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Abstract

Background: The volume of digital data in health care is continually growing. In addition to its use in health care, the health
data collected can also serve secondary purposes, such as research. In this context, clinical data warehouses (CDWs) provide the
infrastructure and organization necessary to enhance the secondary use of health data. Various data models have been proposed
for structuring data in a CDW, including the Informatics for Integrating Biology & the Bedside (i2b2) model, which relies on a
relational database. However, this persistence approach can lead to performance issues when executing queries on massive data
sets.

Objective: This study aims to describe the necessary transformations and their implementation to enable i2b2’s search engine
to perform the phenotyping task using data persistence in a NoSQL Elasticsearch database.

Methods: This study compares data persistence in a standard relational database with a NoSQL Elasticsearch database in terms
of query response and execution performance (focusing on counting queries based on structured data, numerical data, and free
text, including temporal filtering) as well as material resource requirements. Additionally, the data loading and updating processes
are described.

Results: We propose adaptations to the i2b2 model to accommodate the specific features of Elasticsearch, particularly its
inability to perform joins between different indexes. The implementation was tested and evaluated within the CDW of Bordeaux
University Hospital, which contains data on 2.5 million patients and over 3 billion observations. Overall, Elasticsearch achieves
shorter query execution times compared with a relational database, with particularly significant performance gains for free-text
searches. Additionally, compared with an indexed relational database (including a full-text index), Elasticsearch requires less
disk space for storage.

Conclusions: We demonstrate that implementing i2b2 with Elasticsearch is feasible and significantly improves query performance
while reducing disk space usage. This implementation is currently in production at Bordeaux University Hospital.

(JMIR Med Inform 2025;13:e65753) doi: 10.2196/65753
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Introduction

Health data account for approximately 30% of the world’s
available data [1]. Moreover, the volume of digital health data
is constantly increasing [2]: in 2010, it doubled every 3 years;
by 2020, it was estimated to double every 73 days [3].

One source of health data is electronic health records (EHRs).
EHRs are defined as a “longitudinal collection of electronic
health information about individual patients” [4], generated
from 1 or more encounters in any care delivery setting. They
include patient demographics, clinical notes, medications, vital
signs, medical history, laboratory data, and radiology reports.

Health data, particularly EHR data, may be used for secondary
purposes. Secondary use of health data refers to its use for
purposes other than those for which they were initially collected
[5]. This includes a wide range of areas [6], such as managing
health care organization activities, phenotyping [7,8], research
[9], epidemiological registers [10], quality and safety of care
[11], and epidemiological surveillance [12,13].

One barrier to reusing health data from EHRs is its extreme
heterogeneity [14,15]. Two types of heterogeneity are generally
distinguished:

• Syntactic heterogeneity: This refers to differences in how
information is stored, such as in different formats (eg,
databases, text files, or images) or using various data models
in specialized software.

• Semantic heterogeneity: This refers to differences in how
information is represented. For example, a patient’s
natremia may be stored in a structured format using a
LOINC (Logical Observation Identifiers Names and Codes)
[16] code (eg, “2947-0”), a local terminology code (eg,
“BIO:NaSg”), or as free text in a clinical note.

These 2 types of heterogeneity create challenges in the
secondary use of health data. Various strategies have been
implemented to reduce this heterogeneity, including machine
learning and rule-based methods [17] during analysis. A widely
adopted approach is to integrate data before analysis by
establishing clinical data warehouses (CDWs) [18-22].

From a technical perspective, a CDW is a database dedicated
to the secondary use of health data. CDWs are populated through
a process called ETL (Extract, Transform, and Load), in which
health care data are extracted from various production or
replicated medical software databases, transformed (including
pseudonymization and standardization), and then loaded into a
dedicated database. Beyond being just a database, CDWs must
also incorporate key aspects necessary for health data reuse,
including governance, ethics, transparency, privacy, and
security.

Numerous models for integrating data into CDWs have been
proposed [23]. In particular, 2 open data models are widely used
worldwide:

• OMOP-CDM (Observational Medical Outcomes
Partnership-Common Data Model): Developed through a
public-private partnership established in 2008 and led by
the Food and Drug Administration [19], OMOP-CDM is a

denormalized data model in which clinical data are stored
in 1 of 15 specialized fact tables (eg, DRUG_EXPOSURE,
MEASUREMENT) within the “Standardized Clinical Data”
section of the CDM. All data in these fact tables are linked
to the main PERSON table, which represents the patient.
Additionally, 12 tables in the “Standardized Vocabulary”
section store and manage the vocabulary integrated into
OMOP. The current version of OMOP-CDM is 5.4 [24].

• Informatics for Integrating Biology & the Bedside (i2b2):
Proposed by Harvard Medical School’s Department of
Biomedical Informatics in 2007 [18], the i2b2 platform
provides a tool called the i2b2 Web Client for identifying
patients based on clinical or biological criteria. A
description of this requester is provided in Multimedia
Appendix 1. A more detailed explanation of the i2b2
application and its data model is included in the “Materials”
section.

In the remainder of this article, we will focus specifically on
i2b2.

One of the first steps in the secondary use of health data is
conducting feasibility studies [25] and phenotyping [26,27].
Feasibility studies involve counting candidate patients, while
phenotyping focuses on identifying patients eligible for studies
based on clinical or biological criteria. To achieve these tasks,
researchers query CDW data to precisely define the population
of interest. Phenotyping queries must meet 2 key criteria: (1)
good recall, that is, they must capture the population of interest
as comprehensively as possible; and (ii) good precision, that is,
the identified patients must accurately match the search criteria.
The development of these queries is an iterative process: the
initial counts and record visualizations help refine the query by
identifying additional elements to consider. Therefore, query
response times must be very fast—on the order of 1 second—to
ensure that this iterative process remains feasible and efficient.

