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Abstract

Background: Cytomegalovirus (CMV) reactivation in patients with severe ulcerative colitis (UC) leads to worse outcomes;
yet, early detection remains challenging due to the reliance on time-intensive biopsy procedures.

Objective: This study explores the use of deep learning to differentiate CMV from severe UC through endoscopic imaging,
offering a potential noninvasive diagnostic tool.

Methods: We analyzed 86 endoscopic images using an ensemble of deep learning models, including DenseNet (Densely
Connected Convolutional Network) 121 pretrained on ImageNet. Advanced preprocessing and test-time augmentation (TTA)
were applied to optimize model performance. The models were evaluated using metrics such as accuracy, precision, recall,
F1-score, and area under the curve.

Results: The ensemble approach, enhanced by TTA, achieved high performance, with an accuracy of 0.836, precision of
0.850, recall of 0.904, and an F-score of 0.875. Models without TTA showed a significant drop in these metrics, emphasizing
TTA’s importance in improving classification performance.

Conclusions: This study demonstrates that deep learning models can effectively distinguish CMV from severe UC in
endoscopic images, paving the way for early, noninvasive diagnosis and improved patient care.
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i CMV reactivation, increasing the risk of hospitalization due
Introduction to UC exacerbation by 8.2 times [4,5]. Antiviral therapy for
CMV has been shown to substantially reduce the need for
colectomy in patients with severe UC and high-grade CMV
infection [6,7]. The American College of Gastroenterology
guidelines indicate that CMV superinfection can progress
to severe UC, which is resistant to maximum immunosup-

Cytomegalovirus (CMV) reactivation is frequently observed
in patients with severe ulcerative colitis (UC) [1,2]. A
multicenter, prospective Korean study found CMV infections
in 43% of patients with moderate to severe UC and 67% in
those with steroid-refractory UC [3]. Such reactivation often
leads to poorer prognoses compared with patients without
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pressive therapy, necessitating histological analysis through
sigmoidoscopy and viral culture for diagnosis [8].

Accurate diagnosis of CMV infection in UC remains
critical due to its implications for treatment and prognosis.
CMV infection in UC can be diagnosed using blood tests
or tissue biopsies. While blood tests are relatively simple
and cost-effective, they have limitations in differentiating past
or latent infections from active disease. In contrast, tissue
biopsies obtained through sigmoidoscopy or colonoscopy
provide a more definitive diagnosis but require an invasive
procedure. To enhance diagnostic accuracy, targeted biopsies
should be taken from both the ulcer base and margins, with
McCurdy et al [9] suggesting at least 11 biopsy specimens
to achieve over 80% sensitivity. However, collecting multiple
specimens increases the risk of bleeding and other complica-
tions.

Histopathological techniques used for CMV diagnosis in
UC include hematoxylin and eosin (H&E) staining, immu-
nohistochemistry (IHC), and tissue DNA PCR (polymer-
ase chain reaction). H&E staining identifies characteristic
cytomegalic cells with nuclear inclusions and has high
specificity (92%-100%) but variable sensitivity (10%-87%)
due to observer dependency. IHC, which detects immediate
early antigens of CMV, improves sensitivity (78%-93%)
while maintaining high specificity (92%-100%). Tissue DNA
PCR is the most sensitive (92%-97%) and specific (93%-
99%) diagnostic tool, but its availability is limited in some
institutions, leading to reliance on IHC or H&E staining,
potentially delaying diagnosis and treatment [10]. Given
the importance of early antiviral intervention in severe UC,
diagnostic delays may contribute to adverse clinical out-
comes, including increased risk of total colectomy.

Differentiating between severe UC and CMV using
endoscopic features presents a challenge [11-13]. Accurate
diagnosis of CMV reactivation necessitates techniques like
in situ detection of viral markers via specific IHC or
nucleic acid amplification [14]. However, these tissue-based
diagnostic methods often require several days for results,
causing delayed treatment for immunocompromised patients
requiring swift intervention. The lag in obtaining tissue
biopsy outcomes can pose substantial clinical challenges,
notably in CMV reactivation within patients with severe
UC. This diagnostic waiting period impedes timely clini-
cal decision-making, potentially exacerbating the patient’s
condition. In immunocompromised individuals like those
with severe UC, any delay in initiating appropriate therapy
can lead to disease progression, heightened morbidity, and
even mortality [15,16]. The imperative for prompt interven-
tion underscores the need for more immediate diagnostic
approaches.

