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Abstract

Background: Prediction models have demonstrated a range of applications across medicine, including using electronic
health record (EHR) data to identify hospital readmission and mortality risk. Large language models (LLMs) can transform
unstructured EHR text into structured features, which can then be integrated into statistical prediction models, ensuring that the
results are both clinically meaningful and interpretable.

Objective: This study aims to compare the classification decisions made by clinical experts with those generated by a
state-of-the-art LLM, using terms extracted from a large EHR data set of individuals with mental health disorders seen in
emergency departments (EDs).

Methods: Using a dataset from the EHR systems of more than 50 health care provider organizations in the United States
from 2016 to 2021, we extracted all clinical terms that appeared in at least 1000 records of individuals admitted to the
ED for a mental health-related problem from a source population of over 6 million ED episodes. Two experienced mental
health clinicians (one medically trained psychiatrist and one clinical psychologist) reached consensus on the classification
of EHR terms and diagnostic codes into categories. We evaluated an LLM’s agreement with clinical judgment across three
classification tasks as follows: (1) classify terms into “mental health” or “physical health”, (2) classify mental health terms into
1 of 42 prespecified categories, and (3) classify physical health terms into 1 of 19 prespecified broad categories.

Results: There was high agreement between the LLM and clinical experts when categorizing 4553 terms as “mental health” or
“physical health” (#=0.77, 95% CI 0.75-0.80). However, there was still considerable variability in LLM-clinician agreement on
the classification of mental health terms (#=0.62, 95% CI 0.59-0.66) and physical health terms (x=0.69, 95% CI 0.67-0.70).

Conclusions: The LLM displayed high agreement with clinical experts when classifying EHR terms into certain mental health
or physical health term categories. However, agreement with clinical experts varied considerably within both sets of mental
and physical health term categories. Importantly, the use of LLMs presents an alternative to manual human coding, presenting
great potential to create interpretable features for prediction models.
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Introduction

Methods

Recent advances in health informatics have led to the
development of machine learning models that are trained on
data from electronic health records (EHRs). These models
have proven to be effective across a range of health domains,
including predicting the spread of disease [1], hospital
readmission rates [2], and suicide risk [3,4]. Predictive
models have been implemented in EHR systems to identify
high-risk patients and alert clinicians to critical health events

[5].

EHR systems are filled with unstructured text data,
including clinical notes and discharge summaries, which are
not easily categorized into clinically interpretable groupings
for use in predictive models. Although the use of this data
can greatly enhance prediction model performance and the
interpretability of decision-support tools [6,7], the coding
process is labor intensive and requires expert consultation and
extensive training [8]. These challenges hinder the devel-
opment and scalability of clinical prediction models that
incorporate unstructured EHR data [9,10].

Large language models (LLMs), like OpenAl’'s GPT
models, can streamline the classification and coding of
unstructured EHR text due to their massive training data
sets and advanced text processing [11,12]. LLMs have been
used to categorize unstructured text from EHR systems [13],
assist with qualitative analysis [14,15], and perform deductive
coding with and without context [16]. Preliminary evidence
shows that LLMs outperform crowd workers in annotation of
health texts [17,18].

The reliability of LLMs in replicating clinical judgment for
coding classification tasks in mental health remains uncer-
tain, particularly given the inherent complexities of mental
health disorders [19,20]. Prior research highlights that while
LLMs can process large volumes of text, their ability to
discern subtle differences in clinical presentations, such as
differentiating between comorbid conditions like depression
and anxiety, is still unproven. This challenge is exacerbated
by the frequent overlap of symptoms across diagnoses, which
complicates classification efforts [21]. Patients with mental
health disorders may present with unique clinical characteris-
tics that challenge an LLM’s ability to accurately identify and
code physical and mental health symptoms [11,22,23].

