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Abstract

Background: A challenge in updating systematic reviews is the workload in screening the articles. Many screening models
using natural language processing technology have been implemented to scrutinize articles based on titles and abstracts. While
these approaches show promise, traditional models typically treat abstracts as uniform text. We hypothesize that selective training
on specific abstract components could enhance model performance for systematic review screening.

Objective: We evaluated the efficacy of a novel screening model that selects specific components from abstracts to improve
performance and developed an automatic systematic review update model using an abstract component classifier to categorize
abstracts based on their components.

Methods: A screening model was created based on the included and excluded articles in the existing systematic review and
used as the scheme for the automatic update of the systematic review. A prior publication was selected for the systematic review,
and articles included or excluded in the articles screening process were used as training data. The titles and abstracts were classified
into 5 categories (Title, Introduction, Methods, Results, and Conclusion). Thirty-one component-composition datasets were
created by combining 5 component datasets. We implemented 31 screening models using the component-composition datasets
and compared their performances. Comparisons were conducted using 3 pretrained models: Bidirectional Encoder Representations
from Transformer (BERT), BioLinkBERT, and BioM- Efficiently Learning an Encoder that Classifies Token Replacements
Accurately (ELECTRA). Moreover, to automate the component selection of abstracts, we developed the Abstract Component
Classifier Model and created component datasets using this classifier model classification. Using the component datasets classified
using the Abstract Component Classifier Model, we created 10 component-composition datasets used by the top 10 screening
models with the highest performance when implementing screening models using the component datasets that were classified
manually. Ten screening models were implemented using these datasets, and their performances were compared with those of
models developed using manually classified component-composition datasets. The primary evaluation metric was the F10-Score
weighted by the recall.

Results: A total of 256 included articles and 1261 excluded articles were extracted from the selected systematic review. In the
screening models implemented using manually classified datasets, the performance of some surpassed that of models trained on
all components (BERT: 9 models, BioLinkBERT: 6 models, and BioM-ELECTRA: 21 models). In models implemented using
datasets classified by the Abstract Component Classifier Model, the performances of some models (BERT: 7 models and
BioM-ELECTRA: 9 models) surpassed that of the models trained on all components. These models achieved an 88.6% reduction
in manual screening workload while maintaining high recall (0.93).
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Conclusions: Component selection from the title and abstract can improve the performance of screening models and substantially
reduce the manual screening workload in systematic review updates. Future research should focus on validating this approach
across different systematic review domains.

(JMIR Med Inform 2025;13:e65371) doi: 10.2196/65371
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Introduction

Systematic reviews are based on evidence-based medicine and
constitute crucial sources of information for health care
professionals and policy makers to access the latest information
in their fields and thereby aid decision-making [1,2]. Systematic
reviews of randomized controlled trials are highly valued and
frequently referenced in the development of clinical practice
guidelines by authoritative organizations, such as the World
Health Organization (WHO), representing a crucial foundation
for evidence-based health care decision-making. When
systematic reviews are outdated or fail to encompass all the
available evidence, they risk misinforming decision makers and
other stakeholders [3]. Therefore, systematic reviews should be
regularly updated. Shojania et al [4] analyzed 100 quantitative
systematic reviews that were registered with the ACP Journal
Club and reported a median survival time of 5.5 years for
systematic reviews [4]. However, most systematic reviews
remain outdated, and Hoffmeyer et al [2] reported that 88% of
reviews in the Cochrane Database of Systematic Reviews had
not been updated for 5.5 years.

A significant challenge in updating systematic reviews is the
workload associated with article screening that, for systematic
review research and updates, is usually performed using the
following 5 steps [5,6]: (1) identifying databases relevant to the
topic, (2) finding potentially relevant articles through a tailored
search strategy, (3) screening articles based on titles and
abstracts, (4) selecting articles for detailed analysis from the
screened texts, and (5) extracting and synthesizing data from
the selected articles. The significant effort required for these
steps as well as the stringent requirement that these tasks be
performed independently by 2 or more individuals [7], seems
to contribute to the low rate of systematic review updates.

Recent advancements in natural language processing (NLP)
technology have led to numerous attempts to automate these
screening tasks. Qin et al [8] used an ensemble learning model
that integrated multiple Bidirectional Encoder Representations
from Transformer (BERT) models that were trained on the titles
or abstracts and results of articles screened before an update of
a systematic review on the treatment of type 2 diabetes with
sodium-glucose cotransporter-2 inhibitors. Their model achieved
a sensitivity of 96%, a specificity of 78%, and a 64.1% reduction
in workload. While these models, like any NLP applications,
require careful consideration of potential challenges such as
overfitting and validation across different domains, these
promising, along with other studies, have established the
viability of NLP-based screening automation.

Building upon these achievements, we explored a novel
approach focusing on how models process and learn from
abstract information. Scientific abstracts contain distinct
components (eg, introduction, methods, results, and conclusions)
that serve different rhetorical functions and potentially contribute
differently to determining article relevance for systematic
reviews. While current approaches typically treat abstracts as
uniform text, we hypothesized that selective training on specific
abstract components might help address common challenges in
NLP-based screening models, including the risk of overfitting
large volumes of text data. By focusing on the most relevant
information for the systematic review’s inclusion criteria, this
approach could potentially enhance model performance
compared to traditional methods that process entire abstracts
as uniform text.

This component-based approach potentially offers several
advantages. For example, methods sections often contain crucial
information about study design and participant characteristics,
while results sections present outcome measures—both critical
factors when selecting articles for inclusion in systematic
reviews. By selectively focusing on these key components,
models might learn more effectively from smaller, more targeted
training data.