In addition, a significant portion of medical information is
available in free text [21,28], such as clinical notes, imaging
reports, and discharge prescriptions. Within the i2b2 platform,
free-text data are extracted from binary documents (eg, .docx,
.pdf) and stored in a dedicated field. The search engine enables
querying this free-text information using keyword-based exact
searches.

It is therefore essential to use data storage systems for CDWs
that enable rapid querying and efficient methods for searching
free text. Most CDWs rely on a relational database to store data.
Relational database management systems (RDBMSs) are
well-suited for ensuring data integrity and provide a simple yet
flexible query language, SQL. However, the query performance
of RDBMSs may be challenged when handling large volumes
of data or a high number of users [29-32]. This is because
RDBMSs strictly adhere to the ACID (atomicity, consistency,
isolation, and durability) properties to ensure data integrity and
consistency. Maintaining these properties introduces
mechanisms such as resource locking, which can impact query
speed. Additionally, while RDBMSs are highly efficient for
storing structured data, they are less suited for handling
semistructured or unstructured data, such as free text [33,34].
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NoSQL databases emerged in the 2000s with the rise of Web
2.0 [35] and have been widely used in big data and real-time
applications. Unlike traditional relational databases, NoSQL
databases do not store data in a relational manner. A key
difference is that NoSQL databases are schema-free, meaning
their table structure is not fixed—the structure of stored data
may vary between instances [36]. There are different types of
NoSQL databases, including key-value databases,
document-oriented databases, column-oriented databases, and
graph databases [37].

Elasticsearch [38] is a NoSQL database that stores data as JSON
documents in a schema-less structure, optimized for full-text
search and real-time analytics. It supports horizontal scaling
across clusters and uses a query domain-specific language for
complex searches, making it well-suited for indexing, querying,
and aggregating large volumes of heterogeneous data. Therefore,
we considered Elasticsearch a strong candidate for CDW data
persistence in the context of i2b2’s search engine for the
phenotyping task. This paper aims to present our implementation
and evaluate the query performance associated with persisting
the main components of the i2b2 data model in an Elasticsearch
NoSQL database. A portion of the i2b2 query engine has been
reimplemented for performance evaluation, focusing on counting
queries based on structured data, numerical data, and free text,
including temporal filtering.

Methods

Materials

Informatics for Integrating Biology & the Bedside (i2b2)
i2b2 is an application developed by the Department of
Biomedical Informatics at Harvard Medical School in 2007
[18]. It aims to facilitate the integration of heterogeneous clinical
health care data for secondary use by providing data persistence
storage and offering various services on top of this storage. The
application follows a service-based architecture, comprising
multiple services (referred to as “cells”). Specifically, the i2b2
application distinguishes the following 2 cells (Figure 1):

• The data repository cell (also called the clinical research
chart (CRC); blue box in Figure 1), which stores clinical
information generated during a patient’s encounter with a
health care facility. The CRC is based on a star-schema
model [39] composed of the following:
• A section containing pseudonymized individual clinical

data (shown in orange in Figure 1; the names of
RDBMS objects [tables, columns, etc] are written in
UPPERCASE and the names of Elasticsearch objects
[indexes, fields, etc] are written lowercase.). The
individual clinical information integrated into i2b2 is
stored as observations in the main fact table,

OBSERVATION_FACT. Each observation represents
a piece of information about a patient’s health, collected
during an interaction with the health care system. This
may include structured elements (eg, diagnoses coded
using standard terminology, numerical biological
results) as well as free-text elements (eg, clinical notes,
form data). This table is linked to 2 dimension tables:
PATIENT_DIMENSION, which describes patient
attributes (eg, gender, date of birth), and
VISIT_DIMENSION, which describes encounter
details (eg, start and end dates).

• A section describing the permissible values of the
lookup columns (the lookup columns correspond to
columns containing structured elements used for
searching in the OBSERVATION_FACT table. These
columns are similar to foreign keys of dimension tables,
except that they do not refer to the primary key but to
other columns in these dimension tables) in
OBSERVATION_FACT (shown in green in Figure 1).
Specifically, 2 tables define the concepts used to
characterize an observation: CONCEPT_DIMENSION
represents the main concept. For example, the
CONCEPT_CD “BIO:ERYTHRO” refers to the
number of  erythrocytes in blood;
MODIFIER_DIMENSION represents a secondary
concept that modifies the main concept. For example,
the MODIFIER_CD “BIO:VALID” refers to a
validated result and can modify an observation linked
to the CONCEPT_CD “BIO:ERYTHRO,” indicating
that the erythrocytes in blood measurement are
validated.

• A section containing mapping tables that link patient
(PATIENT_MAPPING) and encounter
(ENCOUNTER_MAPPING) identifiers used in i2b2
to the corresponding identifiers from the source systems
integrated into i2b2 (shown in red in Figure 1).

• The ontology management cell (also called ONT; green
box in Figure 1) enables the integration of metadata from
various sources into a hierarchical tree structure. Metadata
are stored in separate tables, each corresponding to a root
node of the tree (eg, “Biology,” “Diagnosis,” “Procedure”).
In these metadata tables, each row represents a node in the
hierarchical tree. The primary key (C_FULLNAME)
corresponds to the path from the root node to the current
node (either an intermediate or a leaf node). This structure
allows for multihierarchical access to leaf nodes, meaning
a single leaf node can be accessed through multiple paths.
For leaf nodes only, the C_BASECODE column contains
the code used as a permissible value in one of the lookup
columns (eg, CONCEPT_CD) of the
OBSERVATION_FACT table.
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Figure 1. Informatics for Integrating Biology & the Bedside (i2b2): Data Repository Cell (CRC) and Ontology Management Cell (ONT). In the CRC
(blue box), tables containing pseudonymized patient data are shown in orange, mapping tables with the integrated source(s) are in red, and metadata
dimension tables are in green. In the ONT, metadata are organized into distinct metadata tables (eg, BIOLOGY_METADATA,
DIAGNOSIS_METADATA), each containing tuples that represent nodes in a hierarchical tree structure. Each node in the tree corresponds to a tuple
in the metadata tables, with its primary key representing the path from the root node to the current node. For example, the primary key of the intermediate
node “Blood cell count” is C_FULLNAME = “\BioRes\Hemato\BloodCellCount.” Leaf nodes are associated with a code stored in the C_BASECODE
column. Only the tuples in the metadata tables that correspond to leaf nodes are included in the metadata dimension tables. For instance, the tuples for
“Leucocytes” and “Erythrocytes” are included in the CONCEPT_DIMENSION table.

