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Abstract
Background: Building machine learning models that are interpretable, explainable, and fair is critical for their trustworthiness
in clinical practice. Interpretability, which refers to how easily a human can comprehend the mechanism by which a model
makes predictions, is often seen as a primary consideration when adopting a machine learning model in health care. However,
interpretability alone does not necessarily guarantee explainability, which offers stakeholders insights into a model’s predicted
outputs. Moreover, many existing frameworks for model evaluation focus primarily on maximizing predictive accuracy,
overlooking the broader need for interpretability, fairness, and explainability.
Objective: This study proposes a 3-stage machine learning framework for responsible model development through model
assessment, selection, and explanation. We demonstrate the application of this framework for predicting cardiovascular disease
(CVD) outcomes, specifically myocardial infarction (MI) and stroke, among people with type 2 diabetes (T2D).
Methods: We extracted participant data comprised of people with T2D from the ACCORD (Action to Control Cardiovascular
Risk in Diabetes) dataset (N=9635), including demographic, clinical, and biomarker records. Then, we applied hold-out
cross-validation to develop several interpretable machine learning models (linear, tree-based, and ensemble) to predict the risks
of MI and stroke among patients with diabetes. Our 3-stage framework first assesses these models via predictive accuracy and
fairness metrics. Then, in the model selection stage, we quantify the trade-off between accuracy and fairness using area under
the curve (AUC) and Relative Parity of Performance Scores (RPPS), wherein RPPS measures the greatest deviation of all
subpopulations compared with the population-wide AUC. Finally, we quantify the explainability of the chosen models using
methods such as SHAP (Shapley Additive Explanations) and partial dependence plots to investigate the relationship between
features and model outputs.
Results: Our proposed framework demonstrates that the GLMnet model offers the best balance between predictive perform-
ance and fairness for both MI and stroke. For MI, GLMnet achieves the highest RPPS (0.979 for gender and 0.967 for race),
indicating minimal performance disparities, while maintaining a high AUC of 0.705. For stroke, GLMnet has a relatively
high AUC of 0.705 and the second-highest RPPS (0.961 for gender and 0.979 for race), suggesting it is effective across both
subgroups. Our model explanation method further highlights that the history of CVD and age are the key predictors of MI,
while HbA1c and systolic blood pressure significantly influence stroke classification.
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Conclusions: This study establishes a responsible framework for assessing, selecting, and explaining machine learning
models, emphasizing accuracy-fairness trade-offs in predictive modeling. Key insights include: (1) simple models perform
comparably to complex ensembles; (2) models with strong accuracy may harbor substantial differences in accuracy across
demographic groups; and (3) explanation methods reveal the relationships between features and risk for MI and stroke. Our
results underscore the need for holistic approaches that consider accuracy, fairness, and explainability in interpretable model
design and selection, potentially enhancing health care technology adoption.
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Introduction
Building trustworthy machine learning models for clinical
practice requires consideration of interpretability, explaina-
bility, as well as fairness. Interpretability—which refers to
how easily a human can comprehend the mechanism by
which a model makes predictions—is important in health care
settings because of the need for clinicians and patients to
understand and trust the Artificial Intelligence (AI)-involved
decisions that directly impact patient care [1,2]. It also
facilitates regulatory compliance and ethical considerations in
medical AI applications, ensuring these systems are not only
effective but also justifiable and accountable [3]. In address-
ing this pressing need, experts in computer science, opera-
tions research, and medical informatics have significantly
progressed the field of interpretable machine learning models,
laying the foundation for the development of AI [3,4]. As
of today, cutting-edge interpretable machine learning models
are available through many open-source software packages,
including RiskSLIM and Interpretable AI (Interpretable AI),
among others [5,67]. Nonetheless, interpretability alone is not
sufficient for trustworthy AI in health care.

Beyond interpretability, the machine learning commun-
ity has also begun to emphasize the need for explainabil-
ity [8] which focuses on conveying understandable reasons
behind AI-driven decisions. While interpretability helps users
grasp how a model arrives at a conclusion, explainability
provides the why, offering justifications in human terms.
This reasoning is crucial in health care, where clinicians and
patients must not only understand but also trust the rationale
of AI suggestions [9]. Therefore, explainability builds trust,
enhances decision-making quality by providing insights into
AI reasoning, and ensures compliance with ethical and legal
standards [10]. In other words, explainability plays a crucial
role in making machine learning algorithms and AI not
just transparent but also relatable and trustworthy in clinical
settings.

Meanwhile, there has been an increasing worry about the
possibility of machine learning models leading to biased
decisions [11]. Examples include models displaying racial
or gender biases in predicting patient outcomes [12], or
algorithms that disproportionately favor certain demographics
in resource allocation [13]. Such biased decision-making tools
may result in unfair evaluations in clinical settings, ultimately
harming patients who require care [14]. However, efforts

to quantitatively evaluate fairness in prediction models for
clinical practice are still scarce [15].

A model with high predictive accuracy does not guarantee
the best clinical usage, as it might display unfavorable biases
[16]. As a result, it is important to understand and quan-
tify the trade-offs between accuracy and fairness in model
selection.