We used a large EHR data set of individuals admitted to
the emergency department (ED) for a mental health disorder,
to assess the ability of a state-of-the-art LLM to classify
EHR terms into categories defined by experienced mental
health clinicians. We assessed the extent to which a LLM
replicates clinical judgment and the practicality of using a
LLM to assist in creating clinically interpretable features for
prediction models.

https://medinform jmir.org/2025/1/e65454

Data

We extracted de-identified EHR data from the Optum Labs
Data Warehouse, a longitudinal, real-world data asset, from
>50 US healthcare provider organizations that encompass
>700 hospitals. We included individuals aged =10 years
who were admitted to the ED from 2016 to 2021 and
had an International Classification of Disease-9 or -10
code for a mental health diagnosis, suicidal ideation, or
self-harm, resulting in approximately 6.2 million unique
patient episodes. A natural language processing (NLP)
algorithm integrated into the Optum Labs Data Warehouse
extracted from unstructured free-text fields in the EHR,
clinical terms for signs, symptoms, and diseases based
on the National Library of Medicine’s Unified Medical
Language System dictionary. We identified physical and
mental health terms that appeared in at least 1000 unique
patient episodes.

Coding

A board-certified psychiatrist and licensed clinical psychol-
ogist categorized each EHR term into 1 of 61 catego-
ries including 42 mental health-related categories and 19
physical health-related categories which were generated from
the Clinical Classifications Software Refined [24] and the
International Classification of Disease-10 diagnosis coding
system, respectively. Coding each EHR term involved: (1)
initial classification by 1 clinician coder, (2) a review of all
coding decisions by a second clinician coder with suggestions
for revisions; (3) a final consensus reconciliation involv-
ing both coders. The coding of physical health terms was
supported by an LLM, which suggested coding decisions that
were refined and reconciled (5% of terms required reconcili-
ation) by the 2 clinician coders. All study procedures were
approved by the Institutional Review Board of University of
Pennsylvania.

Classification Tasks

We used the Python module “openai” [25] to run the
GPT-4 LLM in a Python environment. We used OpenAl’s
most sophisticated GPT-4 that was then publicly available
(“gpt-4-turbo-2024-04-09”) and set model parameters to
maximize output consistency (eg, temperature=0).

We prompted the model with 3 “zero-shot” classification
tasks, wherein the model is provided codes without examples:
(1) classify all (n=4553) EHR terms as either “mental health”
or “physical health,” (2) classify each of the (n=846) mental
health terms into 1 of the 42 mental health categories, and
(3) classify each of the (n=3707) physical health terms into
1 of the 19 physical health categories. The prompt descri-
bed the task, listed the possible categories, and provided
the EHR terms. The model then confirmed that the predic-
ted category was among the list of possible categories. For
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full reproducibility, the complete prompt provided to the
model, including the task description and category list, is
detailed in Multimedia Appendix 1. In task 2, the model
was given an unstructured clinical term from an EHR such
as “depressive symptoms.” Then, the prompt described the
classification task and provided the following list of possible
mental health categories (eg, “depression,” “anxiety,” “eating
disorder symptoms,” and “substance use”). The process was
repeated for all 846 mental health terms, and similarly for the
3707 physical health terms in task 3.

29 <

Performance Metrics

We compared GPT-4’s predicted categories with the
categories determined by clinical judgment using the Python
library scikit-learn “metrics” module [26]. For each task, we
report the overall Cohen % and weighted average of preci-
sion, recall, and Fj-score, accounting for label imbalance.
We computed 95% Cls for Cohen x, precision, recall, and
F1-score using a bootstrap procedure with 1000 resamples
[27].

Ethical Considerations

Ethical approval (IRB Protocol #848806) for this study
was waived by the University of Pennsylvania Institutional
Review Board via 45 CFR 46.104, category 4.

