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Abstract
Background: Communication among health care professionals is essential for effective clinical care. Asynchronous text-
based clinician communication—secure messaging—is rapidly becoming the preferred mode of communication. The use of
secure messaging platforms across health care institutions creates large-scale communication networks that can be used to
characterize how interaction structures affect the behaviors and outcomes of network members. However, the understanding of
the structure and interactions within these networks is relatively limited.
Objective: This study investigates the characteristics of a large-scale secure messaging network and its association with health
care professional messaging behaviors.
Methods: Data on electronic health record–integrated secure messaging use from 14 inpatient and 282 outpatient practice
locations within a large Midwestern health system over a 6-month period (June 1, 2023, through November 30, 2023) were
collected. Social network analysis techniques were used to quantify the global (network)- and node (health care professional)-
level properties of the network. Hierarchical clustering techniques were used to identify clusters of health care professionals
based on network characteristics; associations between the clusters and the following messaging behaviors were assessed:
message read time, message response time, total volume of messages, character length of messages sent, and character length
of messages received.
Results: The dataset included 31,800 health care professionals and 7,672,832 messages; the resultant messaging network
consisted of 31,800 nodes and 1,228,041 edges. Network characteristics differed based on practice location and professional
roles (P<.001). Specifically, pharmacists and advanced practice providers, as well as those working in inpatient settings, had
the highest values for all network metrics considered. Four clusters were identified, representing differences in connectivity
within the network. Statistically significant differences across clusters were identified between all considered secure messaging
behaviors (P<.001). One of the clusters with 1109 nodes, consisting mostly of physicians and other inpatient health care
professionals, had the highest values for all node-level metrics compared to the other clusters found. This cluster also had the
quickest message read and response times and handled the largest volume of messages per day.
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Conclusions: Secure messaging use within a large health care system manifested as an expansive communication network
where connectivity varied based on a health care professional’s role and their practice setting. Furthermore, our findings
highlighted a relationship between health care professionals’ connectivity in the network and their daily secure messaging
behaviors. These findings provide insights into the complexities of communication and coordination structures among health
care providers and downstream secure messaging use. Understanding how secure messaging is used among health care
professionals can offer insights into interventions aimed at streamlining communication, which may, in turn, potentially
enhance clinician work behaviors and patient outcomes.
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Introduction
Communication among health care professionals is key to
effective clinical care, with reports suggesting that health care
professionals spend >80% of their time on clinical communi-
cation [1,2]. Although face-to-face communication is often
preferred, it is often not possible due to a lack of geo-
graphical proximity or other constraints [3]. As such, health
care professionals rely on a number of synchronous (eg,
phone) or asynchronous (eg, secure messaging, email, and
pager) modes of communication. Asynchronous text-based
communication—generally referred to as secure messaging—
can be used either within the electronic health record (EHR)
or through independent secure mobile platforms and is rapidly
becoming the primary mode of communication in modern
clinical settings [4]. Although recent studies have described
the use of secure messaging in large health systems and
its impact [5-10], our understanding of the structure and
interactions within large clinical secure messaging networks
is relatively limited.

Social network analysis methods allow for the quantitative
and qualitative characterization of communication networks,
including the behavioral patterns of use, interactions, spread
of content or actions, and temporal changes in behaviors
[11-13]. In other words, these approaches help in character-
izing overall social interaction structure while simultaneously
allowing for the investigation of how indirect connections,
position within a network, and involvement of individual
participants affect the behaviors, attitudes, and outcomes of
other network members [14-22].

Prior studies using such methods for exploring interactive
clinician-to-clinician communication have primarily relied
on self-reported data (eg, surveys and interviews) using
relatively small sample sizes of participants [23-31]. More
recent studies have sought to characterize the communication
behaviors of clinicians, often in specific patient populations
(eg, patients with cancer) [32,33]. For example, Steitz et al
[33] ascertained the communication network of care teams
and characterized the message volume exchanged regarding
breast cancer patients.

In contrast to prior studies, this study aims to understand
the structure of secure messaging behaviors among health
care professionals from a social network perspective. The
primary aims of this study are (1) to characterize the network

properties of a large-scale EHR-integrated secure messaging
network and (2) to determine the association between network
properties (eg, connectivity) and health care professionals’
messaging behaviors.