In addition to providing meaning to the observations stored in
the CRC’s OBSERVATION_FACT table, metadata enable the
creation of views on these data through various access paths to
lookup codes (eg, CONCEPT_CD), which contextualize each
observation. Moreover, separating data and metadata into 2
distinct cells allows the loading of pseudonymized individual
clinical data to be decoupled from the loading of metadata
describing these data. As a result, modifying the metadata in
the ONT makes it possible to adjust the view of the data without
altering the data itself. This decoupling of data and metadata is
one of the key strengths of the i2b2 architecture.

The i2b2 platform includes a patient and encounter identification
engine that queries the ONT and CRC components based on
clinical or biological criteria. A detailed description of this
engine is provided in Multimedia Appendix 1.

The i2b2 data model is designed for data persistence in an
RDBMS [40].

i2b2 Within the Bordeaux University Hospital
The Bordeaux University Hospital is a public health care facility
in Bordeaux, Nouvelle-Aquitaine, France. Each year, a number
of distinct patients visit the hospital for inpatient or outpatient
care.

Since 2018, the Bordeaux University Hospital has implemented
a CDW based on i2b2. The CDW integrates heterogeneous
health data from patients who have visited the hospital since
2010. For these patients, data available since 2005 have also
been integrated.

Various types of clinical data are integrated into the CDW:

• Structured data coded using standard terminologies, such
as diagnoses (coded with the International Statistical
Classification of Diseases and Related Health Problems,
10th Revision [ICD-10] [41]) or drug
prescription/administration data (coded with the Anatomical
Therapeutic Chemical classification [42]).

• Structured data coded using local (or interface)
terminologies [43], such as biological results.

• Semistructured data, recorded in care forms. This type of
data includes structured or free-text elements contextualized
by a strong organizational structure within the forms:
questions are grouped into sections, which are further
organized into specific pages.

• Unstructured/free-text data, such as hospitalization reports,
imaging reports, or discharge prescriptions.
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Data from more than 20 sources are loaded daily into the
Bordeaux University Hospital CDW. As of 2024, these data
represent a total of (Table 1): 2,502,063 distinct patients;

20,982,497 inpatient or outpatient visits; and 3,474,264,570
observations, including 72,580,022 textual documents.

Table 1. Number of observations by source in the Bordeaux University Hospital clinical data warehouse.

Observations (n=3,474,264,570), nVisits (n=20,982,497), nPatients (n=2,502,063), nData source

1,323,818,0254,157,7381,286,459Biology

829,328,4158,130,3911,641,829Forms

469,279,9821,775,078744,611Drug prescription/administration

263,813,6871,875,347688,450Nursing care prescription/administration

127,437,2863,690,2251,095,002Radiology

86,453,38820,259,3802,315,342Localization

72,580,02212,202,3092,045,379Free-text notes

63,135,0102,650,212947,024Diagnostic (ICD-10a)

54,581,2221,582,745725,741Care prescription/administration

54,558,6941,729,145619,767Nurse notes

39,277,538961,850474,997Microbiology

23,841,23320,982,4972,502,063Demographic data

16,503,0525,720,6341,396,469Procedure (CCAMb)

12,690,644238,34147,325Chemotherapy

12,002,8682,143,927733,021Nurse notes

10,371,426658,679397,492Pathology

5,802,650582,092365,077Surgery data

4,112,204748,627435,078Other

2,647,208491,076217,389Transfusion

2,030,01693498733Intensive care unit

aICD-10: International Statistical Classification of Diseases and Related Health Problems, 10th Revision.
bCCAM: Classification Commune des Actes Médicaux (Common Classification of Medical Procedures; French terminology for coding procedures).

Data from the Bordeaux University Hospital CDW are stored
in an Oracle RDBMS. Our implementation includes partitioning
the OBSERVATION_FACT table by source and year (Figure
2). This partitioning strategy aims to facilitate daily data updates
and optimize query performance on large data sets. As a result,

over 700 partitions have been created. This setup allows data
to be loaded from all or selected sources for 1 or multiple years.
With this configuration, data for the current year are refreshed
daily, while historical data are updated less frequently.
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Figure 2. Partitioning strategy implemented at Bordeaux University Hospital on the OBSERVATION_FACT table. Data from various sources
(represented by different colors) are extracted daily from the data lake and loaded into intermediate tables (dark colors). During this Extract, Transform,
and Load (ETL) process, only a subset of source data—filtered based on the temporality of observations—is collected. Once all intermediate tables are
ready, old partitions are successively replaced with new ones and then deleted. This approach ensures that only a portion of the data in the
OBSERVATION_FACT table is reloaded, minimizing data downtime.

Elasticsearch

Elasticsearch: A Distributed NoSQL Database for Document
Storage and Indexing

Elasticsearch [38] is a distributed, document-oriented NoSQL
database based on Apache Lucene (Apache Software
Foundation) [44] indexing (Figure 3). It stores data as JSON
documents in a schema-less structure. In Elasticsearch, an index
(equivalent to a table in an RDBMS) stores documents, each of
which corresponds to a tuple in an RDBMS table. These
documents contain fields, which are equivalent to columns in
an RDBMS table. The structure of an index is defined by
mappings, which describe the fields in terms of column names,
data types, and indexes—similar to how an RDBMS defines
table structures. Each index consists of 1 or more shards, each
corresponding to a Lucene inverted index [45], which is
composed of 2 substructures:

• The dictionary of terms: A sorted list storing all terms
included in the indexed documents.