Cardamone et al

Results

Overview

EHR terms (n=4553) were categorized by GPT as “mental
health” or “physical health.” Overall, classification perform-
ance was strong with % of 0.77 (95% CI 0.75-0.80), preci-
sion of 0.93 (95% CI 0.92-0.94), recall of 093 (95% CI
0.92-0.94), and Fj-score of 0.93 (95% CI 0.92-0.94). The
GPT-4 classified 18.3% (n=833) of the EHR terms as “mental
health” and 81.7% (n=3720) as “physical health” (Table 1).
The clinician coders and model disagreed on the categori-
zation of 164 (19.7%) mental health terms (eg, “gunshot
wound,” “chronic fatigue syndrome,” and “IV drug use”)
and 149 (4%) physical health terms (eg, “activity issues,”
“lethargic,” and “food issues”).

Table 1. Recall, F|-score, and total mentions among terms in the data set across health domains.

Health domain (n) Recall (95% CI)?

F1-score (95% CI)

Total mentions in data set (thousands)

Physical health (n=3707)
Mental health (n=846)

0.96 (0.95-0.97)
0.81 (0.78-0.83)

0.96 (0.95-0.96)
0.81 (0.79-0.83)

255,573
85,081

@Recall indicates the proportion of terms in a clinician-coded category that were classified by the model as belonging to that category.

Mental Health

Mental health terms (n=846) were classified into 42 catego-
ries with » of 0.62 (95% CI 0.59-0.66), precision of 0.71
(95% CI 0.68-0.74), recall of 0.64 (95% CI 0.61-0.68),

and F-score of 0.65 (95% CI 0.62-0.69). Table 2 includes
category-wise recall, Fi-score, and a set of the most frequent
categories into which terms from the true category were
misclassified (Multimedia Appendix 2).

Table 2. Mental health term categories: recall, F|-score, total mentions in the dataset, and most common misclassification (in descending order of

recall). Categories with <5 terms were excluded.

Total mentions in

Term category (n) Recall (95% CI)? F1-score (95% CI) dataset (thousands) Misclassifications (n)

Eating disorder or symptoms 1 (0.81-1) 0.91 (0.80-1) 582 None

(n=16)

Living situation (n=11) 1(0.74-1) 1(1-1) 1259 None

ADHDP spectrum (n=11) 1(0.74-1) 0.73 (0.52-0.88) 810 None

OCD¢ symptoms or disorder 1 (0.72-1) 0.87 (0.67-1) 207 None

(n=10)

Somatization symptoms (n=6) 1 (0.61-1) 0.86 (0.57-1) 62 None

Neurocognitive disorders 0.95 (0.76-0.99) 0.62 (0.47-0.75) 1225 Neurocognitive symptoms (n=1)
(n=20)

Sleep wake symptoms or 0.95 (0.82-0.99) 0.86 (0.78-0.94) 1833 Miscellaneous psychiatric symptoms (n=1)
disorder (n=37) and depressive symptoms (n=1)
Substance-related symptoms  0.92 (0.85-0.96) 0.95 (0.91-0.98) 8783 Neurocognitive disorders (n=4),

or disorder (n=90)

neurocognitive symptoms (n=1), and
psychotic symptoms or disorder (n=1)
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Abusive behavior (n=26) 0.89 (0.71-0.96) 0.84 (0.71-0.93) 3053 Aggressive symptoms (n=1), miscellaneous
psychiatric symptoms (n=1), and
personality disorder (n=1)

Unipolar depressive disorder  0.88 (0.53-0.98) 0.78 (0.50-0.96) 944 Mood disorder (n=1)

(n=8)

Autism spectrum disorder 0.86 (0.49-0.97) 0.71 (0.38-0.92) 132 Mood disorder (n=1)

(n=7)

Impulsive behavior (n=6) 0.83 (0.44-0.97) 0.83 (0.50-1) 414 Aggressive symptoms (n=1)

Personality disorder (n=5) 0.80 (0.38-0.96) 0.47 (0.11-0.73) 158 OCD symptoms or disorder (n=1)

Injury (n=76) 0.78 (0.67-0.88) 0.84 (0.77-0.90) 10,470 Self harm (n=8), miscellaneous psychiatric
symptoms (n=3), and stress-related
symptoms or disorder (n=2)