Methods
Study Setting
This was a cross-sectional study conducted at 14 inpatient
hospitals and 282 outpatient clinics affiliated with BJC
HealthCare and Washington University School of Medicine.
Hospitals and clinics included both academic and commun-
ity practice settings serving diverse rural, suburban, and
urban populations across Missouri and Illinois. All hospitals
and clinics used the same Epic EHR system (Epic Systems
Corporation).

Epic’s Secure Chat virtual messaging platform is
embedded within the EHR and allows health care professio-
nals to send and receive messages. Messages are organized
(ie, “threaded”) as conversations, and a patient identifier can
be attached (as needed) to a conversation to facilitate direct
patient chart access from the conversation. Secure Chat was
launched across all study sites in September 2019 and is
accessible through the desktop and mobile versions of Epic.
Data Collection
Event logs related to secure messaging in dyadic conversa-
tions (ie, between pairs of health care professionals) using
Epic’s Secure Chat were retrieved from Epic EHR’s Clarity
database for the period June 1, 2023, through November 30,
2023. The choice of this period for the secure messaging data
was primarily based on pragmatic considerations related to
the availability of a continuous sample of data for at least 6
months, with no periods of missing data.

Communication event logs included time stamps recording
when messages were sent and received, when messages were
read (if they were), and when messages were responded to
(if they were); the conversation thread to which a message
belonged (ie, a conversation ID); the identities of the sender
and receiver of the message; and the character length of each
message. Additional metadata included both the senders’ and
receivers’ most recent professional roles and most common
practice locations. The content of the included messages was
not retrieved or used for this study.
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Data Analysis

Data Categorization
The data contained a total of 74 unique health care pro-
fessional roles, which were categorized into the following:
physician, nurse, pharmacist, advanced practice provider
(APP, ie, nurse practitioner or physician assistant), thera-
pist (physical, occupational, or speech language), medical
assistant or technician, social worker or case management,
or other (as reported previously [5]). Practice locations were
categorized as inpatient or outpatient.

Network Analysis
Developing the Messaging Network
We constructed a global secure messaging network of dyadic
conversations. Each node represented a health care professio-
nal who sent at least 1 message during the study period
(June 1, 2023, through November 30, 2023). Edges were
constructed between individuals if at least one message was
sent between them, and edge directionality was maintained to
indicate the sender and the receiver. Pairs of nodes could have
a maximum of 2 edges between them, representing reciproca-
ted communication. Edge weights were assigned as the sum
of the total character length sent among all messages by the
sender to the corresponding receiver over the study period.

The giant connected component (GCC)—a maximum set
of nodes such that each included node can be reached from

any other node regardless of the direction of the edges [34]
—was used for subsequent characterizations and analyses.
We excluded nonconnected nodes since our study period is
a cross-sectional snapshot in time, and it was very likely
that nonconnected individuals are either remnants of closed
conversations or the beginning conversations of a new user.

Network Characteristics
To illustrate the structural properties of the network, we
generated node-level and global metrics. Node-level metrics
represent the importance, social power, and control of
information flow among nodes based on their connectivity
within a network [35]. We included the following commonly
used node-level network metrics (see detailed descrip-
tions and examples in Table 1): indegree [36], outdegree
[36], closeness [26,37-39], eigenvector [37,39,40], between-
ness centrality [26,36-41], and local clustering coefficient
[35,37,38]. These network metrics provide insights into how
users participate and shape communication dynamics (see
Table 1). For example, closeness centrality indicates users
who can easily reach—or be reached by—others due to
their positional proximity in the network to all other users;
similarly, the clustering coefficient measures a tendency
of a user’s contacts to also communicate with each other,
revealing whether a user is communicating with mutually
connected contacts.

Table 1. Definition and clinical implications for node-level network metrics.
Network metric Definition Clinical implications
Indegree Number of incoming connections; edge weights were not

considered.
The number of health care professionals a given
health care professional sends messages to.

Outdegree Number of outgoing connections; edge weights were not
considered.

The number of health care professionals a given
health care professional is receiving messages from.

Closeness centrality The inverse of the sum of the lengths of the shortest paths, where a
path is a sequence of nodes in which consecutive pairs of
nonrepeating nodes are linked by an edge, to all other nodes.N − 1∑yd y, x
where N is the total number of nodes; d(x,y) is the length of the
shortest, inverse-weighted path between x and y, where the
weighted, shortest path is the minimum sum of weights for a given
distance between nodes x and y.