Scientific journals have widely adopted structured abstracts
with clearly labeled components (eg, Introduction, Methods,
Results, and Conclusion) since the early 1990s [9]. However,
systematic reviews often need to process both structured and
unstructured abstracts. To implement our component-based
screening approach effectively across all articles, we needed to
develop an NLP-based automatic abstract component classifier
that could systematically identify and process abstract
components regardless of their original format (structured or
unstructured).

In this study, we demonstrate the usefulness of a screening
model that learns by selecting abstract components as a novel
method for improving the performance of screening models. In
addition, we construct a screening model with an NLP-based
automatic abstract classifier that classifies abstracts by
component.

Methods

Overview
Our study consisted of 2 experiments (Figure 1). First, to
evaluate the impact of selecting titles and abstract components
of articles on the development of the screening model, we
constructed datasets with different combinations of titles and 4
abstract components and built a screening model using these
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datasets (under subheading Experiment 1). Second, to automate
the process from dataset creation to classifier development, we
developed a model for classifying abstract components of
articles (Abstract Component Classifier Models) and built a

screening model using the abstract components identified by
the Abstract Component Classifier Model (under subheading
Experiment 2).

Figure 1. Overview of this study experiments.

For identifying both included and excluded articles, our study
followed a systematic process: first, articles were identified and
curated based on our selection criteria, then their abstracts were
systematically subdivided into components for analysis. This
component classification process was performed manually in
Experiment 1 and automatically using our classifier in
Experiment 2. The details of each step are described in the
following sections.

Experiment 1: Evaluation of the Impact of Selecting
Titles and Abstract Components of Articles on the
Development of the Screening Model

Data Sources
We scrutinized the study “Adverse events in people taking
macrolide antibiotics versus placebo for any indication,”
published by Hansen et al [10] in the Cochrane Database of

Systematic Reviews on January 18, 2019 as the data source.
The data source was a systematic review that assessed adverse
events in randomized controlled trials of patients treated with
antibiotics compared with a placebo. This review was selected
for 2 reasons. First, the number of studies included in the
analysis was substantial, with 184 unique studies (reported
across 314 publications), providing sufficient data for
implementing the screening model. Second, the systematic
review included randomized controlled trials, consistent with
other systematic reviews analyzing treatment effects.

To identify the included articles, we analyzed the 184 studies
(314 articles) in the inclusion list for the systematic review. The
screening process for included articles is shown in Figure 2.
We selected articles that met any of the criteria with both the
title and abstract written in English, the criteria are mentioned
in Textbox 1.
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Figure 2. Screening process for included articles in this study.

Textbox 1. Inclusion criteria for included articles.

Criterion 1:

• The abstract was structured into 4 components, introduction (background), methods, results, and conclusion, or equivalent, from which the title
and the aforementioned 4 components could be extracted.

Criterion 2:

• The abstract was not divided into exactly four components but followed a structured format (eg, 3 or 5 components) and could be reclassified
by researchers into 4 components—introduction (background), methods, results, and conclusion, or equivalent—from which the title and the
aforementioned four components could be extracted.

Criterion 3:

• The abstract did not follow a structured abstract, but the text could be classified into four components—introduction (background), methods,
results, and conclusion, or equivalent—from which the title and the aforementioned four components could be extracted.

The criteria for the 4 components equivalent to introduction
(background), methods, results, and conclusion, as well as for
excluding text, are shown in Table S1 in Multimedia Appendix
1. For the classification of criteria 2 and 3, two researchers (TH
and YY) independently classified each sentence in the abstract
into 4 components. Disagreements, if any, were resolved through
discussion. In our study, all abstracts were assumed to be written
in the following order: introduction (background), methods,
results, and conclusion. Therefore, according to the criteria
listed in Table S1 in Multimedia Appendix 1, if the sentences
before and after a sentence classified as results were related to

methods, the sentence was classified as methods. In total, 256
articles were included.

To identify the excluded articles, we did not contact the original
review authors but instead searched MEDLINE (Ovid) and the
Cochrane Central Register of Controlled Trials using the same
search terms and search periods as those used in the systematic
review. The search terms and formulas used are listed in Table
S2 of Multimedia Appendix 1. Articles that met the above
criteria 1 or 2 with both the title and abstract written in English
were then extracted, and the “included articles” in our study
and any articles similar to those were excluded. The following
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exclusion criteria were applied: (1) articles without English
abstracts, as they would not be suitable for our model training,
(2) articles without abstracts, particularly older publications or
those with only titles, and (3) articles with unstructured abstracts
lacking clear background, methods, results, and conclusion
sections, as they would not be appropriate for our component
classification task. We did not include articles that only met
criterion 3 (articles with title and abstract written in English but
not meeting criterion 1 or 2) as negative instances, as we had
already obtained a sufficient number of excluded articles from
articles meeting criteria 1 and 2. The classification of the 4
components was conducted with reference to the criteria listed
in Table S1 in Multimedia Appendix 1. For the classification
of criterion 2, we evaluated the agreement rate between 2
researchers. The simple agreement rate was 98.76% (5752/5824;
95% CI 98.47%-99.05%). It was considered sufficiently high;
therefore, one researcher (TH) performed the classification.