Psychotic symptoms or 0.76 (0.63-0.86) 0.76 (0.66-0.85) 6074 Miscellaneous psychiatric symptoms (n=5),

disorder (n=50) neurocognitive symptoms (n=2), and
impulsive behavior (n=1)

Stress-related symptoms or 0.73 (0.43-0.90) 0.57 (0.32-0.77) 480 Stressor symptoms (n=2) and anxiety

disorder (n=11) symptoms (n=1)

Anxiety disorder (n=14) 0.71 (0.45-0.88) 0.71 (0.50-0.90) 683 Anxiety symptoms (n=1), social situation
(n=1), and somatization symptoms (n=1)

Suicidal symptoms (n=12) 0.67 (0.39-0.86) 0.73 (0.46-0.92) 6167 Self-harm (n=3) and psychotic symptoms
or disorder (n=1)

Self-harm (n=12) 0.67 (0.39-0.86) 0.47 (0.23-0.67) 2126 Abusive behavior (n=3) and suicidal
symptoms (n=1)

Anxiety symptoms (n=22) 0.64 (0.43-0.80) 0.54 (0.36-0.69) 7481 Stress-related symptoms or disorder (n=2),
sensory disturbances (n=2), and anxiety
disorder (n=2)

Neurocognitive symptoms 0.61(0.49-0.71) 0.61 (0.50-0.69) 1802 Neurocognitive disorders (n=10),

(n=74) miscellaneous psychiatric symptoms (n=8),
and ADHD spectrum (n=6)

Aggressive symptoms (n=24) 0.58 (0.40-0.76) 0.58 (0.40-0.74) 4275 Anxiety symptoms (n=4), mood symptoms
(n=4), and miscellaneous psychiatric
symptoms (n=2)

Depressive symptoms (n=39) 0.56 (0.41-0.71) 0.68 (0.54-0.80) 6381 Mood symptoms (n=5), miscellaneous
psychiatric symptoms (n=3), and unipolar
depressive disorder (n=2)

Pharm symptoms (n=7) 0.43 (0.16-0.75) 0.33 (0-0.59) 699 Sensory disturbances (n=2), psych ADEY
(n=1), and miscellaneous psychiatric
symptoms (n=1)

Bipolar spectrum (n=36) 0.42 (0.27-0.58) 0.59 (0.40-0.74) 2290 Mood symptoms (n=18), psychotic
symptoms or disorder (n=2), and
miscellaneous psychiatric symptoms (n=1)

Miscellaneous psychiatric 0.29 (0.22-0.36) 0.39 (0.30-0.46) 9554 Neurocognitive symptoms (n=17),

symptoms (n=156) antisocial behavior (n=10), and mood
symptoms (n=10)

Suicidal behavioral (n=12) 0.25 (0.09-0.53) 0.38 (0-0.67) 1164 Injury (n=3), miscellaneous psychiatric
symptoms (n=1), and overdose (n=1)

Antisocial behavior (n=10) 0.20 (0.06-0.51) 0.17 (0-0.37) 1666 Personality disorder (n=3), aggressive
symptoms (n=2), and miscellaneous
psychiatric symptoms (n=2)

Sensory disturbances (n=6) 0.17 (0.03-0.56) 0.09 (0-0.27) 387 Psychotic symptoms or disorder (n=3) and
miscellaneous psychiatric symptoms (n=2)

Stressor symptoms (n=5) 0(0-043) 0 (0-0) 34 Sensory disturbances (n=2), personality
disorder (n=2), and miscellaneous
psychiatric symptoms (n=1)

Psych ADE (n=11) 0 (0-0.26) 0 (0-0) 151 Neurocognitive symptoms (n=6) and pharm

symptoms (n=5)

