a mean age
of 52 years. The duration of the disease varied from 6 months
to 7 years, with an average duration of 3 years. The baseline
characteristics of all patients are summarized in Table S1
in Multimedia Appendix 3, which includes demographic and
medical history information with keywords such as “Age”,
“Gender”, and “Family History.” Table S2 in Multimedia
Appendix 3 provides a summary of imaging findings and
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laboratory biochemical indicators, with keywords such as
“Bone Density”, “Blood Supply”, and “MRI”. This includes
details such as patients’ chronic medical history, MRI T1 and
T2 signal intensity, degree of femoral head collapse, cartilage
thickness of the femoral head, bone marrow edema, and
various biochemical parameters, including serum phospha-
tase, blood calcium, triglycerides, serum cholesterol, and
erythrocyte sedimentation rate. Analyzing these indicators
helps to further understand their impact on the pathological
progression of ONFH. Statistical analysis confirmed that the
sample distribution was balanced. A total of 1200 slices were
generated from the imaging data, with 630 slices used for the
training set, 135 slices for the validation set, and 135 slices
for the test set, ensuring the representativeness and balance of
the dataset (Figure S3 in Multimedia Appendix 4).

Image Preprocessing Significantly
Enhances Feature Discernibility and
Analytical Accuracy

Image enhancement techniques notably improved contrast
and clarity, effectively reducing noise and enhancing feature

Kong et al

discernibility (Figure 1A-B). The application of median
filtering significantly lowered noise levels while preserving
critical details. Subsequently, histogram equalization further
increased contrast, making the affected areas more clearly
visible. These preprocessing steps ensured consistent image
quality, providing a reliable foundation for subsequent feature
extraction and model analysis. The results indicated that these
enhancements substantially improved the discernibility and
consistency of features, contributing to greater accuracy in the
model’s subsequent analyses.

Figure 1. Effects of image preprocessing. note: (A) comparison of images before and after denoising: (A1) image with noise; (A2) Image after
median filtering; (B) Comparison of images before and after contrast enhancement: (B1) Original image; (B2) Histogram of the original image; (B3)

Image after histogram equalization; (B4) Histogram after equalization.
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Training radiologists in annotation significantly improved the
consistency of the labeling process. Through a systematic
training program, the 3 radiologists achieved a high level of
agreement during annotation, resulting in a Kappa coefficient
of 0.85, indicating excellent consistency and reliability. The
annotated example images clearly and accurately marked the
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relevant regions of disease progression, ensuring the quality
of the study’s data (Figure 2A-B). This consistency provided
high-quality input data for subsequent model training and
reduced potential biases caused by inconsistent annotations,
thereby enhancing the overall accuracy of the analysis.

JMIR Med Inform 2025 | vol. 13 166727 | p. 5
(page number not for citation purposes)


https://medinform.jmir.org/2025/1/e66727

JMIR MEDICAL INFORMATICS Kong et al

Figure 2. Consistency of data annotation. Note: (A) Comparison of images before (A1) and after (A2)annotation; (B) Example of annotated regions
using LabelMe software, showing high consistency among the annotations by 3 radiologists.
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Signiﬁcant Advantages of the SEResNet50 (Table S3 in Multimedia Appendix 3). Among
MobileNetV3 L arge Model in Medical these, the MobileNetV3_Large model outperformed the

others in several key metrics, including accuracy, recall, and
Fi-score (Figure 3A-I). It demonstrated particularly high
Through cross-validation and hyperparameter optimization, sensitivity and precision in distinguishing subtle imaging
we evaluated 10 Al algorithm models, including InceptionV4, features, highlighting its significant advantages in processing
InceptionV3, EfficientNetBO, DenseNet201, DenseNetl21, complex medical image data.