Overall, the combined exploration and consideration
of these aspects in a machine learning framework-based
environment is not thoroughly investigated in this litera-
ture [17]. Therefore, to address these issues systematically,
we propose a 3-stage machine learning framework on
model assessment, selection, and explainability that integra-
tes interpretability, fairness, as well as explainability in
health care decision-making. Specifically, in the first stage,
we develop and assess a range of models based on predic-
tive accuracy and fairness. Next, we select the model that
best balances accuracy and fairness using a novel trade-off
curve. Finally, we explain the chosen model, aiming to
provide deeper insights into its predictions for informed
clinical decision-making. As a proof of concept, we apply
our framework to predict cardiovascular disease (CVD)
outcomes, myocardial infarction (MI), and stroke, among
people with type 2 diabetes (T2D). With CVD being a leading
cause of death in the United States, and patients with T2D
being at elevated risk of CVD, it is urgent to develop accurate
and fair predictive models that generate clinically reasonable
predictions [16-19]. This study not only contributes to the
advancement of AI in health care but also sets a precedent for
future research in incorporating interpretability, fairness, and
explainability into the machine learning model development
framework, paving the way for more ethical, trustworthy, and
effective solutions in medical informatics.

Methods
Overview
In this section, we first detail our study data and model
development approach. Then, we describe our responsible
framework for model assessment, selection, and explana-
tion. This study is based on a secondary analysis of indi-
vidual-level participant data from the Action to Control
Cardiovascular Risk in Diabetes study (ACCORD 2001‐09,
NCT00000620) by the National Heart, Lung, and Blood
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Institute (NHLBI) of United States [15]. Our code repository
is included in Multimedia Appendix 1.

Data
ACCORD (Action to Control Cardiovascular Risk in
Diabetes) was a randomized, multicenter, double 2×2
factorial design study conducted at 77 clinical sites in North
America. Participants were aged between 40 and 79 years,
had T2D with a hemoglobin A1c (HbA1c) ≥ 7.5% (57 mmol/
mol), and had previous evidence of CVD or cardiovascular
risk factors. (eg, dyslipidemia, hypertension, smoking, or
obesity). The primary outcome of ACCORD was determined
based on the first instance of a significant CVD event, which
was characterized by a combination of nonfatal MI, nonfatal
stroke, or cardiovascular death. We extracted demographic,
clinical, and biomarker data collected at baseline (study entry)
from individual participants across trials for model develop-
ment.
Data Preprocessing
We focused on 2 primary CVD events, MI and stroke, as our
study outcomes, and used patients’ demographic data, clinical
risk factors, medication history, and pertinent biomarkers
as predictors. All predictor variables were collected at the
time of study enrollment, ensuring that our models use

information available at the point of care. We prepared the
study outcomes as binary variables: patients either experi-
enced MI or stroke within the 5-year period, or they did not.
In other words, the interpretable machine learning models
act as classification tools to identify if a patient is at risk of
experiencing these CVD events in the next 5 years.

We sourced candidate predictor variables for fatal or
nonfatal MI and fatal or nonfatal stroke outcomes from
eligibility screening or clinical examination data in ACCORD
after applying the inclusion criteria. These predictors
encompass demographic characteristics, clinical factors,
medication history, and relevant biomarkers. Complete case
models were constructed using all predictor variables, without
using imputation, as only 616 out of 10,251 observations
(6%) in the dataset had missing values across any of the
predictors. We dropped the records with missing data and
applied one-hot encoding for categorical predictors to obtain
the final dataset for model development [20]. Specifically,
creating dummy variables involved transforming categorical
variables, such as treatment type (eg, intensive vs standard
glycemic therapy) and medication history (eg, blood pressure-
or lipid-lowering treatments), into binary indicators via
one-hot encoding [21]. This step ensured that the categori-
cal data was appropriately formatted for model development.
This data-preprocessing pipeline is outlined in Figure 1.

Figure 1. Data-preprocessing steps before model development.

Machine Learning Model Development
We developed several machine learning models to demon-
strate our proposed framework for fairness-aware model
assessment and selection. Our framework is specifically
designed for scenarios where model development, selec-
tion, and deployment are treated as separate processes. The
machine learning models we consider include interpretable
models (eg, linear and tree-based), semi-interpretable models,
(eg, random forest), and common statistical and machine
learning models, (eg, naïve Bayes), for binary classification
of MI and stroke. In the following paragraphs, we provide
details of the models developed in this research and describe
the model-tuning procedure.

We evaluated a range of machine learning models,
including linear models (GLMnet and OFS), tree-based
models (CART and OCT), ensemble models (random forest
and XGBoost), and other traditional machine learning

approaches (naïve Bayes and SVM). Linear and tree-based
models are generally considered interpretable due to their
structure and parameterization [22,23], while ensemble
models and other methods can achieve strong predictive
performance but may be less directly interpretable. OFS
formulates the logistic regression with L2 penalties into
a binary convex optimization problem and solves it to
optimality. Within the OFS framework, there are 2 key
parameters: the regularization parameter (balancing model
complexity against accuracy) and the sparsity parameter
(enhancing interpretability by controlling feature count) [24].
OCT derives the tree by optimizing the tree structure
(size) and decision rules simultaneously via mixed integer
optimization [25]. The main hyperparameters in OCT include
the maximum depth of a tree, the minimum leaf size, and
the complexity parameter, playing a crucial role in prevent-
ing overfitting, ensuring stability, and fostering interpretabil-
ity. We limited the max depth of an OCT to 3 and 4 to
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enhance interpretability by simplifying the decision structure.
We remark that OCT exactly recovers the optimal tree (given
fixed hyperparameters) at the cost of additional computational
complexity, whereas CART uses heuristic splitting rules in
branching nodes to generate a decision tree quickly. Detailed
descriptions of each model’s structure, key hyperparameters,
and training procedure are provided in Multimedia Appendix
2.