#Recall indicates the proportion of terms in a clinician-coded category that were classified by the model as belonging to that category.
bADHD: attention deficit hyperactive disorder.
“OCD: obsessive compulsive disorder.
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The model exhibited the best classification performance
for categories of: “living situation” (Fi-score=1, n=11
terms), “substance use related symptoms and disorder”
(F1-score=0.94, n=90 terms), “eating disorder or symptoms”
(F1-score=0.95, n=16 terms), “OCD symptoms or disor-
der” (Fi-score=0.87, n=10 terms), and “sleep wake symp-
toms or disorder” (F-score=0.86, n=37 terms). Conversely,
the model performed poorly on “miscellaneous psychiat-
ric symptoms” (F-score=0.39, n=156 terms), “antisocial
behavior” (F-score=0.17, n=10 terms), “sensory disturban-
ces” (Fi-score=0.09, n=10 terms), “psychiatric adverse drug
events” (Fj-score=0, n=11 terms), and “stressor symptoms”
(F1-score=0, n=5 terms).

included
“neurocognitive

The most mislabeled mental health terms
“psychiatric adverse drug events” as

symptoms” (n=6 misclassifications) or ‘“pharmacological
symptoms” (n=5 misclassifications). The model also
commonly mislabeled terms in “miscellaneous psychiatric
symptoms.” There were 111 terms in the “miscellaneous
psychiatric symptoms” category that were misclassified
across 28 of 41 other categories (Multimedia Appendix 3).

Physical Health

Physical health terms (n=3707) were classified into 19
categories with » of 0.69 (95% CI 0.67-0.70), precision of
0.76 (95% CI 0.74-0.77), recall of 0.71 (95% CI 0.70-0.73),
and Fj-score of 0.72 (95% CI 0.70-0.73). Table 3 includes
category-wise recall, F'j-score, and a set of the most frequent
categories into which terms from the true category were
misclassified (Multimedia Appendix 3).

Table 3. Physical health term categories: recall, F'{-score, total mentions in the dataset, and most common misclassification (in descending order of

recall).

Term category (n) Recall (95% CI)* Fi-score (95% CI)

Total mentions in

dataset (thousands) Most frequent misclassifications (n)

Oncological conditions 0.91 (0.79-0.96) 0.61 (0.51-0.70)

(n=45)

Sensory problems (n=41) 0.90 (0.78-0.96)

0.88 (0.85-0.91)

0.35(0.27-0.43)

Cardiovascular symptoms 0.88 (0.85-0.90)

(n=401)

Respiratory symptoms 0.84 (0.77-0.89) 0.72 (0.66-0.77)

(n=139)

Infectious symptoms 0.84 (0.77-0.89) 0.63 (0.57-0.68)

(n=145)

Metabolic disorders (n=63) 0.84 (0.73-0.91) 0.68 (0.59-0.76)

Hematological symptoms  0.83 (0.75-0.89) 0.81 (0.75-0.86)

(n=122)

Neurological symptoms
(n=413)

0.82 (0.78-0.85) 0.79 (0.76-0.82)

Gastrointestinal symptoms
(n=279)

0.81 (0.76-0.85) 0.77 (0.72-0.81)

Skin and soft tissue
disorders (n=314)

0.78 (0.73-0.82) 0.80 (0.76-0.83)

Genitourinary symptoms 0.77 (0.71-0.82) 0.81 (0.76-0.85)

(n=201)
Renal disorders (n=52)

0.75 (0.62-0.85) 0.76 (0.65-0.84)

4549 Autoimmune and inflammatory conditions
(n=1), gastrointestinal symptoms (n=1), and
other physical symptoms and conditions
(n=1)

3113 Neurological symptoms (n=4)

30,930 Other physical symptoms and conditions
(n=14), neurological symptoms (n=9), and

respiratory symptoms (n=8)

27,775 Sensory problems (n=6), gastrointestinal
symptoms (n=5), and other physical

symptoms and conditions (n=4)

15,079 Hepatobiliary conditions (n=7), sensory
problems (n=3), and skin and soft tissue

disorders (n=3)

3136 Hepatobiliary conditions (n=7), endocrine
symptoms (n=1), and other physical

symptoms and conditions (n=1)

6321 Oncological conditions (n=11),
gastrointestinal symptoms (n=3), and

hepatobiliary conditions (n=3)