In addition, the decision regarding duplicates in the “included
articles” in our study was made using the SequenceMatcher
object from the difflib library. The similarity ratio of the text
of each component in the excluded articles to the text of the
same components in all the “included articles” and extracted
the highest value was calculated. Articles with a combined
similarity ratio value of 4.0 or more, or with a similarity ratio
of the title of more than 0.8, were excluded. Through manual
verification of the flagged cases, we confirmed 1 complete text
duplication and 2 cases of substantial text similarity above our
thresholds. These 3 cases were excluded from the analysis,
confirming the appropriateness of our automated duplicate
detection criteria. A similar assessment using the title was also
performed for the studies excluded from the article dataset.
Duplicates among the excluded articles were not excluded
because duplicates might exist in the articles to be scrutinized
for practical use. Ultimately, 1261 articles were extracted.

We created 31 different component-composed datasets from 5
components in the extracted articles. These included datasets
containing only the title, introduction, methods, results, or
conclusions; datasets containing all 5 components; and datasets
containing any combination of 2, 3, or 4 of these components.
All variations are shown in Table S3 in Multimedia Appendix
1.

Development of Screening Models
From each component-composed dataset, we created training,
validation, and test sets. Included and excluded articles were
treated as positive and negative data, respectively. For positive
data, 40 articles were randomly extracted as the test set, and the
remaining 216 articles were randomly divided into training and
validation sets in a 9:1 ratio. Negative data were randomly
assigned to the training and validation sets to ensure 1:1
positive-to-negative data. In the test set, 960 articles were
assigned randomly. For articles exceeding the maximum
sequence length of 512 tokens, the text was truncated during
the model training phase. All shorter inputs were padded to
ensure uniform input length. This means that for articles
exceeding the token limit, information from the latter portions
of the text was not used during model training.

We developed screening models that predicted binary labels for
the test set using the transformer library. During model
development, different learning rates (Lr; 6e-7, 2e-6, and 6e-6)
were evaluated using the validation set. Screening models were
developed using 3 pretrained language models: Bidirectional
Encoder Representations from Transformers (BERT;
bert-large-uncased [11]), BioLinkBERT (BioLinkBERT-Large)
[12], and BioM- Efficiently Learning an Encoder that Classifies
Token Replacements Accurately (ELECTRA)
(BioM-ELECTRA-Large-SQuAD2) [13]. BERT, introduced
by Google in 2018, is pretrained on 2.5 billion words from the
English Wikipedia and 800 million words from BookCorpus
[14]. It uses a Transformer Encoder using a method known as
attention, which can effectively incorporate information from
distant positions within a text.

We used this as the baseline pretrained model. BioLinkBERT
is a pretrained model developed by Yasunaga et al [15] at
Stanford University. Traditional BERT models cannot learn
from the text of hyperlinks and citation links used in pretraining
documents. The base model, LinkBERT, can capture these
document links. BioLinkBERT [12] was pretrained on 3.1
billion words from PubMed abstracts and documents from their
hyperlinks and citation links. BioM-ELECTRA-Large-SQuAD2
is a model developed by Alrowili and Shanker [16] from the
University of Delaware that trains BioM-ELECTRA-Large on
the SQuAD2.0 dataset to enhance question-answering
capabilities. BioM-ELECTRA is based on the ELECTRA model,
introduced by Clark et al [17] in 2020, which improves the
pretraining methods of BERT to achieve comparable or superior
performance with fewer computational resources.
BioM-ELECTRA was pretrained on 29,000 domain-specific
PubMed abstracts, following the same domain-specific approach
as PubMedBERT [16]. Among the pretrained models
implemented in this study, BioLinkBERT and BioM-ELECTRA
were the highest-performing models in the BLURB benchmark
[18], which evaluates the performance of pretrained models in
the biomedical literature.

Task and Metrics
For each pretrained model, we fine-tuned 31 screening models
corresponding to all possible combinations of the 5 components
(Title, Introduction, Methods, Results, and Conclusion) and
compared their performances. In systematic review screening,
minimizing false negatives (missed relevant articles) is critically
important, as failing to include relevant articles could
significantly impact review conclusions. While Recall would
be an appropriate metric for this purpose, using it alone would
favor models that simply classify all articles as positive,
achieving perfect recall but poor practical utility.

To address this, we designated the Fβ-score as our primary
evaluation metric. This score is the harmonic mean of recall
and precision, where β determines their relative importance.
During our preliminary analysis, we tested several values of β
to determine the optimal balance between recall and precision
for our specific use case. Compared to other potential metrics,
such as maximizing specificity at fixed recall thresholds, the
Fβ-score provides a single, interpretable measure that enables
explicit control over the balance between false positives and
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false negatives. We set β=10 to strongly prioritize recall while
maintaining some consideration for precision, reflecting the
practical trade-off in systematic review screening where missing
relevant studies is more problematic than including irrelevant
ones for subsequent manual screening. This value was chosen
based on both empirical testing and principles of systematic
review methodology where comprehensiveness in literature
identification is critical. While this strong prioritization through
β=10 results in increased false positives, this trade-off is
considered acceptable in the context of systematic reviews,
where missing relevant studies could significantly impact review
conclusions. This approach also ensures that a model simply
classifying everything as positive would be penalized through
its low precision component, despite achieving perfect recall.

We calculated the average F10-Score evaluated 5 times using
5 datasets with different assignments for each component
composition and compared these averages between the screening
models. To elaborate, for each of the 31 possible component
combinations, we created 5 distinct datasets using different
random samples of included and excluded articles for training,
validation, and test sets. This process of splitting the data into
training, validation, and test sets was repeated 5 times, ensuring
that each of the 5 datasets was distinct, and allowing us to
evaluate the model performance with more reliability and less
influence from any specific split. Specifically, from the 256
included articles, we randomly selected 40 articles to form the
test set. The remaining 216 articles were randomly divided into
training and validation sets using a 9:1 ratio. The excluded
articles were assigned randomly to the training and validation
sets, and 960 were randomly assigned to the test set. By
averaging the F10-scores across these 5 datasets, we aimed to
evaluate model performance across multiple splits, providing
more stable evaluation metrics by mitigating variations due to
randomness in data sampling.