To build our models, we randomly divided our data using
a 70‐30 train-test split, using 6745 out of 9635 for training
and the remaining 2890 out of 9635 for testing. Then, with
the training data, we applied 10-fold cross-validation for
hyperparameter tuning. We also found that our data were
class-imbalanced, and there were very few occurrences of
CVD events. To address this class imbalance, we adjusted
the weight assigned to each label during our hyperparame-
ter tuning. Each model’s performance was estimated using
both cross-validation on the training set and out-of-sample
validation on the testing set.
Responsible Framework for Model
Assessment, Selection, and Explanation
After building the machine learning models, it is desired
to select a suitable model and investigate the relationship

between predictors and the outcomes. In this section, we
detail our responsible framework for model assessment,
selection, and explanation. We outline this framework in
Figure 2. Our proposed responsible framework consists of
three main modules after model development: (1) model
assessment, (2) model selection, and (3) model explanation.
In the model assessment module, we assess each model’s
performance in their predictive capabilities and fairness.
Then, a sensitivity analysis of the trade-off between these
performance metrics is carried out to aid model selection.
Finally, for model explanation, we use a unified approach that
combines multiple methods to explain the best-performing
models. We developed our proposed responsible framework
with R language (v4.3.1, R Foundation) and the following R
libraries: Interpretable AI (v3.2.1, Interpretable AI), survival
(v3.5.5, Mayo Clinic), GLMnet (v4.1.8, Stanford University),
rpart (v4.1.19, Mayo Clinic), naivebayes (v1.0.0), and kernlab
(v0.9.32, TU Wien).

Figure 2. The proposed responsible framework for model assessment, selection, and explanation.

Model Assessment
In this module, we describe the model assessment pro-
cedure for the developed interpretable models according
to their predictive performance and fairness. To evaluate
predictive accuracy, we considered four metrics: (1) area
under the receiver operating characteristic curve (AUC),
(2) sensitivity, (3) specificity, and (4) accuracy. AUC
evaluates a model’s ability to distinguish between positive
and negative classes, with higher values indicating better
discriminative performance. It is particularly reliable for
imbalanced data due to its threshold-independence. Sensitiv-
ity (true positive rate) measures the correct identification
of actual positives (ie, patients developed MI or stroke),
while specificity (true negative rate) assesses the correct
identification of negatives. Accuracy quantifies the propor-
tion of correct classification of the patients in the total
cases examined. Sensitivity, specificity, and accuracy are
threshold-dependent for models that output continuous scores
(eg, predicted probabilities). Importantly, it is common to
carefully select this classification threshold to optimize

the model’s predictive performance, with respect to these
performance metrics for specific applications. To address
this challenge, we set a threshold which maximizes a
weighted metric combining sensitivity and specificity, that
is, u × sensitivity + 1 − u × specificity. Here, the weight
parameter u is bounded between 0 and 1, and higher (resp.,
lower) values of u indicate a preference towards thresholds
that emphasize sensitivity (resp., specificity). This approach
has also been used in previous research [26] . In CVD
management, both sensitivity and specificity play important
roles in correctly identifying patients who are at risk of
MI or stroke, along with those who are at low risk of
these outcomes. Because correctly identifying those at high
risk of MI or stroke is critical to initiating clinical interven-
tions, we specifically use a value of u = 23  in our analysis
– leaning slightly toward higher sensitivity over specificity.
This approach ensures that we assess a balanced performance
in identifying both patients at risk and with low risk while
accounting for clinical priorities.
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To evaluate the predictive fairness of the machine learning
models, we consider a fairness metric, the relative perform-
ance parity score (RPPS), which is calculated by

RPPS := 1 − maxs( | AUCs − AUCAUC |)
where s is a subpopulation in a protected attribute, eg,
female in gender, and AUCs represents the conditional AUC
conditioned on this subpopulation s. Notably, RPPS can be
small when any subpopulation has disproportionally high or
low AUC, compared with the overall AUC. On the other
hand, if all subpopulations have AUC performance close to
the overall AUC, then the RPPS will be large. We chose
AUC as the primary metric because it is threshold-agnostic,
providing a more comprehensive measure of model perform-
ance across different decision thresholds. Since this metric
is a relative measure specific to each model’s output, it is
suitable for a fair comparison across models, which befits
our purpose in the model assessment module of the pro-
posed responsible model selection framework. Moreover, the
RPPS is flexible and can accommodate other commonly
used performance metrics, such as accuracy or sensitivity,
depending on the specific goals of the fairness evaluation.

Model Selection
After evaluating the models, selection could be based on
either predictive performance or fairness. Ideally, one would
choose a model that excels in both dimensions. However, this
selection process becomes challenging when no such model
exists within the considered model options. To address this,
we propose a sensitivity analysis-based approach to enhance
model selection. Specifically, we evaluated the weighted sum
of accuracy and RPPS, with the weight ranging from 0 to 1,
that is, w Accuracy + 1 − w RPPS,

where w is the prespecified weight between 0 and 1.
Notably, when the weight is 1, this weighted sum simplifies
to accuracy; conversely, when the weight is 0, it becomes the
RPPS. This approach enables model selection according to
the trade-off between predictive performance and fairness.