22,540 Sensory problems (n=38), other physical
symptoms and conditions (n=8), and

infectious symptoms (n=5)

24 878 Hepatobiliary conditions (n=18),
autoimmune and inflammatory conditions

(n=10), and infectious symptoms (n=9)

15,212 Infectious symptoms (n=26), other physical
symptoms and conditions (n=13), and

gastrointestinal symptoms (n=9)

8571 Gastrointestinal symptoms (n=12), infectious
symptoms (n=11), and other physical

symptoms and conditions (n=7)

2221 Infectious symptoms (n=5), genitourinary
symptoms (n=4), and cardiovascular

symptoms (n=3)
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Term category (n) Recall (95% CI)? F1-score (95% CI)

Total mentions in

dataset (thousands) Most frequent misclassifications (n)

Endocrine symptoms 0.67 (0.58-0.76) 0.71 (0.63-0.78)

(n=98)

Musculoskeletal symptoms
(n=480)

0.67 (0.63-0.71) 0.79 (0.75-0.82)

Pain symptoms (n=59) 0.59 (0.47-0.71) 0.61 (0.51-0.71)

Autoimmune and 0.54 (0.43-0.66) 0.50 (0.40-0.60)
inflammatory conditions

(n=68)

Hepatobiliary conditions
(n=54)

0.54 (0.41-0.66) 0.45 (0.33-0.56)

Other physical symptoms
and conditions (n=559)

0.47 (0.42-0.51) 0.54 (0.50-0.58)

Respiratory disorders
(n=173)

0.40 (0.33-0.47) 0.55 (0.48-0.63)

4942 Metabolic disorders (n=16), sensory
problems (n=4), and autoimmune and

inflammatory conditions (n=3)

21,785 Other physical symptoms and conditions
(n=62), neurological symptoms (n=39), and
autoimmune and inflammatory conditions

(n=13)

Other physical symptoms and conditions
(n=6), neurological symptoms (n=5), and
gastrointestinal symptoms (n=4)

18,045

6234 Infectious symptoms (n=9), other physical
symptoms and conditions (n=9), and skin

and soft tissue disorders (n=4)

1970 Gastrointestinal symptoms (n=11),
cardiovascular symptoms (n=4), and other

physical symptoms and conditions (n=3)

31,151 Sensory problems (n=68), neurological
symptoms (n=39), and skin and soft tissue
disorders (n=29)

Respiratory symptoms (n=50), infectious
symptoms (n=28), and other physical
symptoms and conditions (n=10)

7120

@Recall indicates the proportion of terms in a clinician-coded category that were classified by the model as belonging to that category.

The model exhibited the best classification performance for
categories of: ‘“cardiovascular symptoms” (n=401 terms),
“hematological symptoms” (n=122 terms), and “genitourinary
symptoms” (n=201 terms), with recall and Fi-score values
>0.80. Conversely, the model performed poorly on “sen-
sory problems” (F-score=0.35, n=41 terms), “hepatobiliary
conditions” (Fj-score=0.45, n=54 terms), and “other physical
symptoms and conditions” (F1-score=0.54, n=559 terms).

The model commonly predicted the category “sensory
problems” in terms of the categories “other physical
symptoms and conditions” (n=68 misclassifications) and
“neurological symptoms” (n=38 misclassifications). The
model also commonly mislabeled “other physical symptoms
and conditions.” There were 299 “other physical symptoms
and conditions” terms that were misclassified across 18 other
categories (Multimedia Appendix 3).

Discussion

Principal Findings

We investigated a GPT-4’s ability to replicate clinical
judgment when classifying EHR terms from a dataset of
mental health patients into interpretable clinical categories. A
recent review of NLP studies found the agreement of human
coding of EHR data to range from 0.72 to 0.94 (Cohen %)
[28]. Based on this benchmark, GPT-4 showcases human-like
agreement with clinical experts when classifying EHR terms
as either mental or physical health. Yet, GPT-4’s classifica-
tion performance varied widely across mental health and
physical health categories and had high error rates for certain
categories (eg, “sensory problems” and “stressor symptoms”).

https://medinform jmir.org/2025/1/e65454

Misclassifications highlighted GPT-4’s biases, such as the
tendency for broad categories (eg, “other physical symptoms
and conditions”) to be underselected. Instead, terms from
these categories were allocated to more specific categories
(eg, “cutting” was allocated to “injury” instead of “self-
harm”).