• The postings list [46]: A structure that records, for each
term, the list of document IDs containing the term, along
with its position(s) within each document.

Queries in Elasticsearch are parallelized across multiple shards
within an index, enhancing search performance. Primary shards
can be replicated across different nodes within an Elasticsearch
cluster (Figure 3), ensuring high availability. If a node goes
offline, another available node with a replicated shard can still
process queries, preventing downtime and ensuring continuity.

While NoSQL databases offer many advantages, systems such
as Elasticsearch do not efficiently support join operations [47].
To enable querying similar to RDBMSs, a denormalization step
is often required, involving data duplication to ensure all
necessary information is contained within a single structure
[47,48].
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Figure 3. Elasticsearch organization and components. An Elasticsearch cluster consists of 2 nodes. Shards with a solid border represent primary shards,
while those with a dotted border indicate replicated shards. Index A is divided into 4 primary shards, distributed across 2 nodes without replication.
Index B has 2 primary shards stored on node 1 and 2 replicated shards stored on node 2. Index C is split into 2 primary shards, distributed across both
nodes in the cluster.

Elasticsearch Text Indexation

Elasticsearch supports various data types for fields, including
text, which undergoes a specific indexing process using
analyzers. This process builds a Lucene inverted index through
3 sequential steps:

• Character filtering: Cleans the text before indexing, such
as removing special characters or replacing certain ones
(eg, œ → oe).

• Tokenization: Splits the text into tokens. By default,
Elasticsearch follows the Unicode Text Segmentation
standard [49], which removes punctuation and uses spaces
as separators.

• Token filtering: Modifies, removes, or adds tokens based
on predefined rules. This step handles stop words,
synonyms, and other text-processing enhancements.

The final output of this processing chain is stored in a Lucene
inverted index.

Elasticsearch Keyword

The keyword data type is designed for structured data and can
be used for both numerical and textual values. When a field is
mapped as a keyword, it is stored in Lucene’s inverted index
exactly as it is, without any preprocessing. For example, the
text “BIO:ERYTHRO” will be indexed as “BIO:ERYTHRO”
if typed as a keyword. However, if assigned a text data type, it
will be split into separate entries: “bio” and “erythro” in the
inverted index. Keyword fields are particularly efficient for
aggregation, sorting, and exact-term searches.

Adapting the i2b2 Data Model for Persistence in
Elasticsearch

Overview
The adaptation of the i2b2 data model for persistence in
Elasticsearch was carried out in 2 steps:

• Mapping the OBSERVATION_FACT table to an
Elasticsearch index: This involved converting the data
definition language used to create the
OBSERVATION_FACT table into an equivalent
observation_fact index structure, primarily defining field
names, data types, and indexing modes.

• Modifying the observation_fact index structure by (1)
incorporating elements from the patient and visit dimension
tables, and (2) enriching observations with contextual
information extracted from the ONT part of the i2b2 data
model, stored as facets [50] of the observations. This
modification was necessary due to Elasticsearch’s lack of
support for traditional relational joins.

Finally, the persistence of the observation component of the
i2b2 data model in Elasticsearch was evaluated.

Mapping the Native OBSERVATION_FACT Table
Structure as the observation_fact Index
The first step involved mapping all the columns of the
OBSERVATION_FACT table into an Elasticsearch index. In
an Elasticsearch document, mappings define 2 main elements
(Table 2):
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• The data type of each field in the Elasticsearch index (eg,
numeric types such as long or double, text, date, keyword).

• The indexing method for each field. For instance, if a field
is assigned the text data type, the mapping specifies the
analyzer(s) used to index its content.

Thus, the 2 criteria considered to map OBSERVATION_FACT
were:

• The need to perform count or aggregation queries on the
field. In this case, the Elasticsearch data type used for the
field was keyword. In the OBSERVATION_FACT table,
the fields used as aggregation criteria or in enumeration
queries are fields corresponding to foreign keys in
dimension tables:
• ENCOUNTER_NUM and PATIENT_NUM columns:

These are used to count patients or visits, aggregate
information by patient or by visit, etc;

• CONCEPT_CD, MODIFIER_CD, and PROVIDER_ID
columns: These are used to count elements by clinical

and biological criteria, aggregate information by
provider, etc;

• INSTANCE_NUM column: This corresponds to the
key for grouping a principal observation with its
modified versions;

• TVAL_CHAR, VALUEFLAG_CD, and UNITS_CD
columns: These are used in the case of numerical
observations to specify elements concerning the
numerical operator (=, >, ≥, etc), the interpretation in
relation to limits, or the unit associated with the
numerical result.

• The need to query a field with free-text queries: In this case,
the text data type is associated with an analyzer for
managing free-text. The column concerned in the
OBSERVATION_FACT table corresponds to the
OBSERVATION_BLOB column ( in
OBSERVATION_FACT, the TVAL_CHAR column is
also used to store short text. In our implementation, all text
[short or long] is stored in OBSERVATION_BLOB).

Table 2. Mapping of the native OBSERVATION_FACT columns to Elasticsearch types.