With the advancement of artificial intelligence (Al), a
promising avenue emerges to expedite the diagnosis of CMV
reactivation in patients with severe UC [17]. By analyzing
complex data patterns and integrating with existing diagnos-
tic methodologies, Al technologies could potentially reduce
the time needed to identify CMV reactivation from days to
hours. This acceleration in diagnosis would enable health care
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providers to administer antiviral therapy sooner, potentially
improving patient outcomes by reducing the risk of complica-
tions and the need for more invasive treatments like colec-
tomy. Furthermore, the application of Al in this diagnostic
process could provide a more nuanced understanding of
disease progression, facilitating a more tailored approach to
treating and managing patients with severe UC and CMV
reactivation.

While numerous studies have documented the endoscopic
characteristics of CMV infection in UC, none have yet
reported on Al systems for distinguishing severe UC from
CMV [11-13]. A similar study conducted in 2021 developed
a machine learning—based classifier to differentiate CMV
from herpes simplex virus esophagitis [18]. This Al system
used logistic regression with the least absolute shrinkage and
selection operation to discriminate between the 2 conditions,
demonstrating 100% sensitivity, specificity, accuracy, and an
area under the curve (AUC) of 1.0. The system’s predictive
model, using the categorization of endoscopic features and
history of transplantation, achieved a high accuracy of 92.6%
in distinguishing CMV from herpes simplex esophagitis.

Other viral infections, such as herpes simplex virus, are
comparatively rare among patients with UC and do not
pose the same level of severe complications and manage-
ment challenges as CMV reactivation [19-21]. Hence, while
it remains imperative to differentiate between CMV and
herpes simplex virus infections in patients with UC, accurate
diagnosis of CMYV infection associated with UC holds
heightened clinical significance. This is primarily because
CMYV has the potential to instigate severe exacerbations of
UC and progress to a state of severe UC that proves refractory
to standard immunosuppressive therapies [22]. The applica-
tion of Al technology to swiftly make these distinctions
could facilitate the prompt initiation of appropriate interven-
tions, thereby enhancing patient outcomes and mitigating the
adverse consequences linked with treatment delays [23].

Numerous studies have reported the remarkable efficacy of
Al systems in medical imaging. Various techniques have been
proposed to augment and measure ensemble diversity [24].
Recent ensemble studies in medical imaging have demon-
strated notable enhancements through multiview approaches,
diverse preprocessing methods, and varied network archi-
tectures [25,26]. Deep ensemble learning models amalga-
mate the advantages of deep learning models and ensemble
learning to enhance the overall generalization performance of
the final model [24]. Consequently, this study aims to address
morphological inaccuracies that impede fully automated
quantification using deep learning models and to introduce
ensemble methods to improve the discrimination of CMV
infection in UC.

In the context of endoscopic imaging, predominantly
single models have been used. However, discerning CMV
infection within UC poses a challenging task, prompting
a shift toward various ensemble techniques. Distinguishing
these infections through visual inspection demands highly
skilled physicians, and even then, the difficulty can vary
substantially based on the experience level. This study
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aims to surpass existing network frameworks by incorporat-
ing advanced techniques to enhance the discrimination of
CMV infections using deep ensemble learning methods. The
rationale behind this approach is to leverage the diverse
insights and robustness provided by an ensemble of models,
thus overcoming the limitations of single-model approaches
and substantially improving the accuracy and reliability of
CMV detection in severe UC through endoscopic images
[27].

Countless studies have showcased the remarkable prowess
of AI systems in medical imaging [28-31]. Techniques
for augmenting and measuring ensemble diversity have
been put forth, with recent ensemble studies in medical
imaging demonstrating notable enhancements via multiview
approaches, diverse preprocessing techniques, and varied
network architectures [32]. By amalgamating the advantages
of both deep learning and ensemble learning, deep ensem-
ble learning models have exhibited improved generalization
performance. Thus, this study aims to address morphological
errors impeding fully automated quantification using deep
learning models and to propose ensemble methods to enhance
the discrimination of CMYV infection in UC.