Health care professionals with greater closeness
have the shortest path lengths to all other users.
Health care professionals with higher closeness can
more quickly disseminate information throughout
the entire network.

Eigenvector centrality Proportional to the sum of the centralities of a given node’s
neighbors.xi 1λ∑j = 1n aijxj
where x denotes the centrality of nodes i and j, and a represents
whether an edge exists (a=edge weight) or not (a=0) between
nodes i and j. Edge weights were considered.

A measure of the influence of a health care
professional based on their connection to other
well-connected individuals. A health care
professional with a high eigenvector is centrally in
direct communication with highly connected
individuals in the network, and they have many
connections to others. These individuals potentially
receive a greater amount of incoming information
from their incoming connections and can spread
that information more efficiently through their
outgoing connections.

Betweenness centrality The number of shortest paths that pass through a given node.∑s, t ∈ V Gv σst vσst
The extent to which a health care professional must
act as a communication bridge or mediator between
other health care professionals who are not directly
connected. These individuals can act as connectors

 

JMIR MEDICAL INFORMATICS Baratta et al

https://medinform.jmir.org/2025/1/e66544 JMIR Med Inform 2025 | vol. 13 | e66544 | p. 3
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e66544


 
Network metric Definition Clinical implications

σst denotes the weighted shortest path, the minimum sum of the
inverse of the edge weights, between nodes s and t, and σst (v) is
the weighted shortest path through node v.

or brokers among groups of individuals who are not
otherwise currently communicating.

Clustering coefficient The fraction of pairs of nodes, which are neighbors of a given
node, that are connected to each other by edges. Edge weights were
not considered.

The tendency for a node to be embedded in a dense
local neighborhood. Indicates the extent of clique
structure for a given node.

Global network metrics help to understand the overall
connectivity of the communication network (see detailed
descriptions and examples in Table 2). Global metrics
included the following: overall network density [40],
reciprocity [26,35], diameter [36], transitivity [35,42], and
assortativity [41]. These global-level measures illustrate the
collective communication interactions to assess aspects such
as the network’s cohesion, reachability, and structure. For

example, the network density metric captures the propor-
tion of connections relative to all possible connections in
a network of a given size (total number of nodes), signify-
ing the overall level of interactions; similarly, the diameter
numerically indicates the longest shortest path between any
two individuals, providing a sense of the greatest number of
steps it takes to traverse the network (see Table 2).

Table 2. Definition and clinical implications for global-level network metrics.
Network metric Definition Clinical implications
Density The ratio of actual connections to the possible connec-

tions. Edge weights were ignored.
Indicates how cohesive the communication network is. Higher density
indicates a more cohesive communication network, showing that
health care professionals are directly communicating with the
majority of the other health care professionals within the network.

Reciprocity The ratio of directional connections that are
reciprocated. Edge weights were not considered.

Indicates whether health care professionals receive responses for
messages they send out to other users. This indicates how mutual
communication is between individuals in the network.

Diameter The longest distance, where distance is the sum of the
edge weight between the farthest nodes, to traverse the
entire network. Edge weights were considered.

An indication of how expansive the network is in terms of the longest
path consisting of communicating health care professionals.

Transitivity The fraction of pairs of neighboring nodes of a given
node that are connected to each other by edges. Edge
weights were not considered.

The likelihood that two providers sharing a messaging partner are also
messaging each other. This could signify that a network is composed
of a lot of small cliques as opposed to wide-reaching communication
cascades.

Assortativity Determines the tendency of edges to connect similar
nodes by calculating the fraction of edges that connect
nodes of the same class for a given node attribute (eg,
location, health care professional role, and total degree).
Edge weights were not considered.

Quantifies whether nodes directly communicating with one another in
a network generally share characteristics or differ.

K-Core Hierarchy
To explore the connective hierarchy of nodes within the
global network, a k-core decomposition was constructed to
categorize nodes into hierarchical bins. K-core decomposition
is used to identify progressively central cores and discover
the structural hierarchy of a network [43]. Previous stud-
ies have shown that identifying influential nodes using the
k-core approach enables the discovery of central nodes that
are highly influential in the transfer of information, in the
contagion process, and in the resilience of the system [44,45].