AnalyzerElasticsearch field data typeColumn data typeColumn name

NoKeywordNUMBERENCOUNTER_NUM

NoKeywordNUMBERPATIENT_NUM

NoKeywordVARCHAR2CONCEPT_CD

NoKeywordVARCHAR2PROVIDER_ID

NoDateDATESTART_DATE

NoKeywordVARCHAR2MODIFIER_CD

NoKeywordNUMBERINSTANCE_NUM

NoKeywordVARCHAR2VALTYPE_CD

NoKeywordVARCHAR2TVAL_CHAR

NoDoubleNUMBERNVAL_NUM

NoKeywordVARCHAR2VALUEFLAG_CD

NoDoubleNUMBERQUANTITY_NUM

NoKeywordVARCHAR2UNITS_CD

NoDateDATEEND_DATE

NoKeywordVARCHAR2LOCATION_CD

YesTextTEXTOBSERVATION_BLOB

NoDoubleNUMBERCONFIDENCE_NUM

NoDateDATEUPDATE_DATE

NoDateDATEDOWNLOAD_DATE

NoDateDATEIMPORT_DATE

NoKeywordVARCHAR2SOURCESYSTEM_CD

NoLongNUMBERUPLOAD_ID

Modification of the Structure of the observation_fact
Index
As it is not possible to perform joins between indexes in
Elasticsearch, 2 types of changes have been made to overcome
this limitation (Figure 4):

• Some of the columns describing observations within the
PATIENT_DIMENSION and VISIT_DIMENSION tables
were added to the observation_fact index. For reasons of
parsimony, only PATIENT_DIMENSION.SEX_CD,
PATIENT_DIMENSION.BIRTH_DATE, and
VISIT_DIMENSION.START_DATE have been integrated
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i n t o  t h e  o b s e r v a t i o n _ f a c t  i n d e x .
PATIENT_DIMENSION.BIRTH_DATE and
VISIT_DIMENSION.START_DATE have not been added
as fields, but have been used to calculate the
age_in_month_at_start_visit field;;

• To make documents of the observation_fact index accessible
through the different hierarchical levels described in the
ONT part, all the C_FULLNAME associated with the
CONCEPT_PATH (also MODIFIER_PATH and
PROVIDER_PATH) have been integrated into the
observation_fact index. Additional tables have been added
to the ONT part of the i2b2 model to allow the addition, by

join, of all the paths (intermediate and final) for each
possible value of the OBSERVATION_FACT lookup
columns (ie, CONCEPT_CD, MODIFIER_CD, and
PROVIDER_ID). The pseudo-code describing the
generation of table I2B2_PATH_CONCEPT, for the
CONCEPT_CD column, is available in Multimedia
Appendix 2. Within the observation_fact index, paths are
stored in 3 new fields called c_fullname_concept,
c_fullname_modifier, and c_fullname_provider as lists of
keywords. As a result, each observation within the
observation_index is associated with all the paths
(intermediate and full paths) describing all the lookup fields.

Figure 4. Creation of the observation_fact index from the different tables of the Informatics for Integrating Biology & the Bedside (i2b2) model. The
table I2B2_PATH_CONCEPT (bordered with dotted line) is created based on CONCEPT_DIMENSION: for each CONCEPT_CD, the table contains
the ordered list of CONCEPT_PATH, including all intermediate truncated versions of those paths. The algorithm used for the generation of the
I2B2_PATH_CONCEPT table is provided in Multimedia Appendix 2. The relevant data from the PATIENT_DIMENSION, VISIT_DIMENSION, and
I2B2_PATH_CONCEPT tables are added into the observation_fact index as a facet. BIRTH_DATE is used with visit START_DATE to compute the
age_in_month_at_start_visit facet. The round-tipped arrows represent the joins between the tables. RDBMS: relational database management system.

Evaluation of the Elasticsearch Persistence
The evaluation of the proposed implementation of the main part
of the i2b2 data model in Elasticsearch aims to assess:

• The ability to load partial individual data (CRC part) daily.
The specific mechanisms used for data loading are
described. Loading performance is evaluated in terms of
median loading time and the median number of documents
loaded per minute.

• The ability to update metadata (ONT part). Similarly, the
specific mechanisms implemented to update the metadata
elements integrated into the observation_fact index are
described. Metadata updating performance is evaluated in
terms of median update time and the average number of
concept_cd entries that need to be updated each week.

The ability to perform queries on the CDW persisted in
Elasticsearch was evaluated. The results of count queries
(distinct patients or distinct encounters) were compared between
Oracle RDBMS and Elasticsearch implementations for the same
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CDW data in terms of result value and execution time (median
execution time based on 20 executions). Different types of
queries were performed, with criteria evaluated at the patient
or encounter level (Table 3):

• Counting queries based on structured data (queries 1 and
2), including a query that returns a small number of patients
(≈1500) and a query that returns a large number of patients
(≈150,000).

• Counting queries based on structured data combined with
a numerical filter (query 3).

• Counting queries based on free-text data (query 4).
• Counting queries based on structured data combined with

a temporal filter (query 5).
• Combination of the above criteria in AND/OR Boolean

queries, with multiple evaluation orders (eg, [(1) and (2)]
vs [(2) and (1)]).

The hardware resources used for data persistence and query
computation have been described.

JMIR Med Inform 2025 | vol. 13 | e65753 | p. 10https://medinform.jmir.org/2025/1/e65753
(page number not for citation purposes)

Griffier et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Query comparison between Oracle RDBMSa and Elasticsearch.

Countsb, nExecution time, median (IQR)Query result typeQuery/fields and query type

Oracle RDBMSElasticsearch

(1) Pembrolizumab

17010.15 (0.14-0.16)0.22 (0.21-0.23)PatientsNontemporal

17010.18 (0.18-0.19)0.43 (0.41-0.48)PatientsSame encounter

39860.20 (0.19-0.20)0.43 (0.41-0.49)EncountersSame encounter

(2) Cancer

153,5838.99 (8.66-9.51)0.96 (0.95-0.98)PatientsNontemporal

153,58316.07 (15.55-16.63)4.81 (4.74-4.87)PatientsSame encounter

516,68215.97 (15.08-16.76)4.79 (4.76-4.85)EncountersSame encounter

(3) Sodium ≥ 145 mmol/L

26,4269.42 (8.16-10.05)0.38 (0.36-0.41)PatientsNontemporal

26,4269.39 (8.33-9.92)0.75 (0.71-0.8)PatientsSame encounter

33,0709.41 (8.38-9.9)0.77 (0.72-0.82)EncountersSame encounter

(4) Adenocarcinoma in free text

69,022/25,5476.13 (5.97-6.51)0.60 (0.59-0.62)PatientsNontemporal

69,022/25,5477.27 (7.01-7.50)3.27 (3.20-3.33)PatientsSame encounter

369,953/92,6387.26 (7.04-7.53)3.27 (3.24-3.33)EncountersSame encounter

(5) Cancer in 2023

19,2516.72 (6.53-7.25)0.31 (0.29-0.32)PatientsNontemporal

19,2516.88 (6.62-7.52)0.66 (0.63-0.71)PatientsSame encounter

36067.03 (6.88-7.41)0.66 (0.64-0.70)EncountersSame encounter

(1) or (2)