Kim et al

Methods

Overview

We conducted a thorough analysis of 86 endoscopic images
capturing cases of UC, both with and without CMV compli-
cations. Before feeding these images into our models, they
underwent extensive preprocessing. This phase encompassed
standardization for data normalization and augmentation to
enhance dataset variability and robustness. We used models
pretrained on the extensive ImageNet dataset for the analysis,
which is renowned for its diverse image range. Our approach
entailed an ensemble of 4 distinct models to leverage their
strengths. To further bolster the reliability and accuracy
of our predictions, we integrated test-time augmentation
(TTA) during the evaluation phase [33]. The effectiveness
of this ensemble was evaluated using a range of performance
metrics meticulously selected to comprehensively assess the
classification performance of our model ensemble, ensuring
a comprehensive understanding of its ability to distinguish
between cases of with and those without CMV complications
(Figure 1).

Figure 1. Illustration of the study process: preprocessing endoscopic images of patients with ulcerative colitis with and without cytomegalovirus,
applying an ensemble of pretrained models for analysis, using standardization, augmentation, and test-time augmentation to enhance prediction
accuracy, and evaluating performance using selected metrics to distinguish between severe ulcerative colitis cases with and without cytomegalovirus
complications. HSV: hue, saturation, value; ROC: receiver operating characteristic.
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Data Collection

We retrospectively reviewed the medical records and
endoscopic images of all patients diagnosed with severe UC
between February 2019 and December 2022. The severity
of UC was assessed using the Mayo Clinic scoring sys-
tem [34]. The patients included in this study had Mayo
Clinic scores ranging from 8 to 12. The presence of CMV
was defined as follows: (1) serologic detection of CMV
immunoglobin M antibody or (2) histologic detection of
inclusion bodies on H&E-stained sections, positive immu-
nohistochemical staining, or CMV DNA amplification by
PCR at the first or second evaluation for CMV. Patients

https://medinform.jmir.org/2025/1/e64987

Densenet 201

{ \ \ i

Efficient BO Efficient B1 VGG19 d

were excluded according to the following criteria: coinfec-
tion with Clostridium difficile and CMV, final pathologic
diagnosis of malignancy, or missing information on endo-
scopic findings. The entire dataset was amassed from a
cohort of 34 patients and incorporates endoscopic images
sourced from Seoul and Mokdong Hospital of Ewha Womans
University Medical Center. Using standardized 8-bit color
depth endoscopy systems, specifically the CV-290 (Olympus)
at Seoul Hospital, and the CF-Q260AL, CF-H260AL, and
CF-HQ290L (Olympus) at Mokdong Hospital, the dataset
comprises a total of 86 images (Table 1). This compilation
comprises 32 images of CMV cases and 54 images of severe
UC, devoid of CMV involvement.
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Table 1. Dataset information and classification based on histological diagnosis through tissue biopsy.

Index Severe-UC? without CMV® Severe-UC with CMV
Sex, n

Male 10

Female 11
Age (y)

Mean (range) 51.9 (21-81) 354 (12-69)

Median (IQR) 55.5(41.8-67.2) 34 (25.3-43.6)
Number of images® (CMV, Severe-UC) 54 32

aUC: ulcerative colitis.
bCMV: cytomegalovirus.
€Sampling date: February, 2019-December, 2022.

The resolutions of the dataset were 576x768, 576x720, and
1242x1079 pixels. To ensure the reliability and precision
of pathological annotations, each image underwent meticu-
lous analysis based on the consensus findings from tissue
biopsies conducted on the patients. Furthermore, 2 experi-
enced pathologists independently reviewed the biopsy results,
and their expert opinions were used to annotate each image.
In cases where the initial assessments of the pathologists
varied, a collaborative review was undertaken to achieve a
consensus for the annotations of each image.

Preprocessing

The endoscopic images were resized to 244x244 pixels
to ensure compatibility with transfer learning and standar-
dized for quality across institutions. They underwent hue,
saturation, value (HSV) color space transformation, artifact
management, data augmentation, pixel value normalization,
and one-hot encoding to improve model efficiency and
consistency.