The number of epochs for training the screening models was
set to 32, patience for early stopping to 3, and weight decay to
0.01. In addition, we compared the screening model with the
highest average F10-Score with those of other component
compositions among the 3 Lr: 6e-6, 2e-6, and 6e-7.

Experiment 2: Development of a Screening Model
Using Article Components as Determined by the
Abstract Component Classifier Model
In Experiment 2, we aimed to construct a screening model by
automating the division of abstract components, which was
done manually in Experiment 1. To achieve this, we first
developed an Abstract Component Classifier Model to automate
the partitioning of abstract components.

Development of the Abstract Component Classifier Model
We obtained 25,584 articles with abstracts registered in PubMed
from May 2 to 8, 2018, and from August 16 to 19, 2022, using
the “fha[Filter]” search term, which is a PubMed filter tag that
helps identify articles with structured abstracts. From the article
base, we extracted 5331 articles that met the criteria of having
abstracts structured into 4 components (introduction or
background, methods, results, and conclusion) with both the
title and abstract written in English, allowing the extraction of

these components along with the title. Each component was
classified according to the criteria listed in Table S1 in
Multimedia Appendix 1. Using the tokenized object from the
Natural Language Toolkit library for initial sentence splitting,
we divided the abstracts into individual sentences. Each sentence
was then manually labeled with exactly one mutually exclusive
component tag “Introduction [I], Methods [M], Result [R],
Conclusion [C]”. Ultimately, we extracted 62,798 sentences,
comprising 11,961; 17,154; 23,204; and 10,479 sentences for
the introduction, methods, results, and conclusion, respectively
(PubMed dataset). In addition, abstracts of the articles extracted
from the systematic review in Experiment 1 were divided into
sentences and labeled (Systematic Review Dataset). The dataset
included 3477, 6265, 7091, and 3038 sentences for the
introduction, methods, results, and conclusion, respectively,
with a total of 19,871 sentences.

From the labeled sentences of the PubMed Dataset, we created
training, validation, and test sets. We randomly allocated 4000
sentences (8:1:1) to the training, validation, and test sets. These
datasets comprised equal proportions of samples for each label
to prevent performance deterioration owing to unbalanced
samples.

Abstract Component Classifier models were implemented to
predict the sentence labels using the transformer library. We
developed them from 4 pretrained models: (BERT;
bert-large-uncased [11]), BioLinkBERT (BioLinkBERT-Large)
[ 1 2 ] ,  2  t y p e s  o f  B i o M - E L E C T R A ,
BioM-ELECTRA-Large-SQuAD2 [13] and
BioM-ELECTRA-Large-Discriminator [19].
BioM-ELECTRA-Large-Discriminator is a model that, unlike
the BioM-ELECTRA-Large-SQuAD2, does not undergo
fine-tuning with SQuAD2; it uses the same pretraining corpus
as BioM-ELECTRA-Large-SQuAD2.

We trained the classifier models on the training and validation
sets and evaluated the model performance using the test set. For
the Abstract Component Classifier Model, we limited our
parameter tuning to Lr, as our primary objective was to confirm
the basic capability of the component classification model rather
than maximizing performance through extensive parameter
optimization. This focused approach was supported by the strong
baseline performance achieved with basic parameter settings.

Then, we classified the sentences in the PubMed dataset and
evaluated their performance. The primary evaluation metric
was the macro–F1-score (F1-score). The number of epochs for
training the screening models was set to 32, patience for early
stopping to 3, and weight decay to 0.01.

Similarly, we conducted the same analysis for the Systematic
Review Dataset, and the model with the highest F1-score was
also selected as the Abstract Component Classifier Model, which
was used for subsequent analysis.

Development of a Screening Model Using Article
Components as Determined by the Abstract Component
Classifier Model
As described in Experiment 1, we developed screening models
using the same data sources and methods. However, we used
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the Abstract Component Classifier Model, which we developed
to automatically classify abstract components of articles that
were previously classified manually in Experiment 1. These
abstracts were reclassified into 4 components based on the
results of classification using the Abstract Component Classifier
Model. If no sentence was allocated to any of the components
in the classifier model, the component was treated as a document
with 0 words. From the title data and reclassified component
data, we created component-composed datasets. To focus on
the most promising approaches while maintaining computational
efficiency, we selected 10 datasets corresponding to the top 10
performing models from Experiment 1. This focused approach
was selected to specifically examine whether the advantages
observed with manual classification could be maintained when
transitioning to an automated system; a key consideration for
practical implementation. This selection allowed us to evaluate
how well these high-performing component combinations
performed when using automated classification instead of
manual classification. Table S3 in Multimedia Appendix 1 lists
the component composition used in the screening models, which
were implemented using training datasets created from the
selected 10 component-composed datasets. The primary
endpoint was the F10-score, which was compared to the
performance of 10 classifiers with the same component
composition constructed in Experiment 1.

Ethical Considerations
All analyses were conducted using previously published studies,
and therefore, ethics approval and patient consent were
unnecessary. This study does not include human subject
information, primary data collection, or any form of
experimentation involving individuals.

Results

Overview
All results reported in this section were obtained using the test
set, which was completely separate from the training and
validation sets used for model development.

Experiment 1: Evaluation of the Impact of Selecting
Article Titles and Abstract Components on the
Development of the Screening Model

Characteristics of the Number of Words in the Extracted
Articles

The word count of the 1517 articles had a median of 276 (range
103-1099) words. After tokenization, 50 articles (including 2

included articles) exceeded the maximum sequence length of
512 tokens that our pretrained models could process in one
iteration.