153,5899.15 (8.79-9.68)1.00 (0.97-1.02)PatientsNontemporal

153,58915.72 (15.41-16.39)4.95 (4.91-5.02)PatientsSame encounter

516,85316.3 (15.74-16.81)4.99 (4.91-5.05)EncountersSame encounter

(2) or (1)

153,5899.04 (8.79-9.32)0.99 (0.97-1.02)PatientsNontemporal

153,58915.85 (15.38-16.76)4.96 (4.89-5.02)PatientsSame encounter

516,85316.51 (15.44-16.91)4.95 (4.91-5.04)EncountersSame encounter

(1) and (2)

16956.68 ((6.45-6.95)1.07 (1.04-1.10)PatientsNontemporal

16716.83 (6.52-7.33)4.81 (4.77-4.90)PatientsSame encounter

38156.94 (6.61-7.12)4.81 (4.74-4.91)EncountersSame encounter

(2) and (1)

169510.49 (10.17-11.12)1.09 (1.06-1.10)PatientsNontemporal

167121.38 (20.46-22.62)4.96 (4.85-5.02)PatientsSame encounter

381521.38 (20.75-22.08)4.94 (4.89-5.01)EncountersSame encounter

(5) and (3)

191715.54 (14.41-17.51)0.64 (0.59-0.69)PatientsNontemporal

100516.15 (14.96-18.42)1.45 (1.37-1.51)PatientsSame encounter

113516.42 (14.95-18.05)1.47 (1.4-1.57)EncountersSame encounter
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Countsb, nExecution time, median (IQR)Query result typeQuery/fields and query type

Oracle RDBMSElasticsearch

(1) and (5) and (3)

7815.68 (14.8-17.29)0.89 (0.82-0.93)PatientsNontemporal

1115.76 (14.59-17.98)2.05 (1.85-2.08)PatientsSame encounter

1115.61 (13.84-17.23)1.95 (1.91-2.12)EncountersSame encounter

aRDBMS: relational database management system.
bIf Oracle RDBMS and Elasticsearch return the same result, a single count is provided. Otherwise, the count obtained with Elasticsearch is presented
first, followed by the count obtained with Oracle RDBMS.

Results

Elasticsearch Data Loading
A specific ETL process was developed using Spring Boot [51]
to convert data from an RDBMS into Elasticsearch.

Data from PATIENT_DIMENSION and VISIT_DIMENSION
were added to the OBSERVATION_FACT table using outer
joins in the ETL. For the ONT data, intermediate tables were
created to store the ordered list of all CONCEPT_PATH
(MODIFIER_PATH and PROVIDER_PATH, respectively) for
each CONCEPT_CD (MODIFIER_CD and PROVIDER_ID,
respectively). An example for the CONCEPT_CD column is
presented in Table 4.

As mentioned above, the data in our OBSERVATION_FACT
table are partitioned by data source and year. A similar rolling

strategy has been implemented in Elasticsearch, as presented
in Multimedia Appendix 3. Consequently, observation_fact
consists of multiple indexes, corresponding to the partitions in
OBSERVATION_FACT. Each observation_fact index was
divided into 3 primary shards (1 per node) to enable parallel
queries, with no replicated shards created.

All data from the OBSERVATION_FACT table were loaded
into an Elasticsearch cluster, comprising 2,502,063 patients,
20,982,497 visits, and 3,474,264,570 observations. The number
of records in the observation_fact indexes matches that in the
OBSERVATION_FACT table. Data persistence in Oracle
RDBMS requires 1.030 TB for data and 2.640 TB for indexes
(including 420 GB for the Oracle RDBMS full-text index). By
contrast, data persistence in Elasticsearch requires only 1.635
TB, representing 44% of the disk space needed for Oracle
RDBMS.

Table 4. The i2b2a PATH_CONCEPT table: a generated metadata table that lists all available C_FULLNAME paths for each CONCEPT_CD described

in the ONTb. Equivalent tables exist for MODIFIER_CD and PROVIDER_ID.

CONCEPT_C_FULLNAME_LIST_HASHCONCEPT_C_FULLNAME_LISTCONCEPT_CD

DBC1BF7C82D1F4F179BA5BCC337BIO:ERYTHRO • \BioRes
• \BioRes\Hemato
• \BioRes\Hemato\BloodCellCount
• \BioRes\Hemato\BloodCellCount\Erythro
• \BioRes\StdElements
• \BioRes\StdElements\Erythro

86613F50CD3CD234E2BCFEA8E5EBIO:LEUKO • \BioRes
• \BioRes\Hemato
• \BioRes\Hemato\BloodCellCount
• \BioRes\Hemato\BloodCellCount\Leuko

37EC9810C98B7BF80668E5E1A69DOC:PRESCRIPTION • \Documents
• \Documents\DischargeMedicationOrder

ai2b2: Informatics for Integrating Biology & the Bedside.
bONT: ontology management cell.