Model Explanation
To investigate the relationship between the predictors
and outcomes, we developed a synergistic model explana-
tion approach that combines models’ permutation variable
importance, the SHAP method, and partial dependence plots.
Notably, this explanation module does not establish clear
causal relationships between features and adverse health
outcomes; however, it helps clarify how the ML algorithms
function for decision-making. Permutation variable impor-
tance assesses model explainability through feature signifi-
cance [27]. That is, it measures the impact of each feature on
a model’s predictive performance by shuffling the values of a
feature while keeping others constant. We can then determine
that feature’s importance based on the resulting performance
decline, as measured by AUC. To enhance the reliability
of our estimates, we bootstrapped 100 iterations: in each,

we sampled the training data, trained a model, computed
a baseline AUC, and determined permutation importance
scores. This yielded multiple score sets for each bootstrap-
ped sample. We then averaged the feature importance and
provided 95% CIs. Features were ranked by mean importance
and variability. A high mean importance means the model
heavily depends on that feature, whereas high variability
indicates inconsistent significance. Therefore, features with
high variability warrant further examination, while those with
high importance and low variability are consistently crucial.

Another component in our model explanation is the SHAP
method. Essentially, SHAP assigns an importance measure,
known as the Shapley value, to each feature. This Shap-
ley value is calculated by averaging the differences in the
model’s predictions with and without the feature across all
possible subsets of features, which can be viewed as the
expected effects of the feature on the prediction. Importantly,
the sum of all Shapley values equals the prediction value
to ensure consistency across all features. The Shapley value
effectively captures the average marginal contribution of
each feature, providing a comprehensive explanation of the
model’s behavior. For interpretability, we proposed to use
the relative Shapley value (the marginal contribution of each
feature relative to the prediction value) in our analysis.

To further visualize and understand the relationship
between features and predicted outcomes, we also consider
Partial Dependence plots as another explanation method.
Partial Dependence plots are widely used and show how
changing a feature value affects model outputs, by fixing
all other features [28]. This explanation method is chosen
over the SHAP’s built-in dependence plot function because
Partial Dependence plots tend to be more intuitive in clinical
settings [29]. Specifically, when creating a partial dependence
plot, we replace the value of a feature with values in its
range to compute average model outputs on this feature’s
range across data samples. In our analysis, in addition to risk
predictions, we used log odds as model outcomes to provide
a better interpretation of features and outcomes. In essence,
a positive log-odds value indicates a higher likelihood of the
event occurring, a negative value indicates a lower likelihood,
and a value of zero represents a 50% probability. We made
the necessary adjustments for categorical and continuous
features and included data distribution information to bolster
the reliability of our analysis. This approach enables us to
pinpoint areas where the model’s output is robustly supported
by data, as well as identify regions where predictions may be
less dependable due to data scarcity.

We stress that both permutation variable importance and
the SHAP method can provide broader insights into the
overall effects of specific features on model outputs. Partial
dependence plots, on the other hand, provide a detailed
visualization to uncover the direct relationship between each
feature and the predicted outcome. By integrating permu-
tation variable importance, the SHAP method, and partial
dependence plots, we deliver a holistic model explanation for
users. This synergy enhances interpretability and trust in the
model’s predictions, making the analysis more actionable in
clinical settings.
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Ethical Consideration
This study was approved by the Institutional Review Board
at the Georgia Institute of Technology under Protocol No.
H22333. All participants in the ACCORD trial provided
written informed consent. The ACCORD contained de-identi-
fied data only. Participants in the ACCORD trial were not
paid for their participation.

Results
Study Sample
Our study data included 9635 participants, with 616 (6% of
the total 10,251) excluded due to missing data on predictor

variables (Table 1). The mean (SD) age was 62.8 (6.7)
years. Women made up 3,662 (38%) of the sample. The
racial and ethnic make-up of our study data included 1834
(19%) non-Hispanic Black participants, 678 (7%) Hispanic
or Latino participants, and 7123 (74%) non-Hispanic White
participants. In addition, 3437 (36%) of participants had a
history of CVD. The mean (SD) body mass index was 32.2
(5.4) kg/m2, systolic blood pressure was 136.5 (17.1) mm Hg,
and diastolic blood pressure was 74.9 (10.7) mm Hg. Of the
sample, 880 (9.1%) experienced an MI, and 197 (2%) had a
stroke during the follow-up period.