Nevertheless, GPT-4 was able to rapidly transform a
feature set of 4553 individual EHR terms into 61 clini-
cally valid groups which can be readily implemented into
prediction models. State-of-the-art LLMs have already been
used alongside traditional NLP methods, such as named entity
recognition, text clustering, and supervised machine learning
models trained on text data [29-31]. Additionally, LLMs can
explain categorization decisions, providing valuable insights
for end users of integrated clinical tools.

Limitations

LLMs occasionally “hallucinate”, generating outputs that
are off-task, nonsensical, or contradictory. Although we
prompted the model to validate the output and correct for
hallucinations, as the creativity and complexity of tasks
increase so does the risk of aberrant outputs [32]. More-
over, recent studies have found that LLM performance on
certain clinical tasks can substantially improve when given
1 or multiple examples for codes, a process known as
“few-shot” learning [33,34]. In contrast, our study used
“zero-shot” learning, where GPT-4 was asked to classify
clinical terms without being provided with any specific
examples or definitions for the coding system. This method
was chosen to assess the model’s baseline classification
performance, without introducing any more task-specific bias.
However, we recognize that because the coding system
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was developed by only 2 clinicians, bias may be intro-
duced due to their unique sets of clinical experiences,
institutional practices, and personal preferences. The LLM
may be biased as well. An ad hoc analysis indicated a
tendency for the model to underuse “other” categories (eg,
“other physical symptoms and conditions” and “miscella-
neous psychiatric symptoms”) relative to clinician coders
(Multimedia Appendix 3). Nonetheless, we acknowledge that
many clinical terms in EHR are inherently ambiguous and
may be classified under multiple categories depending on
the context. Without knowing the sample is among peo-
ple hospitalized with a mental health disturbance, it is not
necessarily a misclassification for GPT-4 to label “gunshot
wound” as a physical injury and not an indicator of suicide.
The task of assigning a single, mutually exclusive label
may limit one’s ability to capture the full complexity of
the clinical term. While this study provides a preliminary
framework for exploring the feasibility of using LLMs for
unstructured EHR classification, future research should aim
to involve a varied set of coding methods, classification
approaches (eg, multi-label classification), and a larger cohort
of clinician-coders to enhance generalizability. Finally, we
note that several categories in the mental health domain had
too few terms (<5) to yield stable estimates of agreement and
were removed from the analysis.

Implications

The accuracy of clinical term classification is essential for
downstream predictive models that rely on structured data,

Cardamone et al

as inaccuracies can propagate through the model pipeline.
Understanding the sensitivity of these models to variations in
input labels is key, especially when distinguishing between
random errors and systematic misclassifications. Systematic
errors, where specific categories are consistently mislabeled,
may significantly affect the robustness of models trained on
such data, potentially more so than a random error (ie, noise)
[35-37]. Moreover, the assumption that accurate categoriza-
tion of clinical terms is a necessary intermediate step is worth
reconsidering. As LLMs advance, there is potential for these
models to bypass the traditional 2-stage process and make
direct predictions from unstructured text [30]. Future research
is needed to determine whether bypassing the intermediate
categorization step entirely might enhance or hinder model
performance, depending on the specific clinical application.

Conclusion

As LLMs continue to advance, the time and human resour-
ces required to distill a large corpus of EHR terms into
clinically meaningful groups can be greatly reduced. LLMs
have the potential to be integrated into EHR systems to
create text-based features for prediction models in real
time. This study found that a state-of-the-art LLM achieved
high agreement with classifications of experienced clinicians
across terms from numerous physical and mental health
categories.
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