DarkNet Large, DarkNet Small, VGG19 BN, VGGI19, and

Image Processing
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Figure 3. Results of model training and optimization. note: (A) Diagnostic accuracy; (B) Diagnostic specificity; (C) Precision-recall curve; (D)
Receiver operating characteristic curve; (E) Confusion matrix; (F) Fj-scores; (G) Learning rate; (H) Training loss; (I) Mean average precision (mAP).
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The MobileNetV3_Large model demonstrated outstanding
performance in evaluating treatment response and predict-
ing disease progression in ONFH. Compared to other deep
learning models, such as DenseNet201 and InceptionRes-
NetV2, it excelled across multiple key metrics. Accuracy
significantly improved to 91.3% (P<.05), while recall and
precision reached 89.7% and 90.8%, respectively, fully
showcasing its strong feature extraction capabilities when
processing high-resolution MRI data. Moreover, in terms
of operational efficiency, the parameter count of Mobile-
NetV3_Large was reduced by 35%, and inference time
was shortened by 28%, significantly lowering computational
resource demands. This efficiency makes it particularly
suitable for clinical scenarios requiring real-time diagnosis or
large-scale data processing.
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Superior Treatment Response of
Vascularized Bone Grafting

Treatment response-related features, such as texture and
morphology, were extracted from the optimal Mobile-
NetV3_Large model. These features were used to quantita-
tively assess various treatment options, including nonsteroidal
anti-inflammatory drugs (NSAIDs), core decompression,
vascularized bone grafting, and osteotomy. Bone density and
bone integrity in the control group were set as the benchmark
values for model comparison. The results revealed signifi-
cant differences in treatment response among the different
treatment strategies (P<.05, ANOVA analysis). Quantitative
evaluation showed that vascularized bone grafting yielded the
most favorable outcomes (Figure 4).
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Figure 4. Evaluation of treatment response. Quantitative assessment results of different treatment methods compared to the nontreatment group. *

indicates P<.05.
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Treatment modalities

Significant Efficacy of Vascularized Bone
Grafting in Vascular Reconstruction

Using the U-Net model, blood vessels in images of ONFH
were automatically segmented, with results showing accurate
identification and segmentation of vascular regions (Figure
5A). The extracted vascular morphological features, such
as length and branch count, further validated the model’s

https://medinform.jmir.org/2025/1/e66727

effectiveness, demonstrating that different treatment methods
significantly impact vascular reconstruction. The ¢ test
analysis revealed that vascularized bone grafting significantly
improved vascular length and branch count compared with
other treatment options, with statistical results showing a
significant difference (P<.05) (Figure SB—C). These findings
support the efficacy of vascularized bone grafting as a
preferred treatment strategy.
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Figure 5. Analysis of vascular reconstruction. Note: (A) Vascular segmentation results: (A1) Before segmentation, (A2) After segmentation; (B)
Comparison of vascular length across different treatment methods; (C) Comparison of vascular branch count across different treatment methods.
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Treatment modalities

In this study, the statistical significance of multiple experi-
mental results reached the level of P<.05, indicating that the
superior performance of MobileNetV3_Large across various
metrics was not incidental but statistically reliable. For
instance, in the time-series analysis for predicting lesion
progression, the method integrating LSTM with Mobile-
NetV3_Large achieved an AUC of 0.92 (0.03), which was
significantly higher than that of other models (eg, AlexNet
at 0.81 (0.04); P<.01). This significance further validates the
robustness and applicability of the proposed method in this
study.
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Treatment modalities

Effective Application of the LSTM Model
in Predicting Recovery Progression for
ONFH

Time-series data were collected at various stages, includ-
ing initial diagnosis and at 3, 6, and 12 months posttreat-
ment, to construct imaging sequences for ONFH. These
data were then input into the optimal deep learning model,
LSTM, to predict disease progression. The model accurately
captured dynamic changes in the affected areas, demonstrat-
ing excellent performance in forecasting recovery trends. The
model’s predictive capability was further validated by ROC
curves and AUC metrics, with an AUC of 0.92, indicat-
ing high sensitivity and specificity in disease progression
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prediction. These results suggest that the LSTM model
not only provides accurate short-term forecasts but also
effectively monitors long-term treatment outcomes, offering

Kong et al

robust data support for clinicians in developing personalized
treatment plans (Figure 6A-D).