Image Preprocessing and
Standardization

To prepare for the application of transfer learning from deep
learning models pretrained on the ImageNet dataset, the
endoscopic images were resized to a resolution of 244x44
pixels. This resolution is essential to ensure compatibility
with the architectures of these pretrained networks, as they
require consistent input dimensions.

Given the multi-institutional nature of this research, the
endoscopic images were acquired using different endoscopy
systems across the participating institutions. To address
the variability in image quality parameters, such as bright-
ness and intensity, a meticulous standardization process was
implemented for each image. This step proved crucial in
normalizing differences resulting from the varied settings and
conditions of the endoscopic equipment. Consequently, we
ensured systematic adjustment of any discrepancies in image
quality, thereby preserving the consistency of the dataset
and enhancing the homogeneity of visual information before
analysis by the deep learning model. Such standardization
facilitates a more reliable comparison and analysis of the
images, indispensable for the robust performance of the deep
learning model.

https://medinform.jmir.org/2025/1/e64987

Transformation to HSV Color Space

The images transformed HSV color space to more accurately
represent the color distribution and enable effective discrimi-
nation between tissue types. Targeted ranges within the HSV
color space were defined to standardize the color representa-
tion across all images. Furthermore, control mechanisms were
implemented to mitigate the influence of artifacts that could
affect the model’s performance, such as light reflection and
dark areas [35]. To effectively address these artifacts, we
established HSV ranges corresponding to them and generated
mask images to identify these areas.

Inpainting Technique

The empty spaces in the mask were filled using an inpainting
technique [36]. The inpainting algorithm can follow a model
such as:

Yqe WP, q) - [I(q) + VI(q) - (p — q)]
Zq € B(p) w(p’ Q)

I(p) =

9

where I(p) represents the intensity of the pixel to be
inpainted, /(g) denotes the intensity of a neighboring pixel,
and VI(q) signifies the gradient at pixel g. The weighting
function w(p,q) diminishes with distance, thereby ampli-
fying contributions from closer and more similar pixels,
and thereby preserving the natural continuity of biological
structures. This approach minimizes errors caused by artifacts
and enhances the diagnostic value of the endoscopic images.
I(p) is the color intensity of the point to be inpainted. This
equation considers the intensity /(g) and gradient Vi(g) at
nearby known points ¢, using a weighting function w(p.q) that
accentuates contributions from points directionally aligned
with the original image’s isophotes. The weighting func-
tion is derived from 3 critical components, directionality,
distance, and level set distance, ensuring smooth integration
of the inpainting with the surrounding image content. The
fast-marching algorithm efficiently processes pixels based on
their proximity to the initial boundary, facilitating rapid and
consistent restoration of the damaged image areas.

Data Augmentation

We implemented various data augmentation techniques to
enhance the model’s generalization capabilities and replicate
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real-world variations observed in endoscopic images. These
techniques encompassed rotating images across a full
360-degree range to simulate different viewing angles,
applying a 15% zoom to simulate variations in image size,
shifting the width and height by 20% to introduce positional
variations, and shearing by 15% to emulate stress distortions
in tissue views. Furthermore, horizontal flipping was used to
mitigate orientation biases, and the “reflect” filling mode was
used to preserve image integrity during these transformations,
ensuring a more comprehensive training process.

Kim et al

Pixel values were normalized to a range of (0, 1) to ensure
consistency in data input, which is essential for the model’s
effective learning. In addition, one-hot encoding was used
to convert categorical labels into a binary matrix format, a
crucial step for enabling the model to handle binary-class
classification tasks efficiently (Figure 2).

Figure 2. Hue, saturation, and value color space transformation and artifact management in endoscopic images for enhanced diagnostic accuracy.

Endoscopy images

Binary mask images

Converted images

Training Setup

The dataset was divided into training and validation sets in
an 8:2 ratio. Input data labeling was based on pathology data,
which was considered the gold standard for our classifica-
tion tasks. Furthermore, 5-fold cross-validation was used to
assess single models’ performance within the ensemble. This
technique partitions the training dataset into 5 subsets, using
each subset iteratively for validation while the remaining data
serves as the training set.