In the secure messaging network, we performed a k-core
decomposition based on the outdegree properties to identify
the central (ie, influential) health care professionals. K-cores
were based on the median and IQR of the outdegrees of
the GCC such that the 25th percentile, median, and 75th
percentile delineated the cores into 4 groups. Individual nodes
were then sorted into each core depending on their outde-
gree and whether it was equal to or above the designated
outdegree for that core. The k-core labeled as the first core
had the health care professionals with the highest quartile

of outdegrees, and the k-core labeled as the fourth core had
individuals in the lowest quartile of outdegrees.
Clusters of Secure Messaging Health Care
Professionals
To determine the association between a health care professio-
nal’s network characteristics and their behavioral messaging
characteristics, we used a hierarchical clustering analysis to
determine clusters based on network characteristics. We then
clustered the health care professionals into clusters using
node-level metrics (see Table 1). Features were standardized
to a unit variance and a mean of zero to ensure consider-
ation of all features as equally important in the clustering
algorithm. To determine the optimal number of clusters, we
calculated the silhouette score for values of 2 through 10
possible clusters.

Secure Messaging Behaviors
For each health care professional, we generated 4 measures
related to secure messaging behaviors. Average read time
for a message was calculated as the difference between a
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message’s sent timestamp and its read timestamp; average
response time for a message was calculated as the time
difference between the first message sent by a sender and
the first message sent by the responder in a conversation. The
average total volume of messages included the total of both
sent and received messages for a health care professional per
day. Finally, the average character length per message sent
and received for each health care professional was calculated
as the number of characters of the messages’ text including
spaces but excluding trailing spaces.
Statistical Analysis
Descriptive statistics for continuous metrics were calcula-
ted as medians and IQRs. Due to the nonnormal distribu-
tion of both the network and secure messaging metrics,
nonparametric tests were used to test for statistical sig-
nificance. Specifically, Mann-Whitney U tests were used
to assess the differences in each numerical network met-
ric between location setting categories (inpatient vs outpa-
tient), the median differences were reported, and 95% CI
were generated with bootstrapping for this comparison;
Kruskal-Wallis tests were used to assess the differences
in each network metric among the 8 health care professio-
nal role categories. Furthermore, chi-square tests were used
to investigate whether the distribution of practice locations
differed among the k-core hierarchy groups and for the
distribution differences of health care professional roles per
k-core. Finally, Kruskal-Wallis and a post hoc test, Wilcoxon
rank-sum tests, were used to assess the differences between
the secure messaging behaviors across clusters. Median
differences and 95% CIs were reported for each comparison.

Data processing and clustering analysis were performed
using Python 3.9.7 with the iGraph [46] and NetworkX
[47] packages for network construction and network metric
outputs and Scikit-learn [48] for hierarchical clustering.
Statistical analyses were performed in R version 4.2.2 (R
Foundation for Statistical Computing).
Ethical Considerations
This study was approved by the Washington University
institutional review board (IRB) with a waiver for informed

consent (IRB #202205084). This was a retrospective study,
and participants’ data were deidentified (eg, grouped based on
IDs and roles) for analysis, and only trained researchers who
were approved by the Washington University IRB office had
access to the data. The participants were not compensated.

Results
Overall Messaging Patterns
This study included 31,800 health care professionals and
7,672,832 messages within 1,539,059 dyadic conversations.
The included health care professionals practiced at 14
inpatient and 282 outpatient locations. Health care professio-
nals had a median of 16 (IQR 4‐49) messaging partners over
the study period.

The network included 31,800 nodes and 1,228,041 edges.
The GCC comprised 29,808 nodes (93.7% of total nodes)
and 1,225,307 edges (99.8% of total edges). The GCC had a
low density of 0.00138 and a low transitivity of 0.09. The
GCC diameter was 65,078. However, the reciprocity was
high, 0.92, indicating most individuals received reciprocated
responses to their messages. Assortativity over the GCC was
found to be 0.044, 0.41, and 0.001 for the total degree (ie,
the sum of indegree and outdegree), practice setting (ie,
inpatient vs outpatient), and provider group (eg, pharmacists),
respectively.
Network Characteristics

Inpatient vs Outpatient Practice Setting
Health care professionals who practiced in an inpatient setting
had significantly higher values (all P<.001) for the follow-
ing network metrics compared with those who practiced in
outpatient settings: eigenvector centrality (median –6.9e-11,
95% CI –1.0e-10 to –4.2e-11), betweenness centrality
(median –174, 95% CI –359 to –72), outdegree (median
11, 95% CI 10‐11), and indegree (median 11, 95% CI
9‐11; Table 3). However, the local clustering coefficient and
closeness were not statistically different between practice
settings.