Performance of Screening Models

A detailed description of all datasets, including class
proportions, is provided in Table S4 in Multimedia Appendix
1. Details of the final evaluation results on the held-out test set
for the screening models with different Lr (6e-7, 2e-6, and 6e-6)
are shown in Table S5-S7 in Multimedia Appendix 1. For the
screening model using BERT (Table S4 in Multimedia Appendix
1), the model trained on the 4 components “Title + Methods +
Results + Conclusion” demonstrated the highest average
F10-Score (precision=0.35; recall=0.93; F10-Score=0.91).
Conversely, the model with the lowest F10-Score was trained
solely on the conclusion (precision=0.48; recall=0.77;
F10-Score=0.75). The model trained on all 5 components ranked
tenth in the average F10-Score of all 31 screening models. For
BioLinkBERT (Table S5 in Multimedia Appendix 1), similar
to BERT, the model trained on “Title + Methods + Results +
Conclusion” recorded the highest F10-Score (precision=0.28;
recall=0.95; F10-Score=0.93). The lowest F10-Score, as with
BERT, was observed in the model trained only on the
Conclusion (precision=0.58, recall=0.77; F10-Score=0.76). The
model trained on all 5 components had the seventh highest
average F10-Score of all 31 screening models. For the
BioM-ELECTRA (Table S6 in Multimedia Appendix 1), the
model trained on Methods + Conclusion achieved the highest
F10-Score (precision=0.37; recall=0.89; F10-Score=0.88). The
lowest F10-Score was obtained for the model trained on Title
+ Introduction + Methods (precision=0.32; recall=0.74;
F10-Score=0.73). The model trained on all 5 components ranked
20 seconds in the average F10-Score among all the 31 screening
models.

Experiment 2: Development of a Screening Model Using
Article Components as Determined by the Abstract
Component Classifier Model

Development of the Abstract Component Classifier Model

Table 1 lists the average results of 5 evaluations of the classifier
models using the PubMed Dataset. The main evaluation metric,
the F1-score was 0.89 for BERT; Lr:6e-6, 0.92 for
BioLinkBERT; Lr:2e-6, and 0.91 for both
BioM-ELECTRA-Large-SQuAD2; Lr:6e-6 and
BioM-ELECTRA-Large-Discriminator; Lr:6e-6.

JMIR Med Inform 2025 | vol. 13 | e65371 | p. 7https://medinform.jmir.org/2025/1/e65371
(page number not for citation purposes)

Hasegawa et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Performance of the Abstract Component Classifier using PubMed dataset.

F1-scoreRecallPrecisionAccuracyEpochsLearning rateModel

0.890.890.900.894.66e-6BERTa

0.920.920.920.925.82e-6BioLinkBERT

0.910.910.910.915.66e-6BioM-ELECTRAb-Large-SQuAD2

0.910.910.910.915.26e-6BioM-ELECTRA-Large-Discriminator

aBERT: Bidirectional Encoder Representations from Transformer.
bELECTRA: Efficiently Learning an Encoder that Classifies Token Replacements Accurately.

The performance results by label using the dataset composed
of sentences from the abstracts of the articles in the targeted
systematic review (Systematic Review Dataset) are shown in
Table 2. Implemented classifiers showed the average F1-scores
of 0.88-0.93, 0.93-0.95, 0.92-0.92, and 0.83-0.85 for

Introduction, Methods, Results, and Conclusions, respectively.
In this study, the BioM-ELECTRA-Large-Discriminator, which
achieved a macro–F1-score of 0.94 in one instance, was selected
as the Abstract Component Classifier Model.

Table 2. Performance of classifiers implemented by each label using the Systematic Review Dataset.

BioM-ELECTRA-Large-Dis-
criminator

BioM-ELECTRAb-Large-
SQuAD2

BioLinkBERTBERTa

F1-scoreRecallPrecisionF1-scoreRecallPrecisionF1-scoreRecallPrecisionF1-scoreRecallPrecision

0.920.930.920.920.920.920.930.940.920.880.890.86Introduction

0.950.950.940.940.950.920.950.940.960.930.930.94Methods

0.920.890.950.920.920.920.920.910.930.920.920.92Results

0.850.890.800.840.800.870.850.890.810.830.820.84Conclusion

0.910.920.900.900.900.910.910.920.910.890.890.89macro aver-
age

aBERT: Bidirectional Encoder Representations from Transformer.
bELECTRA: Efficiently Learning an Encoder that Classifies Token Replacements Accurately.

Development of a Screening Model Using Article
Components as Determined by the Abstract Component
Classifier Model

Table 3 shows the average results of 5 evaluations of 10
screening models created from the component-composed
datasets classified by the developed Abstract Component
Classifier Model, along with the results of models created from
the same 10 component-composed datasets and all 5 components
in Experiment 1. In the tables, among the screening models with
the same component composition, those with higher average
F10-Scores are highlighted in bold. The results of the screening
models using Lr not included in these tables are shown in Table
S6-S7 in Multimedia Appendix 1. For the screening model using
BERT (Table 3), the model trained on the 4 components Title

+ Methods + Results + Conclusion recorded the highest
F10-Score (precision=0.35; recall=0.93; F10-Score=0.91). The
model with the lowest F10-Score that was trained on Title +
Methods + Conclusion showed precision=0.40; recall=0.86;
and F10-Score=0.85. For BioLinkBERT (Table 4), the model
trained on Title + Methods + Results + Conclusion recorded
the highest F10-Score (precision=0.42; recall=0.90;
F10-Score=0.88). The lowest F10-Score was observed in the
model trained on Introduction + Methods (precision=0.63;
recall=0.78; F10-Score=0.78). For BioM-ELECTRA (Table 5),
the model trained on Methods + Results + Conclusion achieved
the highest F10-Score (precision=0.38; recall=0.86;
F10-Score=0.85). The lowest F10-Score was obtained for the
model trained on Title + Results + Conclusion (precision=0.25;
recall=0.69; F10-Score=0.68).
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Table 3. Comparison of F10-Score between screening models using component data by Abstract Component Classifier Model and screening model

using manually classified component data in hand, based on BERTa.