The duration of data loading in Elasticsearch by source is
provided in Table 5. For the full year 2023 (approximately
340,000,000 observations), the median overall data loading time
with 10 sources in parallel is 7.41 hours, corresponding to a
median indexing rate of 46,546,000 documents per hour.
Indexing speed appears to depend on the type of data, with
structured numerical data being indexed at a median rate of
171,600 documents per minute—approximately 4 times faster
than free-text data, which has a median rate of 48,100 documents

per minute. Data loading in Elasticsearch has not been compared
with data loading in Oracle DBMS. Indeed, data loading in
Oracle RDBMS is heavily influenced by the transformations
performed when integrating data from the source information
system into the OBSERVATION_FACT table. By contrast, as
loading into Elasticsearch is conducted from the
OBSERVATION_FACT table, only transformations related to
data denormalization are applied during the Elasticsearch
loading process.
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Table 5. Data loading metrics for the full year 2023 (metrics based on 8 loads).

Loading duration (minutes),

median (Q1-Q3)b,c
Documents (×1000/minute),

median (Q1-Q3)a
Observations
(n=339,331,147), n

Source

2.5 (2.1-4.9)185.3 (132.1-222.8)478,438Chemotherapy

429.1 (407.3-490.1)181.6 (164.4-188.9)77,460,099Forms

916.4 (893.1-968.3)171.6 (162.4-176.5)158,384,678Biology

204.5 (187.4-214.6)155.6 (148.6-199.3)32,736,762Drug prescription/administration

149.2 (113.7-180.2)107.4 (87.2-138.8)16,523,635Nursing care prescription/administration

130.8 (79.9-201.4)76.6 (37.8-91.7)9,438,970Radiology

105.2 (64.2-116.8)64.6 (57.3-105.7)6,690,589Diagnostic (ICD-10d)

102.8 (77.6-118.3)59.8 (54.3-79.2)6,181,496Localization

34.7 (17.3-37.8)59.6 (55.0-122.6)2,142,053Demographic data

223.6 (199.0-248.7)58.8 (52.4-66.7)12,984,197Nurse notes

86.9 (71.7-162.6)56.5 (30.0-68.6)4,930,320Care prescription/administration

125.9 (80.2-151.3)48.1 (39.8-78.3)6,066,806Free-text notes

37.4 (2.1-80.3)13.9 (6.5-248.9)518,998Surgery data

254.3 (189.7-290.2)13.2 (11.5-17.6)3,364,431Microbiology

65.6 (38.8-89.4)10.7 (7.6-18.8)678,289Pathology

59.1 (1.5-90.6)4.9 (3.1-190.7)284,220Other

165.3 (152.4-205.4)2.7 (2.1-3.1)467,166Transfusion

aOverall: 775.8 (749.2-792.1).
bThe median loading duration was calculated without considering parallelization. Some sources consist of multiple indexes, such as biology (which
comprises 5 indexes) and forms (which comprises 4 indexes). This explains why the maximum median loading duration (916.4 minutes) is higher than
the overall median duration (444.8 minutes).
cOverall: 444.8 (429.0-461.2).
dICD-10: International Statistical Classification of Diseases and Related Health Problems, 10th Revision.

Elasticsearch Metadata Updating
In the case of a modification in the ONT part, a strategy for
updating the observation_fact indexes has been implemented.
This strategy is presented and evaluated in Multimedia Appendix
4 [52].

Elasticsearch Querying
The results of queries executed on an Oracle RDBMS engine
were compared with those obtained using Elasticsearch. For
queries involving joins (AND Boolean queries), the joins were
performed at the application layer for both Oracle RDBMS and
Elasticsearch. A full-text index was available in the Oracle
RDBMS. All necessary indexes for the Oracle RDBMS queries
were calculated, and the statistics were up to date. The results
and response times were compared between the 2 engines. The
Oracle RDBMS (version 19.17) runs as a cluster on 2 servers,
each with 80 CPUs and 1 TB of memory. The Elasticsearch
database (version 7.17.3) is configured as a 3-node cluster,
deployed through Docker, with each node having access to 25
CPUs and 30 GB of memory.

A total of 9 different queries were compared (Table 3). Each
query evaluated criteria either at the patient level (nontemporal
queries) or at the visit level (temporal queries). To assess
execution time, each query was executed 20 times on both

engines. The results were identical between the Oracle RDBMS
engine and Elasticsearch, except for the full-text query, which
returned more results in Elasticsearch due to differences in
full-text indexing implementation. Response times were
generally lower with Elasticsearch than with Oracle RDBMS,
except for the “Pembrolizumab” query, which returned a low
number of results. Temporal queries (evaluating criteria within
the same encounter) were consistently slower than nontemporal
queries on both engines.

Source Code
The ETL between i2b2 RDBMS and i2b2 Elasticsearch was
developed using Spring Boot (a Java framework; VMware).
The source code of the ETL is available at [53].

Discussion

Principal Findings
To our knowledge, this work is the first to evaluate the technical
feasibility and performance of persisting an i2b2 model in an
Elasticsearch database. Beyond demonstrating feasibility, the
evaluation highlights significant improvements in overall query
times and hardware resource requirements, particularly in
storage, with a 66% reduction in disk space usage. Additionally,
the implementation has been tested on a large volume of data,
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demonstrating good scalability. The proposed implementation
is currently in production at Bordeaux University Hospital,
supporting more than 200 research projects since 2022.

Elasticsearch is designed for very fast searches, prioritizing
optimization for speed, high availability, and horizontal
scalability. However, this comes at the cost of certain
transactional guarantees (ACID) and absolute precision in some
operations, such as counts. Specifically, in the event of a failure
during the update of a replicated index, the system may restart
in an inconsistent state, where data are updated in the primary
shard but not across all its replicas. In our context, high
availability is not a major concern. We have therefore chosen
not to replicate shards across different cluster nodes, avoiding
consistency issues in case of failure. Additionally, in the rolling
strategy implemented for data loading, a newly created index
becomes available for searching only after it has been fully
loaded, minimizing the risk of querying incomplete data. To
optimize queries, Elasticsearch employs probabilistic counting
algorithms (eg, HyperLogLog) for count queries. However, in
our context, exact results are essential for this type of query.
We have therefore configured Elasticsearch to ensure accuracy,
sacrificing some query performance. Despite this, execution
times were consistently lower with Elasticsearch than with the
RDBMS.