Table 1. Summary of study sample characteristics.
Variable Value (n=9635)
Demographics
Age, years, mean (SD) 62.8 (6.66)
Aged 75 years or older, n (%) 521 (5.4)
Gender, n (%)
  Women 3662 (38)
  Men 5973 (62)
Race and ethnicity, n (%)
  Non-Hispanic Black 1834 (19)
  Hispanic or Latino 678 (7)
  Non-Hispanic White 7123 (74)
Tobacco usage, current, n (%) 1179 (12)
BMI, kg/m2, mean (SD) 32.2 (5.4)
Blood pressure, mean (SD)
  Systolic, mm Hg 136.5 (17.1)
  Diastolic, mm Hg 74.9 (10.7)
Heart rate, bpm, mean (SD) 72.7 (11.8)
History of CVDa, n (%) 3437 (36)
Drug usage, n (%)
  Blood pressure-lowering drugs 8109 (94)
  Oral diabetes drugs (including metformin) 8024 (83)
  Insulin treatment 3403 (35)
  Statins 6148 (64)
  Fibrates 601 (6)
  Anticoagulant use 303 (3)
  Nonsteroidal anti-inflammatory use 851 (9)
  Platelet aggregate inhibitor use 466 (5)
  Daily aspirin use 5274 (55)
Biomarkers, mean (SD)
  HbA1cb, % 8.3 (1.1)
  HbA1c, mmol/mol 67 (9)
  Total cholesterol, mg/dL 183.2 (41.7)
  HDL cholesterol, mg/dL 41.8 (11.6)
  LDL cholesterol, mg/dL 104.7 (33.8)
  Triglycerides, mg/dL 190.7 (145.8)
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Variable Value (n=9635)
  Fasting plasma glucose, mg/dL 175.3 (55.8)
  Alanine aminotransferase, IU/L 27.5 (16.0)
  Creatine phosphokinase, IU/L 140.3 (130.2)
  Serum potassium, mmol/L 4.5 (0.5)
  Serum creatinine, mg/dL 0.9 (0.2)
  Estimated glomerular filtration rate, mL/min/1.73 m2 90.9 (27.3)
  Urine albumin, mg/dL 10.7 (37.3)
  Urine creatinine, mg/dL 127.3 (65.4)
  Urine albumin: creatinine ratio, mg/g 99.2 (359.4)

aCVD: cardiovascular disease.
bHbA1c: Hemoglobin A1c.

Predictive Performance
The predictive accuracy of our machine learning models is
summarized in Table 2.

Table 2. Summary of predictive performance for machine learning models predicting risk of myocardial infarction and stroke, optimizing thresholds
for 23 × Sensitivity + 13 × Specificity.
Machine learning model AUC Sensitivity Specificity Accuracy
MIa

  OCT 0.687 0.782b 0.554 0.565
  Naïve Bayes 0.694 0.563 0.768b 0.420
  Random forest 0.716b 0.746 0.640 0.645
  SVM 0.581 0.711 0.436 0.450
  XGBoost 0.695 0.782 0.554 0.565
  GLMnet 0.704 0.629 0.666 0.664b

  OFS 0.705 0.671 0.642 0.644
Stroke
  OCT 0.625 0.771 0.546 0.550
  Naïve Bayes 0.703 0.694 0.708 0.708
  Random forest 0.716 0.510 0.839b 0.833b

  SVM 0.624 0.816b 0.426 0.568
  XGBoost 0.714 0.653 0.735 0.734
  GLMnet 0.700 0.625 0.715 0.714
  OFS 0.731b 0.646 0.716 0.715

aMI: myocardial infarction.
bThe best-performing model for each performance metric.

For classification of MI, the OCT model achieved the highest
sensitivity at 0.782 with a specificity of 0.554 and AUC of
0.687. Random forest achieved the highest AUC at 0.716,
with a sensitivity of 0.746, moderate specificity (0.640),
and accuracy (0.645). XGBoost shows similar characteristics,
with an AUC of 0.695, sensitivity matching OCT at 0.782,
but lower specificity (0.554) and accuracy (0.565). GLMnet,
despite its lower sensitivity (0.629), has a high AUC of 0.704
and the best specificity (0.666) and accuracy (0.664) among
the models. Naïve Bayes, while exhibiting lower sensitiv-
ity (0.563), has the highest specificity (0.768), though an
accuracy of 0.420.

For stroke classification, our results indicate that naïve
Bayes provides the most balanced results across AUC
(0.703), sensitivity (0.694), specificity (0.708), and accuracy
(0.708). On the other hand, the Random forest model, despite
having a lower sensitivity, achieves a high AUC (0.716)
and the highest specificity (0.839), along with an accuracy
of 0.833 – indicating its strong performance in correctly
identifying non-stroke cases at the expense of missing some
stroke cases. Similarly, XGBoost performs exceptionally well
on AUC (0.714), accuracy (0.734), and specificity (0.735),
with a low sensitivity (0.653). In contrast, the OCT model
has the second-lowest AUC (0.625) and accuracy (0.550),
indicating it may be the least effective model for stroke
prediction. This lower performance suggests that OCT might
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not be suitable for accurate stroke prediction compared with
the other models considered.
Fairness
In Table 3, we present AUC stratified by gender and race
across all of the developed interpretable machine learning

models for MI and stroke classification, along with the RPPS
scores for gender and race. The conditional AUC on each
subgroup is calculated by classification results in the test set.

Table 3. Area under the curve and Relative Parity of Performance Scores of myocardial infarction and stroke for gender and race across all machine
learning models.
Machine learning model AUCa RPPSb AUC RPPS

Men Women Gender Black White Race
MIc

  Naïve Bayes 0.667 0.708 0.961 0.745 0.681 0.927
  SVM 0.558 0.675 0.838 0.605 0.591 0.959
  Random forest 0.673 0.760 0.939 0.770 0.704 0.925
  XGBoost 0.655 0.753 0.917 0.720 0.690 0.964
  GLMnet 0.689 0.702 0.979d 0.681 0.706 0.967

d

  OCT 0.642 0.763 0.889 0.710 0.682 0.967
d

  OFS 0.688 0.716 0.976 0.668 0.708 0.948
Stroke
  Naïve Bayes 0.679 0.662 0.942 0.733 0.629 0.895
  SVM 0.622 0.615 0.986d 0.600 0.609 0.962
  Random forest 0.783 0.673 0.906 0.741 0.696 0.965
  XGBoost 0.773 0.645 0.903 0.718 0.702 0.983

d

  GLMnet 0.714 0.727 0.961 0.685 0.698 0.979
  OCT 0.595 0.670 0.928 0.701 0.582 0.878
  OFS 0.687 0.787 0.923 0.692 0.743 0.947

aAUC: area under the curve.
bRPPS: Relative Parity of Performance Scores.
cMI: myocardial infarction.
dThe best-performing model for each performance metric.