Screening models using manually classified component dataScreening models using component data by the classifier

F10-
Score

RecallPrecisionAccuracyEpochsLearning
rates

F10-
Score

RecallPrecisionAccuracyEpochsLearning
rates

Composition

0.910.930.350.929.02e-60.910.930.350.929.22e-6Tb + Mc +

Rd + Ce

0.890.910.360.926.82e-60.890.910.400.926.66e-6T + If + R +
C

0.870.890.290.916.82e-60.890.910.250.888.42e-6T + R

0.900.920.330.9118.26e-70.880.900.340.9221.06e-7T + M + R

0.880.900.300.917.02e-60.880.910.290.876.46e-6T + I + R

0.900.920.300.905.06e-60.880.900.360.938.42e-6T + I + C

0.890.920.220.866.02e-60.880.910.290.866.06e-6T + M

0.890.910.270.896.86e-60.860.880.280.905.46e-6T + R + C

0.910.930.260.885.82e-60.850.880.240.8814.66e-7T + I + M

0.870.890.380.937.62e-60.850.860.400.9412.22e-6T + M + C

0.870.910.310.835.06e-6——————gT + I + M +
R + C

aBERT: Bidirectional Encoder Representations from Transformer.
bT: Title.
cM: Methods.
dR: Results.
eC: Conclusion.
fI: Introduction.
gNot applicable.
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Table 4. Comparison of F10-Score between screening models using component data by Abstract Component Classifier Model and screening model

using manually classified component data in hand, based on BioLinkBERTa. Descending order of the F10-Score for screening models using component
data by classifier.

Screening models using manually classified component dataScreening models using component data by the classifierComposition

F10-
Score

RecallPrecisionAccuracyEpochsLearning
rates

F10-
Score

RecallPrecisionAccuracyEpochsLearning
rates

0.930.950.290.8911.86e-60.880.900.420.9411.26e-6Tb + Mc +

Rd + Ce

0.900.910.440.946.46e-60.860.870.410.9410.66e-6T + M + R

0.890.910.420.926.46e-60.850.860.530.956.06e-6T + If + M

0.870.890.380.926.46e-60.840.860.290.905.66e-6T + M

0.920.940.300.917.66e-60.840.850.470.936.26e-6I + M + R +
C

0.870.890.430.937.86e-60.820.840.540.935.26e-6I + R

0.870.890.430.925.66e-60.820.840.480.925.66e-6M + C

0.870.890.330.916.26e-60.800.820.350.935.46e-6M

0.900.930.350.906.66e-60.800.820.290.916.06e-6R + C

0.910.930.300.907.26e-60.780.780.630.965.26e-6I + M

0.890.900.530.957.26e-6——————gT + I+ M +
R + C

aBERT: Bidirectional Encoder Representations from Transformer.
bT: Title.
cM: Methods.
dR: Results.
eC: Conclusion.
fI: Introduction.
gNot applicable.
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Table 5. Comparison of F10-Score between screening models using component data by Abstract Component Classifier Model and screening model

using manually classified component data in hand, based on BioM-ELECTRAa. Descending order of the F10-Score for screening models using component
data by classifier.

Screening models using manually classified component dataScreening models using component data by the classifierComposition

F10-
Score

RecallPrecisionAccuracyEpochsLearn-
ing rates

F10-
Score

RecallPrecisionAccuracyEpochsLearn-
ing
rates

0.860.870.420.947.46e-60.850.860.380.9417.86e-7Mb + Rc + Cd

0.820.830.380.925.66e-60.840.860.260.8913.26e-7M

0.820.840.270.885.82e-60.830.860.190.846.42e-6Te + R

0.880.900.370.937.26e-60.830.840.380.9210.06e-6M + C

0.830.850.400.939.42e-60.810.830.380.936.62e-6M + R

0.810.830.400.915.86e-60.800.820.290.916.86e-6T + M + C

0.820.840.450.926.06e-60.800.810.530.955.46e-6If + M

0.820.830.450.946.26e-60.770.780.590.967.02e-6I + C

0.830.840.330.925.46e-60.770.780.320.925.46e-6T + M

0.830.850.390.916.86e-60.680.690.250.9014.06e-7T + R + C

0.770.760.450.954.86e-6——————gT + I + M + R
+ C

aELECTRA: Efficiently Learning an Encoder that Classifies Token Replacements.
bM: Methods.
cR: Results.
dC: Conclusion.
eT: Title.
fI: Introduction.
gNot applicable.