Deep Learning Model

We used a comprehensive ensemble of 16 deep learning
models, carefully selected based on their proven effective-
ness in image classification tasks, particularly in medical
imaging. Each model was constructed using PyTorch (Linux
Foundation) and initialized with pretrained weights from the
ImageNet dataset. This transfer-learning approach, where a
model is pretrained on a large dataset and subsequently
fine-tuned for a specific task, is a well-established strategy
in medical imaging and has demonstrated substantial efficacy.

Our selection encompassed DenseNet (Densely Connec-
ted Convolutional Network), EfficientNet, ResNet, VGG
(Visual Geometry Group), Inception, and Vision Trans-
former architectures, incorporating diverse feature extrac-
tion techniques to ensure a comprehensive evaluation of
different deep learning methodologies. By leveraging the
advanced feature extraction capabilities gained through
pretraining on the large-scale and diverse ImageNet dataset,
our primary objective was to enhance classification accuracy
for endoscopic images. This diversified ensemble approach
allowed us to systematically assess each model’s strengths
and optimize performance through ensemble learning.

In our study, we implemented patch-based learning to
analyze endoscopic images, wherein each of our network
models was trained on segmented sections of the images for a
more targeted approach. The parameters used in this fine-
tuning process are outlined in Table 2, offering a compre-
hensive overview of the configurations used to optimize our
deep learning models for analyzing intricate characteristics of
endoscopic images.

Table 2. Hyperparameter configurations for fine-tuning deep learning models on endoscopic images.

Networks

Hyperparameters DenseNet® 121

EfficientNet BO

EfficientNet B1 VGGP 19

Initialization He normal initialization

Batch size 10 10
Patch size 81x81 81x81
Total epochs 10 15
Optimizer Adam Adam

Learning rate 0.0001 0.0005

He normal initialization

He normal initialization He normal initialization

10 10
81x81 81x81
15 15
Adam Adam
0.0005 0.0001
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4DenseNet: Densely Connected Convolutional Network.
YVGG: Visual Geometry Group.

We used He normal initialization and the Adam optimization
algorithm to further enhance the performance of our deep
learning models. The He normal initialization, also known
as Kaiming initialization, was specifically selected for its
effectiveness in preserving the variance of the input distribu-
tions across layers in deep neural networks, a critical aspect
when dealing with complex image data such as endoscopic
images. This initialization method addresses the vanishing
and exploding gradient issues commonly encountered in
training deep architectures, promoting a more stable and
efficient optimization process. In addition, we used the Adam
optimization algorithm for its adaptive learning rate capabil-
ities, which are crucial for navigating the intricate optimi-
zation landscapes inherent in deep learning tasks. Adam
combines the benefits of 2 other extensions of stochastic
gradient descent— AdaGrad and RMSProp—to adjust the
learning rate during training dynamically. This adjustment is
based on estimates of lower-order moments of the gradients,
facilitating more rapid and effective convergence of our
models to the optimal solution.

The top 4 models were selected from a pool of 16 based
on their Fi-score, as it is a representative metric that balances
precision and recall. In medical image analysis, maintaining
a balance between false positives and false negatives is
crucial, making the Fj-score a clinically reliable selection
criterion. These models were subsequently integrated using a

soft-voting ensemble technique, further augmented with TTA
to enhance prediction reliability and accuracy (Figure 3). We
used an averaging approach to derive the final prediction
in the soft-voting procedure. Soft voting was chosen as the
optimal ensembling strategy because the models exhibited
similar performance, and there was no specific reason to
assign higher confidence to any particular model [37,38]. By
aggregating the predicted probabilities from multiple models,
soft voting provides a more refined decision boundary and
yields more stable predictions compared with majority voting.
In addition, in the case of weighted voting, adjusting the
weights did not result in significant performance improve-
ments over soft voting, and equally incorporating all models
through soft voting proved to be the most effective approach.
Conversely, TTA involves applying minor variations to the
input data during testing, thus providing a more comprehen-
sive evaluation of the model’s performance across diverse
conditions. For TTA, we implemented techniques such as
horizontal and vertical flips, random adjustments in bright-
ness contrast (+20%), and scaling (30%). These augmen-
tations played a pivotal role in optimizing the predictive
capabilities of our system in the challenging realm of
endoscopic image analysis, facilitating the introduction of
diverse variations and thereby bolstering the model’s ability
to generalize and perform consistently across varying imaging
scenarios.