For MI classification, besides the SVM, which has the lowest
RPPS (0.838), the random forest model shows a substantial
disparity in AUC between men (0.673) and women (0.760),
resulting in a lower RPPS (0.939), which indicates higher
gender disparities. Similarly, XGBoost exhibits a high AUC
for women (0.753) compared with men (0.655), leading to an
RPPS of 0.917, further highlighting the model’s performance
gaps across genders. On the other hand, the GLMnet and
OCT model demonstrate the highest RPPS (0.979), suggest-
ing minimal performance disparities between Black (0.681)
and White (0.706) subgroups for GLMnet, and Black (0.710)
and White (0.682) subgroups for OCT. In contrast, the
random forest model shows greater differences in perform-
ance by race with an AUC of 0.770 for non-Hispanic Black
people and 0.704 for non-Hispanic White people, resulting
in a lower RPPS (0.925). Importantly, for most models,
the RPPS scores indicate fairer results among race groups,
compared with gender, for predicting MI events.

For stroke classification, the XGBoost model exhibits
a significant difference in AUC between men (0.773)
and women (0.645), resulting in a lower RPPS (0.903),

highlighting pronounced differences in predictive accuracy
by gender. Similarly, the random forest model, with a high
AUC for men (0.783) compared with women (0.673), leads
to an RPPS of 0.906. Conversely, the XGBoost model shows
a relatively high RPPS (0.983), implying minimal perform-
ance differences between non-Hispanic Black (0.718) and
non-Hispanic White (0.702) people. However, the naïve
Bayes model demonstrates greater differences by race with
an AUC of 0.733 for non-Hispanic Black people and 0.629
for non-Hispanic White people, resulting in a lower RPPS
(0.895). Importantly, in contrast to our findings in MI
classification tasks, the RPPS scores reveal better perform-
ance parity among gender groups compared with racial
groups in classifying stroke events.

We also analyzed the coefficients of the one-hot enco-
ded gender and race variable for GLMnet. For the variable
“female=1”, coefficient values were -0.324 in the model
for MI and -0.250 in the model for stroke, suggesting
that women are associated with a lower predicted risk of
MI and stroke compared with men. For race, the variable
“black=1” had a coefficient value of -0.192 in the model for
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MI, which indicates a lower predicted risk of MI for non-
Hispanic Black people compared with non-Hispanic White
people. For stroke, the model does not provide a coefficient
for this predictor, indicating it was not significant in this
context. These findings highlight the potential disparities in
model predictions based on demographic factors, emphasiz-
ing the need to consider these variables when developing and
evaluating predictive models in CVD classification.
Model Selection
We applied our model selection approach to identify the most
preferable predictive models for MI and stroke classification.
From our analyses, we have found that these models can
exhibit higher disparities across gender subgroups, com-
pared with race. Consequently, alongside overall predictive
performance (overall accuracy), we incorporated gender
RPPS scores into our model selection criteria. The weighted
sum of accuracy and RPPS for MI and stroke classification
among all machine learning models is presented in Figure
3. Recall that, when the weight is selected to be 0, this
weighted sum represents RPPS; and when the weight is 1,
it represents accuracy. For MI classification, the GLMnet

model consistently demonstrated the highest values across
most weights, indicating its superior balance of accuracy
and fairness (Gender RPPS). This is particularly evident as
the weight approaches 0, with a gender RPPS of 0.974. On
the other hand, for stroke classification, the best-performing
model varies across different weights. At lower weights (0
to 0.2), the OCT model showed the highest values due to its
strong Gender RPPS. As the weight increases, the GLMnet
model starts to dominate from the weight is 0.25 to 0.6,
maintaining a good balance between accuracy and Gender
RPPS. Moving to higher weights (0.65 onwards), the random
forest model outperformed others, with its accuracy dominat-
ing the performance at around 0.788. These results indicated
that, for stroke classification, when users prioritize model
fairness, the OCT model is the best. For users who are
neutral regarding the tradeoff between fairness and accuracy,
GLMnet emerges as a suitable option. Lastly, random forest
is recommended for users with a strong preference for model
accuracy. Accordingly, we assumed users want to balance
accuracy and fairness and proceed to analyze the relationship
between variables and outcomes using GLMnet for both MI
and stroke classification.

Figure 3. Weighted sum of model accuracy and gender Relative Parity of Performance Scores for myocardial infarction and stroke. MI: myocardial
infarction; RPPS: Relative Parity of Performance Scores.

Model Explanation
We analyzed the relationship between features and outcomes
for predicting MI and stroke using GLMnet, with our
synergistic model explanation approach that integrates the
permutation variable importance, the SHAP method, and
the partial dependence plots. Figures 4 and 5 display the

permutation variable importance measures, along with their
95% CIs, and the SHAP method for the GLMnet model in
predicting MI and stroke, respectively. In addition, partial
dependence plots for GLMnet for MI and stroke are shown in
Figures 6 and 7, respectively.