Discussion

Principal Results
In this study, we evaluated the significance of selecting
components from article titles or abstracts on the performance
of screening models for systematic review updates. Our results
demonstrated that for all pretrained models, we were able to
implement screening models that outperformed those trained
on all 5 components. This indicates that the selection of
components from the article title or abstracts is beneficial for
improving the performance of the screening models. The
performance differences between models trained on all
components versus selected components may be attributed to
the interaction between token limitations and information
priority. When using all 5 components, the inclusion of
introduction or background sections might have resulted in the
loss of crucial information from results or conclusion sections
due to the 512-token limit. Furthermore, domain-specific models
can show varying performance depending on the input
information structure [20]. The 3 pretrained models used in this
study showed different component compositions, leading to
higher average F10-Scores, despite using the same training
datasets. Through our comprehensive exploration of all 31
component combinations, we identified certain combinations
that consistently showed superior performance. Specifically,
the Title+Method+Result+Conclusion combination

demonstrated strong performance across different models, and
combinations including Methods and Results components
generally performed well. For practical implementations where
computational resources are limited, focusing on these
high-performing combinations, rather than exhaustively testing
all possible combinations, could provide a more efficient path
to developing effective screening models while maintaining
high performance.

Furthermore, we implemented screening models by using the
dataset for each component classified using the developed
Abstract Component Classifier Model, which analyzes the
semantic content of individual sentences to determine their
rhetorical roles, enabling the classification of both structured
and unstructured abstracts. Consequently, for the large-uncased
model, 7 out of the 10 models outperformed the model trained
on all 5 components. For BioM-ELECTRA, 9 out of 10
screening models showed higher performance than the model
trained on all 5 components. These results demonstrate that a
screening model implemented by combining component
classification using a classifier model and component selection
can surpass the performance of traditional screening models.
However, when using the Abstract Component Classifier in
Experiment 2, all 10 screening models using BioLinkBERT
demonstrated lower performance than BioLinkBERT’s model
trained on all 5 components. This behavior, which differs from
our observations in Experiment 1, suggests that BioLinkBERT
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may be more sensitive to the quality and structure of the
component classification. The automatic classification process
might disrupt certain patterns or contextual relationships that
BioLinkBERT relies on, making it perform better with manually
classified components in Experiment 1 but not as well with
automatically classified components in Experiment 2. This
suggests that the effectiveness of component selection strategies
may depend not only on the model’s characteristics but also on
how the components are identified and structured. This finding
highlights the complex interaction between model architecture,
component classification method, and overall performance.

Comparison With Previous Work
Among the screening models using datasets classified by the
developed Abstract Component Classifier, the model trained
on Title+Method+Result+Conclusion using BERT achieved
the highest average F10-Score (precision=0.35, recall=0.93;
F10-Score=0.91). The test set included 40 of the 1000 articles.
Therefore, this model reduced 1000 studies that had to be
scrutinized manually to an average of 106.3, while extracting
an average of 37.2 included articles. Following Cohen (2006)
formula for work-saved oversampling, which accounts for both
the number of articles to be screened and the model’s recall of
0.93, this represents an 88.6% reduction in screening workload.
In a previous study by Qin et al [8], the implemented screening
model achieved a sensitivity of 96%, a specificity of 78%, and
a 64.1% reduction in workload, thereby demonstrating the
rationality and feasibility of using a screening model. The
F10-Score of the screening model in Qin’s study exceeded that
of the model implemented in this study precision=0.50;
recall=0.96; F10-Score=0.95). However, it is important to note
that Qin’s study used an ensemble model that integrated 4
different screening models, and the F10-Scores of each
individual screening model used to implement the ensemble
model were lower than the average F10-Score of the screening
model in this study (F10-Scores=0.79, 0.81, 0.91, and 0.81).

In screening models that used the article abstract component
classifier, 7 out of 10 models for BERT and 8 models for
BioM-ELECTRA underperformed compared to the average
F10-Score of models with the same component compositions
that were created through manual component classification. For
BioLinkBERT, all screening models showed lower average
F10-Scores than those of the screening models with manually
classified component datasets. These results indicate a tendency
for screening models with the classifier model’s classification
to underperform when compared with those using manually
classified component datasets. This performance gap suggests
that our Abstract Component Classifier does not achieve the
same level of accuracy as manual labeling, possibly due to
limitations in maintaining the contextual integrity of the text
during the automatic classification process.

Jiang et al [21] implemented a classifier using the BERT model
to classify text into 5 components: background, objective,
methods, results, and conclusion and achieved an F1-Score of
0.98 [21]. This F1-Score surpasses that of the classifier
implemented in our study. This result may contribute to the
differences in the classification methods from previous studies
conducted as Machine Reading Comprehension tasks and the

scale of the dataset, which used PubMed 200k and comprised
approximately 200,000 RCT trial abstracts [22]. However,
previous studies used BERTbase13 without a medical literature
corpus for pretraining. In our study, the classifiers that used
BioLinkBERT, BioM-ELECTRA-Large-SQuAD2, and
BioM-ELECTRA-Large-Discriminator achieved higher
F1-scores than the one using BERT. Therefore, it is important
to construct a classifier using these pretrained models, and the
same method that was used in previous studies could implement
a superior classifier.

Analysis of Model Performance Metrics
In this study, the F10-Score was the primary evaluation metric
for the screening model. This choice was made for 2 reasons:
to prioritize recall and apply an appropriate penalty to screening
models that classify everything as positive. As expected, our
results showed that the screening model could be evaluated
based on the F10-Score. Moreover, we implemented screening
models that had a higher F10-Score than one that classified
everything as positive (F10-Score=0.81). This suggests that
adopting the F10-Score as the main evaluation metric in our
study was appropriate. However, the F10-Score of the screening
model classifying everything as positive varied depending on
the ratio of the included and excluded articles in the test set.
Therefore, it is inferred that when creating test sets with different
ratios from those used in our study and conducting similar
evaluations, it will be necessary to set a new appropriate β.