Table 3. Node-level properties stratified by location and clinical role.

Eigenvector centrality,
median (IQR)

Betweenness, median
(IQR)

Clustering
coefficient, median
(IQR)

Outdegree,
median (IQR)

Indegree,
median
(IQR)

Closeness,
median (IQR)

Location
  Inpatient 1.6e-10 (6.6e-12 to 3.5e-09) 4 (0 to 59,612) 0.121 (0.049 to

0.231)
22 (5 to 60) 22 (6 to 60) 206 (156 to

241)
  Outpatient 2.3e-10 (8.4e-12 to 4.3e-09) 178 (0 to 90,139) 0.120 (0.017 to 0.31) 11 (3 to 28) 11 (4 to 28) 207 (160 to

240)
Clinical role
  Advanced

practice provider
6.8e-10 (3.7e-11 to 1.4e-08) 59,611 (0 to 301,500) 0.094 (0.043 to 0.19) 36 (9 to 102) 36 (10 to

107)
230 (191 to
254)

  Medical
assistant or
technician

2.4e-11 (1.1e-12 to 4.9e-10) 0 (0 to 29,806) 0.150 (0 to 0.333) 7 (2 to 18) 7 (3 to 17) 176 (124 to
218)
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Eigenvector centrality,
median (IQR)

Betweenness, median
(IQR)

Clustering
coefficient, median
(IQR)

Outdegree,
median (IQR)

Indegree,
median
(IQR)

Closeness,
median (IQR)

  Nurse 3.9e-10 (2e-11 to 5.7e-09) 54 (0 to 59,610) 0.147 (0.073 to
0.244)

26 (8 to 58) 27 (9 to 58) 218 (174 to
246)

  Other 1.4e-12 (6.5e-15 to 5.5e-11) 0 (0 to 29,806) 0.134 (0 to 0.429) 4 (2 to 13) 5 (2 to 12) 136 (87 to 194)
  Pharmacist 1.0e-09 (9.2e-11 to 1.2e-08) 31,331 (0 to 175,330) 0.110 (0.063 to

0.217)
53 (16 to 134) 47 (16 to

116)
229 (199 to
252)

  Physician 9.2e-10 (7e-11 to 1.3e-08) 9701 (0 to 166,441) 0.068 (0.036 to
0.121)

24 (6 to 90) 27 (8 to 98) 221 (184 to
250)

  Social work or
case
management

7.1e-10 (3.7e-11 to 9.6e-09) 36,015 (0 to 275,353) 0.144 (0.074 to
0.225)

33 (8 to 80) 32 (8 to 81) 229 (198 to
258)

  Therapist 3.8e-11 (2.5e-12 to 6.7e-10) 0 (0 to 29,806) 0.143 (0.053 to
0.286)

14 (4 to 39) 15 (5 to 40) 195 (159 to
224)

The distribution of health care professionals into the 4
k-core layers was found to be significantly different between
the practice locations (ie, inpatient and outpatient settings)
(P<.001; Figure 1). The innermost central core had 30.4%
(6423/21,133) of inpatient health care professionals as
compared to 22.5% (4761/21,133) of inpatient health care

professionals in the outermost peripheral core. Addition-
ally, the innermost central core had 13.4% (1159/8662) of
outpatient health care professionals as compared to 29.9%
(2586/8662) of outpatient professionals in the outermost
peripheral core.
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Figure 1. Distribution of users into the 4 k-core among each location and clinical role. Segments >5% were labeled with the percentage. APP:
advanced practice provider.

Differences by Health Care Professional Role
There were statistically significant differences in all network
metrics between health care professionals based on clinical
role (P<.001 for all metrics; Table 3). Pharmacists and APPs
had the highest values for all the network metrics, whereas
medical assistants had the lowest values. For example,
pharmacists had a median indegree of 47 (IQR 16‐116) and
APPs had a median indegree of 36 (IQR 10‐107), while
medical assistants had a median indegree of 7 (IQR 3‐17).