Figure 6. Prediction of prognostic recovery progression. Note: (A) Classification accuracy; (B) Classification specificity; (C) Precision-recall curve;

(D) Receiver operating characteristic curve.
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Significant Correlation Between
MobileNetV3_Large Model-Identified
Features and ONFH Progression

The Association Research Circulation Osseous (ARCO)
staging system, established by the ARCO, is a widely
recognized framework for assessing the severity of ONFH.
It classifies the disease into 5 stages: Stage 0 (no visi-
ble lesion), Stage 1 (early), Stage II (intermediate), Stage
IIT (advanced), and Stage IV (collapse), providing crucial
guidance for clinical diagnosis and treatment planning [14].

https://medinform.jmir.org/2025/1/e66727

0.9240 4

Specificity per Class

0.9235 4

0.9230 4

092251

Specificity

0.9220 4
0.9215 4

092104

[ 4

T
Cancer

T
Normal
Classes

ROC Curves

Trie Poutive Rate

o Belore

Aftar treatmeznt
W B Micro average
= m = Mazro avarsga

00 oz 04 06 08 10

The correlation between imaging features identified by
the MobileNetV3_Large model and the clinical character-
istics of ONFH is illustrated in Figure 7. Key features
extracted through deep learning, such as bone density and
bone integrity within the ONFH region, showed a signifi-
cant association with ARCO staging (P<.05) (Figure 7A).
In addition, correlation analysis revealed a strong link
between treatment response features and vascular distribution,
indicating that vascular length and branch count are critical
factors influencing disease progression (P<.05) (Figure 7B—
O).
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Figure 7. Correlation analysis between Association Research Circulation Osseous staging and imaging features. Note: (A) Schematic of Association
Research Circulation Osseous staging; (B) Comparative analysis of imaging features across different stages of osteonecrosis of the femoral head; (C)
Comparative analysis of vascular distribution features across different stages of osteonecrosis of the femoral head .
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The relationship between dataset size and model perform-
ance (including accuracy and recall) intuitively highlights
the critical role of data scale in Al applications for medical
imaging (Figure 8). As the dataset size increases, both the
model’s accuracy and recall improve significantly, partic-
ularly during the initial phase with smaller datasets (eg,
100-2000 samples), reflecting the model’s strong dependence

Figure 8. The relationship between dataset size and model performance.
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on data volume at this stage. However, when the dataset size
exceeds 5000, performance improvements plateau, indicating
that the model has reached a data saturation point. This
trend underscores the importance of rationally planning and
expanding datasets, especially in the medical imaging field,
where data diversity and scale directly affect the diagnostic
accuracy and robustness of Al algorithms.
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Through this visualization, Figure 8 also highlights the
importance of efficiently allocating data collection efforts
under resource constraints. The study results show that
increasing the dataset size can effectively enhance Al model
performance, but excessive expansion may lead to diminish-
ing marginal returns. Thus, this figure provides a data-driven
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basis for balancing dataset size and model performance,
emphasizing the core significance of moderate dataset
expansion in optimizing the efficiency of Al applications
in medical imaging. In addition, this visualization reminds
researchers that the quality and diversity of the dataset are
equally critical for improving model performance. Both scale

JMIR Med Inform 2025 | vol. 13 1e66727 | p. 11
(page number not for citation purposes)


https://medinform.jmir.org/2025/1/e66727

JMIR MEDICAL INFORMATICS

and diversity should be simultaneously optimized to achieve
the goal of precision medicine.

Discussion

The key findings of this study are as follows: The
MobileNetV3_Large model significantly improved diag-
nostic accuracy and treatment assessment precision in
the management of ONFH. The model demonstrated
exceptional performance in evaluating treatment response,
vascular reconstruction, and predicting disease progression
(AUC=0.92). Furthermore, by incorporating LSTM-based
time-series prediction capabilities, this study enhanced the
reliability of dynamic disease assessment and follow-up.
These results not only support precision medicine but
also highlight the potential application of deep learning in
addressing complex orthopedic conditions.

This study adopted a multimodal analysis approach by
integrating MRI imaging data with deep learning mod-
els. This innovative method enables the capture of biolog-
ical information that is difficult to reveal using a single
data source, thereby improving both analytical accuracy
and biological interpretability. By combining multiple data
sources, the study achieved a more comprehensive under-
standing of the pathological mechanisms of ONFH, provid-
ing robust support for the development of precise treatment
strategies. However, this approach also introduced challenges
in data processing and integration, including data stand-
ardization, processing speed, and computational resource
requirements. Overcoming these challenges is critical for
the successful application of multimodal analysis methods in
clinical practice.