JMIR MEDICAL INFORMATICS Yang et al

https://medinform.jmir.org/2025/1/e66200 JMIR Med Inform 2025 | vol. 13 | e66200 | p. 9
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e66200


Figure 4. Permutation variable importance and Shapley Additive Explanations method for GLMnet on myocardial infarction classification. AUC:
area under the curve; MI: myocardial infarction; SHAP: Shapley Additive Explanations.

Figure 5. Permutation variable importance and Shapley Additive Explanations method for GLMnet on stroke classification. CVD: cardiovascular
disease; HbA1c: hemoglobin A1c.
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Figure 6. Partial dependence plots for GLMnet on myocardial infarction classification. AUC: area under the curve; SHAP: Shapley Additive
Explanations.

Figure 7. Partial dependence plots for GLMnet on stroke classification.

From Figure 4, we observe that the permutation varia-
ble importance technique highlights the history of CVD
(cvd_hx_baseline) as the most critical predictor for GLMnet
to accurately predicting MI risks. Notably, its mean impor-
tance value (0.078) is nearly twelve times greater than that
of the second most important variable, age (baseline_age),
which has a mean importance value of 0.006. Moreover,
while the 95% CIs of the permutation importance for CVD
history is (0.045, 0.107), which is among the widest in the
feature space, its lower confidence interval is still higher than
the upper confidence interval of any other features. These
results imply the significant role of people’s CVD history
to make accurate classification using GLMnet. In addition,
BMI, and insulin treatment (insulinrx) also rank highly in this
importance metric, with mean importance values of 0.002 and
0.0013, respectively. Some variables show negative values in
permutation importance, which could be related to overfitting.
Since the negative values are small in magnitude in our case,
it could be that the model has relied too heavily on noise

rather than true signal for those predictors. Now, from the
SHAP method, we observed that the history of CVD and age
emerge as the 2 most influential features in driving GLMnet’s
MI classification, as indicated by their average relative
Shapley values of 0.45 and 0.14, respectively. This suggests
that these 2 features have a general tendency to positively
contribute to the prediction value. However, the individual
relative Shapley values for the features can widely range
from negative to positive, reflecting the varying marginal
contributions of the features across individuals. For example,
it appears that the distribution of the relative Shapley values
for CVD history is a mixture of 2 highly separated distribu-
tions, which again implies that the GLMnet is substantially
sensitive to CVD history. Furthermore, our findings indicate
that although insulin treatment is highlighted as one of the top
features in permutation variable importance, its mean relative
Shapley value is relatively low compared with other features.
Conversely, HbA1c ranks highly using the SHAP method.
Since both insulin treatment and HbA1c are indicative of
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an individual’s diabetic status, this suggests that accurately
predicting MI also heavily depends on the diabetes status
of the individual. Consequently, we next analyze the partial
dependence plots for CVD history, age, and HbA1c to draw
actionable insights.

The partial dependence plots in Figure 6 illustrate that
individuals with a history of CVD can have log odds of 0.87
(risk of 0.7), while those without CVD can have log odds as
low as −1.94 (risk of 0.13). In addition, the plots show that
44-year-old individuals in the test set have log-odds of −0.44
(risk of 0.4) for developing MI. As age increases to 79 years,
the risk gradually rises to log-odds of −0.33 (risk of 0.42).
Furthermore, the plots reveal that HbA1c levels significantly
impact risk: with HbA1c as low as 4.6%, the log-odds are
−0.94 (risk of 0.3), but as HbA1c rises to 12.7%, the log-
odds increase drastically to 0.55 (risk of 0.61). These results
highlight the importance of considering both CVD history and
key biomarkers such as HbA1c in assessing MI risk. Notably,
although partial dependence plots do not necessarily reveal
causation between features and risks, the steep increase in risk
associated with higher HbA1c levels underscores the critical
role of diabetes management in preventing MI.

Next, we conduct a model explanation analysis for
GLMnet in predicting stroke. As shown in Figure 7, HbA1c,
systolic blood pressure (SBP), and heart rate (HR) have the
highest mean permutation importance values (0.08, 0.06, and
0.01, respectively). Other significant features include serum
creatinine (screat), age, and BMI. These features exhibit
wide confidence intervals for their permutation importance
values, suggesting that their influence on the model can vary
depending on the patient cohort. Moreover, HbA1c and SBP
consistently show the highest positive marginal contributions
to risk predictions, with average relative Shapley values of
0.28 and 0.26, respectively. Heart rate, with a relative Shapley
value of 0.05, is also a significant predictor for stroke using
GLMnet. Although there are instances where these features
negatively contribute to risk prediction, their relative Shapley
values are predominantly positive. This distribution indicates
a general tendency for these features to positively drive the
predicted values, highlighting their crucial role in the model’s
stroke risk predictions. Since these features are essential for
accurately assessing stroke risk, we now derive actionable
insights from the partial dependence plots (Figure 7).