The distribution of health care professionals among the
4 k-core layers was significantly different across the health
care professional roles (P<.001; Figure 1). There were 52.1%
(290/557) of pharmacists in the innermost central core and
43% (701/1629) of APPs in the innermost central core,
whereas 38.5% (2272/5907) of medical assistants were in the
outermost peripheral core.

Clusters and Messaging Behaviors
Hierarchical clustering on the node-level properties resulted
in 4 clusters (see Table 4 and Figure 2). Cluster 1 had
82.2% (912/1109) of health care professionals working in an
inpatient setting (Table 4). Furthermore, 59.2% (656/1109) of
health care professionals in cluster 1 were physicians. The
health care professionals in cluster 1 had the highest median
values for the node-level metrics, except for the clustering
coefficient, compared to the other groups.

Cluster 2 was the largest of the 4 identified clusters
and included 62.1% (18,521/29,808) of the health care
professionals from the study cohort. Cluster 2 had 68%
(12,593/18,509) of health care professionals working in an
inpatient setting. Furthermore, 37.4% (6933/18,521; Figure
3) of health care professionals in cluster 2 were nurses.
The health care professionals in cluster 2 had the lowest
median values for the node-level metrics compared to the
other groups.
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Table 4. Hierarchical cluster subgroups including the median (IQR) for the clustered node-level metric features and nonclustered secure message use
features. Significance levels for pairwise comparisons with Bonferroni adjustment are indicated by letters a through c, as detailed in the footnote.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Health care
professionals, n

1109 18,521 8156 2022

Inpatient users, n/N
(%)

912/1109 (82.2) 12,593/18,509 (68) 6674/8156 (81.8) 954/2021 (47.2)

Total messages sent
over the study
period, n

1,954,355 1,324,730 4,088,795 303,170

Total messages
received over the
study period, n

2,051,809 1,318,498 3,981,352 316,888

Eigenvector
centrality, median
(IQR)

4.934e-08 (1.473e-08 to
1.459e-07)

3.560e-11 (2.111e-12 to
5.647e-10)

3.927e-09 (4.942e-10 to
2.255e-08)

1.464e-11 (3.633e-13 to
1.896e-10)

Betweenness, median
(IQR)

888,661 (233,794 to
3,700,421)

0 (0 to 3883) 64,866 (5270 to 269,634) 0 (0 to 3)

Clustering
coefficient, median
(IQR)

0.064 (0.051 to 0.087) 0.097 (0 to 0.244) 0.131 (0.082 to 0.194) 0.667 (0.6 to 1)

Outdegree, median
(IQR)

265 (220 to 331) 8 (3 to 19) 71 (50 to 104) 6 (2 to 14)

Indegree, median
(IQR)

264 (223 to 330) 9 (3 to 19) 70 (50 to 104) 6 (3 to 14)

Closeness, median
(IQR)

266 (254 to 277) 180 (135 to 213) 244 (227 to 258) 186 (127 to 236)

Total message
volume per day,
median (IQR)

34 (25 to 48) 4 (3 to 7)a 12 (9 to 18)a,b 5 (3 to 8)a,b,c

Sent character length
per message, median
(IQR)

62 (48 to 80) 64 (44 to 93) 66 (52 to 85)a,b 49 (33 to 74)a,b,c

Received character
length per message,
median (IQR)

75 (63 to 83) 62 (45 to 86)a 61 (51 to 74)a 52 (39 to 73)a,b,c

Read time minutes,
median (IQR)

14 (8 to 24) 22 (6 to 76)a 17 (9 to 33)a,b 26 (8 to 77)a,c

Response time
minutes, median
(IQR)

19 (13 to 30) 24 (8 to 71)a 27 (16 to 47)a,b 35 (8 to 107)a,b,c

aIndicates significant difference (adjusted P<.001) compared to group 1.
bIndicates significant difference (adjusted P<.001) compared to group 2.
cIndicates significant difference (adjusted P<.001) compared to group 3.
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Figure 2. Heatmap for hierarchical clustering of health care professionals based on node-level metrics. The color bar depicts the magnitude of
standardized values of the dataset, and the color range is computed with robust quantiles. The blue brackets indicate how clusters were divided into
the final 4 groups with associated labels.
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Figure 3. Composition of clinical roles within each cluster. APP: advanced practice provider.