In our implementation, we chose to add the lookup columns
from the dimension tables and the paths of CONCEPT_CD (as
well as MODIFIER_CD and PROVIDER_ID) as facets of the
observation_fact indexes. Combined with fields of the keyword
data type, this approach optimizes query times, particularly for
enumeration queries, at the expense of indexing time, which is
not performed in real time. The disadvantage of this
implementation is that data (CRC) and metadata (ONT) are not
kept separate, meaning that any modification to the metadata
requires reloading or updating the data. To address this issue,
we implemented a process for updating metadata within the
observation_fact indexes and demonstrated the feasibility of
performing these updates without reloading the entire data set.

An alternative implementation would involve maintaining the
observation_fact indexes without adding additional fields and
instead creating separate indexes for the various dimension
tables and the ONT metadata table. Similar to the proposed
configuration, joins at the application layer (ie, intersecting
patient or encounter lists) would be used to combine results
from different indexes for AND Boolean queries. However, this
approach presents potential performance challenges. For
instance, intersecting gender data (eg, female) stored in the
patient_dimension index with a criterion stored in the
observation_fact indexes would require loading into memory
the list of all patient keys corresponding to women in the
CDW—approximately 1.2 million patients in the Bordeaux
University Hospital implementation. This issue becomes even
more pronounced when handling data from the
VISIT_DIMENSION table.

Alternatively, an Elasticsearch implementation could have used
nested field data types [54]. These types allow the content of a
nested field to be indexed as a separate Lucene document within
the main document. This approach would have enabled indexing

a patient document containing visit documents as nested data,
which in turn would contain observation documents as nested
data. However, this implementation would have required
reloading all data for a given patient at once, which was
incompatible with our goal of reloading recent data daily.
Additionally, queries involving nested documents generally
perform worse than standard field queries.

In our implementation, we mapped the TVAL_CHAR column
of the OBSERVATION_FACT table as a “keyword” in the
indexes constituting observation_fact. In the i2b2 data model,
the TVAL_CHAR column is used in 2 cases, in conjunction
with the content of the VALTYPE_CD column:

• VALTYPE_CD = “T”: The TVAL_CHAR column contains
the short text associated with the CONCEPT_CD (eg, a
biology comment).

• VALTYPE_CD = “N”: The TVAL_CHAR column contains
the mathematical operator associated with the numerical
value in the NVAL_NUM column (eg, “E” for “equal,”
“NE” for “not equal,” and “L” for “less than”).

In the i2b2 implementation at Bordeaux University Hospital,
all free-text data, including short texts, are stored in the
OBSERVATION_BLOB column. As a result, the
TVAL_CHAR column contains only the mathematical operators
for numerical values. In a fully i2b2-compliant implementation,
it would be necessary not only to map the TVAL_CHAR column
as a keyword but also to associate an analyzer with it. This
would enable both full-text search and aggregate queries.

To evaluate query capabilities using the Elasticsearch database,
part of the i2b2 query engine was reimplemented. This
reimplementation supports multicriteria enumeration queries
(ie, “AND,” “OR,” and “NOT” Boolean queries), including
numerical data and free-text search, evaluated at the patient or
encounter level. However, not all functionalities available in
the original i2b2 query engine have been implemented. In
particular, the ability to perform queries based on the number
of occurrences of observations (eg, identifying patients who
have visited the hospital at least three times) or queries that
account for temporality between events (eg, patients with
hemoglobin measurements within 5 days after colon surgery)
has not been implemented. These 2 types of queries are more
complex than those already implemented, as they require
additional observation aggregation and aggregate filtering steps
before results can be aggregated at the patient or event level.
However, the organization of the observation_fact indexes
proposed here appears to be compatible with executing such
queries. Implementing these capabilities could be the focus of
future work.

The proposed ETL for loading the Elasticsearch database is
based on data already integrated into an i2b2 model persisted
in an RDBMS. Beyond enabling a straightforward ETL process
from i2b2 RDBMS to i2b2 Elasticsearch, maintaining this
relational database appears essential for specific use cases that
would not be feasible with Elasticsearch alone (eg, joins with
the system containing the source data, preparation of complex
data by joining OBSERVATION_FACT to itself).
Consequently, while Elasticsearch provides performance
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improvements, these must be weighed against the requirement
to maintain 2 parallel infrastructures.

Although no i2b2 implementation using a NoSQL database has
been described to our knowledge, the literature includes
examples of CDWs designed for free-text analysis. OpenMRS
[55], an open-source EHR project, features a free-text search
module based on Apache Lucene, integrated with Hibernate
Search. R-oogle [20], a document-oriented CDW, preindexes
free-text data using external terminologies (eg, Medical Subject
Headings [MeSH]) and stores them in a Lucene index. Dr.
Warehouse [21,56] implements a segmentation approach for
free-text documents, breaking them into “propositions” stored
in a full-text index within the Oracle RDBMS. These
propositions are linked to contextual elements (eg, antecedents,
personal and family history, or negation). Doc’EDS [57]
provides a phenotyping search engine that integrates both

structured and unstructured data, indexed through Apache
Lucene. All CDW implementations utilizing NoSQL databases
[20,55,57] rely on Apache Lucene’s low-level libraries.
Elasticsearch, built on Apache Lucene, operates at a higher
abstraction level, simplifying deployment and integration. While
this limits fine-tuning capabilities for specific indexing needs,
it provides significant advantages, such as access to the Kibana
[58] visualization engine and query clients available in Java via
Spring Boot [59].

Conclusions
This study presents an Elasticsearch-based implementation of
the i2b2 data model for phenotyping tasks. By reimplementing
part of the i2b2 search engine, the study demonstrates that
Elasticsearch provides similar query capabilities while offering
faster performance and improved efficiency for free-text
searches.
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