The partial dependence plots in Figure 7 provide visualiza-
tions of how HbA1c, systolic blood pressure, and heart rate
influence stroke classification using the GLMnet model. We
noticed that all 3 features exhibit a clear positive relationship
between them and the predicted risk of stroke. For HbA1c,
as levels increase from 5.5% to 13%, there is a noticeable
rise in both log-odds and predicted risk, moving from around
−0.95 to 0.94 in log-odds and from 0.28 to 0.71 in predicted
risk. For systolic blood pressure, the log-odds of developing
stroke can reach 1.01 from −1.05 and from 0.26 to 0.725
in predicted risk as systolic blood pressure increases from
88 mm Hg to 212 mm Hg. Notably, the rate of increase in
stroke risk with rising systolic blood pressure is less steep
compared with the rate observed with increasing HbA1c
levels. Finally, the log-odds of developing stroke can reach

0.41 from -0.61 and from 0.35 to 0.59 in predicted risk
as heart rate increases from 39 bpm to 132 bpm. Compara-
tively, the rate of increase in risk with heart rate is the most
moderate among these features. This indicates that managing
HbA1c and systolic blood pressure could be more effective
in preventing stroke. Overall, our model explanation analyses
highlight the importance of managing blood glucose levels,
blood pressure, and heart rate to mitigate the risk of stroke.

Discussion
Principal Findings and Comparison With
Previous Works
In this study, we designed a responsible framework that
evaluates various machine learning models by comparing
these models’ predictive accuracy and fairness metrics, while
also providing model explanation. We then applied this
framework for classification of MI and stroke, demonstrating
its effectiveness in highlighting the importance of in-depth
analyses of interpretable machine learning models between
these 3 dimensions.

Our results demonstrate that complex models are not
necessarily always better than simple, interpretable models—
especially for high-stakes decisions such as those encountered
in medicine [30]. Importantly. while the investigation of
predictive accuracy have been a focus of several previous
studies in health care AI, the concurrent evaluation of fairness
in machine learning models is inconsistent and lacking [12].
The fairness analysis of our predictive models reveals both
strengths and areas of concern in terms of gender and racial
bias. In MI prediction, while some models like the SVM and
XGBoost demonstrate gender biases, others such as GLMnet
and OFS models show more balanced performance across
gender and racial groups. This indicates that the most accurate
models are not necessarily the fairest, and vice versa. These
trade-offs highlight the importance of carefully selecting and
tuning models to balance accuracy and fairness in medical
decision-making. For stroke prediction, while some models,
that are, GLMnet and SVM, exhibit balanced performance
for both gender and race, other models, that are, XGBoost,
present bias for a gender. This finding highlights the complex
nature of fairness in such models, where different types
of biases may manifest depending on the outcome being
predicted and the model used. These findings underscore the
importance of continuously monitoring and evaluating models
for fairness. Our study provides a comprehensive analysis of
fairness across different models and conditions, paving the
way for more equitable AI applications in health care.

While there are multiple important criteria for model
selection, such as predictive performance and fairness, a
unified approach to guide this selection process is lacking. To
address this, our analysis presents a sensitivity analysis based
selection procedure based on users’ preferences over the
selection criteria. Our findings suggest that in some prediction
tasks, users’ preferences have minimal effect on the best-per-
forming model (eg, GLMnet for MI prediction). However, in
other tasks, for example, stroke prediction, users' preferences
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can significantly influence the selected model. Our study
highlights the necessity of considering user preferences in
model selection to ensure optimal outcomes for different
prediction tasks.

Finally, our study demonstrates the potential role that
our integrated explanation method (ie, the combination of
permutation variable importance, the SHAP method, and
partial dependence plots) can play in enhancing clinicians’
understanding and trust of model-based predictions. For
instance, the permutation variable importance measures, the
Shapley values and partial dependence plots provide a clear
visual representation of how key features like HbA1c and
systolic blood pressure influence the model’s risk prediction
for MI and Stroke. Such visual explanations can provide
actionable insights and be augmented with existing clinical
knowledge to help validate the quality of model-generated
risk estimates [31]. These visualizations can also help clinical
experts explain the unknown complex relationships between
various risk factors and adverse outcomes [32].

This study has some limitations. The proposed framework
was tested solely on CVD classification using the ACCORD
dataset. While it has shown promise in this context, its
effectiveness in other disease areas needs further investiga-
tion. Moreover, we relied on baseline information collected
at the start of the study for model development and did not
fully account for how things can change over time in the
real world. Looking ahead, we would like to make sure our
models stay accurate and up to date as treatment strategies
and clinical guidelines evolve. One way to do this is by
applying our framework on more recent datasets or on data
that captures changes over time. These steps could give us a
better understanding of how changing clinical practices might
affect prediction modeling.

Conclusions
In this research, we proposed a 3-stage responsible frame-
work for developing, selecting, and explaining machine
learning models, emphasizing the trade-off between
predictive accuracy and fairness in health care applica-
tions. By quantifying this trade-off using AUC and RPPS,
we provided a structured approach to responsible model
selection. After selecting the final model, we proposed an
integrated explanation method to offer insights into the
relationships between features and outcomes. Applying this
framework to predict MI and stroke among people with
T2D, we demonstrated its effectiveness and potential to
improve the development and evaluation of machine learning
models for clinical practice. We anticipate that our frame-
work is generalizable and can be applied to other clinical
prediction tasks, potentially increasing the trustworthiness
and acceptance of machine learning models among clinicians
and patients.

Our framework highlights the importance of combin-
ing interpretability, explainability, and fairness in building,
selecting, and explaining machine learning models. This
integration is crucial not only for enhancing model perform-
ance [33], but also for addressing ethical and legal con-
siderations [34]. These principles both help verify model
results against clinical literature [35], and fosters acceptance
and trust among health care stakeholders [36,37]. By fully
embracing these aspects, our framework paves the way for
more responsible, ethical, and transparent AI applications in
health care.
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