Cluster 3 had 81.8% (6674/8156) working in an inpatient
setting. Furthermore, 56.5% (4608/8156) of health care
professionals in cluster 3 were nurses. Cluster 4 had only
47.2% (954/2022) working in an inpatient setting. Addition-
ally, 42.4% (858/2022) of health care professionals in cluster
4 were medical assistants. The health care professionals in
cluster 4 had the highest median value for the clustering
coefficient compared to other groups.

There were statistically significant differences in secure
messaging behaviors across the 4 clusters (see Table 4,
Multimedia Appendix 1; all P<.001 and footnotes indicate
significant pairwise comparisons among the 4 groups).
Compared to the largest subgroup (ie, cluster 2), cluster 1
had the quickest read (median –7.1, 95% CI –8.9 to –5.4
minutes) and response time to messages (median −3.2, 95%
CI −4.9 to −1.7 minutes), the largest message volume per day
(median 28.4, 95% CI 27.7‐29.2 messages), as well as the
longest message character length (median 9.5, 95% CI 7.9‐11
characters) (see Table 4). Similarly, compared to cluster 2,
cluster 4 health care professionals had slower response times
(median 4.1, 95% CI 2.8‐5.6 minutes) and a marginally

larger daily message volume (median 0.3, 95% CI 0.2‐0.4
messages), as well as sent (median −13.5, 95% CI −15.1 to
−12 characters) and received (median −8.8, 95% CI −10.1 to
−7.5 characters) the shortest messages.

Discussion
Principal Findings
Based on a large-scale study of over 31,000 health care
professionals and more than 7.5 million secure messages,
we found that the connectivity of the interactive communica-
tion network varied based on health care professionals’ roles
and their practice settings. Specifically, inpatient health care
professionals were generally more central and had the highest
incoming and outgoing messaging connectivity compared
to outpatient health care professionals, whereas pharmacists
were the most central and highly connected among all the
clinical roles. Hierarchical clustering analysis highlighted the
differences in connectivity among the health care professio-
nals and showed that cluster membership was associated
with specific secure messaging behaviors such as read time,
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response time, total messaging volume per day, and character
length per message. For example, cluster 1, which consisted
of highly connected and central health care professionals,
had the quickest read and response times to secure mes-
sages while also managing the largest message volume per
day. Although preliminary, our findings highlight that an
individual’s messaging behaviors are potentially driven by
their networked peers. We describe some of the pragmatic
implications of the current findings.

The degree of variation in connectivity between practice
settings (ie, inpatient and outpatient) highlights the impact of
setting-specific clinical context on resultant communication
behaviors. For example, inpatient health care professionals,
regardless of their role, had higher network connectivity
in the communication network. The greater connectivity
highlights their greater need for communication and care
coordination, likely owing to the increased complexity of
patient care delivery in these settings [49,50]. Ultimately, the
setting-specific clinical context influences the extent of secure
messaging need and burden.

The degree of variation in connectivity among clinical
roles implies a potential relationship between the role-specific
clinical context and the extent of secure messaging commu-
nication burden. For instance, pharmacists’ central position
in the network identified them as key players in clinical
communication and care management. This has previously
been described in other studies that highlighted the central
role of pharmacists in medication management and safety
[51]. Additionally, in inpatient settings, pharmacists are often
embedded within teams to help with coordinating complex
medication management of patients, acting as gatekeepers
for medication safety [52-54]. Thus, the unique communica-
tion needs among specific roles are apparent in the stark
difference in secure messaging utilization and burden among
professionals in our study.

The hierarchical clustering results revealed a relation-
ship between connectivity within the network and secure
messaging behaviors. For instance, health care professionals
in cluster 1 were centrally located, highly connected, and
acted as communication bridges (see Table 1, betweenness
centrality, for definition) and were primarily consisted of
physicians and those working in an inpatient setting. Health
care professionals in this cluster also had the highest volume
of secure messages per day, the longest character length per
message received, and the fastest read times compared to the
other clusters.