Alternative approaches to evaluation metrics, such as
maximizing specificity at 99% recall, could also be considered
for systematic review screening tasks. While our F10-score
approach prioritizes recall while maintaining some consideration
for precision, the specificity-focused approach would explicitly
maximize the number of excluded articles while maintaining a
fixed, very high recall. Both approaches have merit for
systematic review updating, though they are optimized for
slightly different practical outcomes. Furthermore, F10-scores
can be influenced by class prevalence in the test set. In our
study, we maintained the class distributions of the test set similar
to those of the original systematic review to ensure realistic
performance evaluation, reflecting the naturally imbalanced
distribution of relevant versus irrelevant articles. Future research
might explore how different evaluation metrics and varying
class distributions affect model selection and practical utility
in systematic review updating, particularly in the context of
identifying a small number of relevant articles from a large
corpus.

In comparing different models’performances, we observed that
small improvements in the F10-Score often reflected different
trade-offs between precision and recall. For example, the
B i o L i n k B E R T  m o d e l  t r a i n e d  o n
Title+Method+Result+Conclusion achieved a higher F10-Score
(0.93) compared to BERT (0.91), primarily due to higher recall
(0.95 vs 0.93) despite lower precision (0.28 vs 0.35). While this
trade-off resulted in a numerically higher F10-Score, it is
important to note that in practical applications, significantly
lower precision means more irrelevant articles requiring manual
screening. However, in the context of systematic reviews, this
trade-off might be acceptable given the critical importance of
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not missing relevant studies, though it suggests the need for
careful consideration of the balance between comprehensive
coverage and screening efficiency in different systematic review
contexts.

Limitations
One limitation of this study pertains to the generalizability of
our results. We implemented and compared the performances
of the screening models using the screening results of a single
systematic review focusing on adverse events of macrolide
antibiotics. While this dataset provided a solid foundation for
model development and evaluation, comprehensive validation
across multiple systematic reviews in different medical
specialties, such as oncology, cardiology, infectious diseases,
and pediatrics, is essential to confirm the broad applicability of
our approach. Without such validation, the model’s performance
may vary significantly across different medical domains due to
variations in terminology, study designs, and reporting patterns.
For instance, the language and structure used in oncology trial
reports may differ substantially from those in used
cardiovascular studies, potentially affecting the model’s
component classification accuracy and overall screening
performance. Our results may not fully represent the model’s
performance in systematic reviews of other medical areas (such
as cardiovascular disease, and oncology) or different types of
studies (such as observational studies or cohort studies).
Furthermore, regarding the criteria for classification by
component used in this study, it is possible that not all criteria
are comprehensively applicable for classifying components in
articles from other fields. Another limitation is that our study
did not include comparisons with recent large language models
(LLMs). Computational resource constraints and reproducibility
concerns primarily drove the decision to exclude LLM
comparisons, as many current LLMs are not open-source and
require significant computational infrastructure for fine-tuning.
In addition, the rapid evolution of LLMs poses challenges for
establishing stable benchmarks. While we focused on established
BERT-based models that are widely validated for classification
tasks, recent research has shown that the relative performance
of different models can vary significantly based on data
availability. For instance, Jahan et al. demonstrated that while
LLMs can outperform fine-tuned models on biomedical tasks
with limited training data, BERT-based models often maintain
advantages when substantial training data is available for
fine-tuning [23]. Our current approach using BERT-based
models, with access to sufficient training data, provides a solid
benchmark for evaluating the effectiveness of component-based
classification in systematic review updating.

Future Work
In this study, we classified each piece of article into 5
components: title and 4 abstract components (introduction,
methods, results, and conclusion). Article abstracts can be
further subdivided. By refining the component classification,

we can improve the performance of the screening model.
Therefore, future research that implements screening models
using further subdivided articles is required. The dataset used
in this study comprised 256 studies. This number is relatively
high for the articles analyzed in a systematic review. Our
screening model intended to use the included and excluded
articles from a preupdated systematic review as the training
dataset. Therefore, implementing a screening model for a
systematic review that analyzes a small number of studies may
result in decreased performance. Therefore, it is necessary to
estimate the number of studies required to achieve a performance
level comparable to that of the screening model that was
developed in this study. Finally, the performance of the
screening model was evaluated individually. Therefore,
combining the technique of article title or abstract component
selection with methods, such as implementing ensemble models,
could potentially implement even high-performance screening
models.

Future research should also explore strategies to address the
few limitations observed in our study. This may include
investigating models designed for handling longer sequences,
such as Longformer [24] or Big Bird [25], or developing
methods to process each abstract component separately before
combining their vector representations. While these approaches
could improve screening performance, they are likely to increase
computational complexity compared to our current method.
Therefore, future work will need to explore ways to balance
these advanced techniques with computational efficiency
requirements.

Investigating the integration of LLMs into systematic review
screening presents a promising direction for future research.
Consequently, future studies should examine the
cost-effectiveness and computational efficiency of various LLM
integration strategies, particularly in resource-constrained
settings. Research into fine-tuning smaller, more efficient LLMs
specifically for systematic review tasks could provide a practical
balance between model performance and computational
requirements.

Conclusions
Our study revealed that implementing a screening model trained
on selected components of the title or abstract articles could
enable better performance than a traditionally implemented
model that was trained on all 5 components in some cases.
Furthermore, we developed an Abstract Component Classifier
that classifies each sentence of the abstract into different
components and implements screening models through the
component classification of target article abstracts using this
classifier and the selection of article title/abstract components.
Thus, we were able to implement screening models with a higher
performance than the traditional model trained on all 5
components in the 2 pretrained models. This approach could
reduce the workload of the systematic review update process.
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