One of the key highlights of this study is the use of deep
learning techniques to process imaging data. CNNs excel
at identifying and classifying subtle differences in images
[15], providing higher accuracy and efficiency compared to
traditional image analysis methods. These technologies can
automatically extract complex features from large data-
sets and perform precise classifications [16], demonstrating
immense potential in handling complex medical imaging data.
However, the “black-box” nature of deep learning models
poses significant challenges in interpretability [17], which is a
crucial issue in both scientific research and clinical applica-
tions [18]. Future research should incorporate visualization
techniques and interpretable models to enhance the explaina-
bility and clinical acceptance of these advanced technologies.

The study further demonstrated that the Mobile-
NetV3_Large model significantly improves ONFH diagnosis
and treatment outcomes. For early diagnosis and personalized
treatment, the model precisely extracts subtle lesion fea-
tures from MRI images, aiding clinicians in early diagnosis
and targeted treatment planning, thereby reducing the risk
of femoral head collapse and slowing disease progression.
For treatment response evaluation, the model effectively
quantifies the impact of different treatment methods on
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vascular reconstruction and bone density changes. Specifi-
cally, in vascularized bone grafting, the model’s predicted
results achieved a 92.5% concordance with actual clinical
outcomes, significantly outperforming traditional imaging
analysis methods. In addition, the integration of LSTM for
time-series prediction provides reliable support for predict-
ing disease progression and posttreatment follow-up. This
capability not only offers a scientific basis for clinical
decision-making but also lays a solid foundation for further
exploration of personalized treatment pathways.

Compared to traditional methods such as clinical expe-
rience or simple statistical models, MobileNetV3_Large
demonstrates reliability in the following aspects: (1) High
degree of automation: the model eliminates the reliance
on subjective clinical experience, automatically extracting
image features and generating diagnostic results, significantly
reducing the possibility of human error. (2) High sensitivity
and specificity: the model excels in detecting early micro-
lesions, achieving a sensitivity of 90.2% and specificity
of 89.5%, significantly surpassing traditional methods. (3)
Cross-scenario adaptability: validation across multicenter and
multimodal datasets shows that the model maintains high
performance under varying data distributions, demonstrating
excellent generalizability.

Moreover, the study’s visualization analysis reveals a
significant impact of dataset size on model performance
(Figure 8). In the early stages with small datasets (100-2000
samples), accuracy and recall improved significantly,
reflecting the model’s high dependence on data volume.
However, when the dataset size exceeded 5000, perform-
ance improvements plateaued, indicating data saturation. This
finding provides data-driven guidance for planning dataset
expansions, emphasizing the importance of data quality and
diversity in optimizing model performance.

Despite the significant achievements of this study, several
limitations must be acknowledged. First, the relatively small
dataset size may limit the model’s generalizability, restricting
its application on a larger scale. Future research should focus
on expanding dataset sizes through multicenter collaborations
to enhance model applicability. Second, the complexity and
resource demands of the current algorithms highlight the need
for optimization, particularly in large-scale data processing
scenarios. Exploring more efficient computational methods to
reduce costs will be crucial.

Future research directions include further optimizing
existing analytical methods to improve automation and reduce
computational resource requirements. In addition, exploring
the application of this analysis method to other diseases
may reveal commonalities and differences among various
conditions, providing theoretical support for broader medical
applications. Through continuous improvement and innova-
tion, Al-assisted medical imaging analysis technologies are
expected to play a greater role in personalized and precision
medicine, advancing medical science and benefiting more
patients.
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Multimedia Appendix 1

Schematic diagrams of 10 algorithm models. The figure shows the schematic diagrams of the following algorithm models:
(A) Transformer; (B) InceptionResNetV2; (C) AlexNet; (D) MobileNetV3_Large; (E) InceptionV4; (F) EfficientNetBO; (G)
DenseNet201; (H) VGG16; (I) SEResNet50; (J) DarkNet_Small.

[PNG File (Portable Network Graphics File), 828 KB-Multimedia Appendix 1]

Multimedia Appendix 2

Schematic diagram of the U-Net network structure.
[PNG File (Portable Network Graphics File), 308 KB-Multimedia Appendix 2]

Multimedia Appendix 3

Supplementary tables.
[DOCX File (Microsoft Word File), 40 KB-Multimedia Appendix 3]

Multimedia Appendix 4

Distribution of case samples. The figure illustrates the basic distribution of sample cases by gender, age, and disease duration,
showing a generally balanced sample distribution.
[PNG File (Portable Network Graphics File), 165 KB-Multimedia Appendix 4]
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