The higher centralization and connectivity in cluster 1
is likely because of their expertise and role, as the clus-
ter is primarily composed of physicians (ie, as a clinical
decision leader) [55]. Role-based specialization is common
in teams where specialized individuals are relied on for
specific expertise leading to targeted communication for
specific tasks [55,56]. This is also reflected in cluster 1’s
increased message volume and messaging behavior, most
likely highlighting their role in clinical decision-making.
However, such a centralized communication structure may

also increase physicians’ workload and cognitive burden
arising from an increased messaging volume [57].

Similarly, there was one cluster (cluster 4) of nurses and
medical assistants who had fewer connections and were not
as central within the network. These individuals were mostly
involved in “communication cliques” with their immediately
connected neighbors (ie, clinical colleagues) such that a
given individual’s neighbors are also communicating with
each other, forming close-knit circles in the network. The
higher ratio of local clique structures for this cluster suggests
increased mutual interaction and collaboration among health
care professionals within a network [58,59]. Furthermore,
cluster 4’s lower centrality scores (eg, eigenvector, between-
ness, and closeness) suggest a more decentralized conversa-
tion structure, where communication is more evenly shared
[55].
Comparison to Prior Work
Understanding how secure messaging is being used can
provide insights into communication and coordination
patterns among health care professionals. More cohesive
and collaborative networks of health care professionals have
been shown to improve care quality for patients [23]. By
understanding the state of collaborative interactions, we
can potentially develop interventions targeted at improv-
ing these relationships and influencing downstream clini-
cian and patient outcomes [26,27]. For example, network
characteristics related to connectedness (eg, indegree) and
structure (eg, clustering coefficient) can be used to identify
“network traffic” and associated communication burden for
specific health care professionals [51]. Such information
about communication load can be used to develop “triaging
strategies,” including creating messaging pools, redirecting
messages, or assigning personnel for messaging-only roles
[60-62]. These strategies have been shown previously to
reduce email inbox message volume and self-reported time
spent on inbox management [63-65]. Similar strategies could
be developed to mitigate the messaging burden among health
care professionals.

Similarly, as shown in our hierarchical cluster analysis,
there were centrally located clinicians in certain clusters
whose messaging behaviors were driven by their extant
network. For example, we found that clinicians in cluster 1
were likely to have a higher volume of messages and more
likely to read and respond to messages the quickest. Such
messaging behaviors are likely to affect their clinical work
activities, increasing their likelihood for increased workload,
cognitive burden, and errors [10,57]. For example, Lew et al
[57] found that inpatient clinicians receiving more messages
spent more time on EHR-based work and had increased
attention switching (ie, increased cognitive load); similarly,
Lou et al [10] found that an increased volume of messages
was associated with increased likelihood of wrong-patient
ordering errors. The current findings point to the fact that
increased messaging volume was potentially associated with
their external connectivity, highlighting the role of connected
communication partners (ie, network) in increasing workload,
cognitive burden, and errors.
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Future Directions
Finally, it is important to emphasize that this was a prelimi-
nary study. More focused analyses (eg, among subgroups
of clinicians such as hospitalists or outpatient clinicians) are
necessary to ascertain specific strategies for bottlenecks in
communication and improving clinician and patient out-
comes.
Limitations
There are several limitations in this study. First, although
this study included several inpatient and outpatient settings
across academic and community settings (14 hospitals, >250
outpatient locations), all of these were part of the same
health care system using the only secure messaging platform
available, Epic Secure Chat. Therefore, the generalizability
of this study’s findings to other health care systems and
other secure messaging platforms may be limited. Second,
we only used one form of communication: secure messaging.
Other forms of communication (ie, face-to-face, telephone,

and pager) were also used by our cohort throughout the study
period; therefore, our study likely underrepresents the true
communication structures and relationships between health
care professionals. Third, our assignment of clinical location
(ie, inpatient vs outpatient) was based on log-in information
and was potentially imprecise since we did not have access to
detailed work schedules.
Conclusions
This study characterized the network properties of a large-
scale EHR-integrated secure messaging network using social
network analyses. We found that health care professionals’
connectivity varied by both role and practice settings.
Furthermore, hierarchical clustering indicated a relationship
between an individual’s network connectivity and secure
messaging behaviors. Ultimately, these preliminary findings
highlight the importance of understanding secure messaging
interactions and resultant secure messaging behaviors, as well
as their potential impact on clinical work outcomes.
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