Figure 3. Ensemble deep learning framework for classifying severe ulcerative colitis and cytomegalovirus lesions from endoscopic images. The
framework consists of multiple deep learning models pretrained on ImageNet and fine-tuned for the specific classification task. Single model
outputs are ensembled to enhance overall classification accuracy. Test-time augmentation, including rotations, zooming, and flipping, is used to
ensure robustness against variations in clinical data before making the final prediction. CMV: cytomegalovirus; UC: ulcerative colitis; VGG: Visual

Geometry Group.
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In addition, we evaluated ensemble models comprising 2 and
3 models, both with and those without the implementation
of TTA. This extensive analysis enabled us to compare the
efficacy of varying ensemble sizes and evaluate the impact of
TTA on their predictive prowess, specifically emphasizing the
averaged soft-voting technique used in tandem with TTA.
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For the binary classification task, the sigmoid activation
function was selected for its capability to effectively map
input values to a probability distribution ranging from 0
to 1, thereby generating probabilities indicating whether a
given input pertains to one class or the other. This made
it particularly suitable for discerning between the 2 classes
in our study. Complementing this selection, categorical
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cross-entropy was used as the loss function, given its
capacity to quantify the disparity between the predicted
distribution and the true distribution of outcomes, which is
relevant for binary classification tasks. Categorical cross-
entropy measures the difference between the actual label
and the predicted probability distribution across classes,
thereby furnishing a robust metric for optimizing the model’s
performance. By minimizing this loss function, the model is
incentivized to adjust its parameters to enhance its predic-
tions’ accuracy, aligning the predicted class probabilities as
closely as possible with the ground truth labels.

Evaluation

We evaluated the performance of ensemble models consisting
of 2, 3, and 4 models, both with and without applying TTA.
In addition, we assessed the performance of single models.

The assessment used key evaluation metrics, including
accuracy, precision, recall, and F-score, providing compre-
hensive insights into each model’s classification performance.
In addition, 95% CIs were computed for all evaluation
metrics to ensure statistical reliability. The following
definitions outline these metrics:

Ty+ T,

Accuracy = m

T
T
Precision = T+ F,

T
— P
Recall = T+T,

precisionsrecall
precision + recall

F; — score = 2.
Furthermore, we assessed the diagnostic capabilities of
the models through receiver operating characteristic (ROC)
curves and their corresponding AUC. These evaluations
enabled us to analyze the trade-offs between true positive
and false positive rates, as well as to quantify the overall
diagnostic accuracy of each model configuration.

Kim et al

To ensure statistical robustness, 95% Cls were computed
using 300 bootstrap resampling iterations for all evaluation
metrics, including ROC and AUC. This approach enhances
the reliability of the performance assessment by providing
more stable and generalizable Cls across different evaluation
metrics.

Ethical Considerations

The study was approved by the institutional review board
(IRB EUMC 2023-11-009, SEUMC 2023-09-017).

Results

The performance results of both single models and ensem-
ble model combinations are outlined in Table 3. A compre-
hensive evaluation of various single models was conducted.
DenseNet 121, EfficientNet BO, EfficientNet B1, and VGG
19 stood out for their superior performance, ranking in the top
quartile within a cohort of 13 models. Performance metrics,
including accuracy, precision, recall, and Fj-score, were
recorded along with their 95% CI. DenseNet 121 exhibited
exceptional diagnostic reliability for severe UC conditions,
achieving an accuracy of 0.792 (95% CI 0.776-0.808), a
precision of 0.821 (95% CI 0.805-0.837), a recall of 0.876
(95% CI 0.859-0.893), and an Fj-score of 0.836 (95%
CI 0.820-0.852). EfficientNet BO demonstrated substantial
capability in identifying true positives, with a recall of 0.824
(0.809-0.839), supported by an accuracy of 0.736 (95% CI
0.720-0.752), a precision of 0.765 (95% CI 0.746-0.784), and
an F{-score of 0.784 (95% CI 0.768-0.800). EfficientNet B1
contributed to reducing false positives, achieving a precision
of 0.759 (95% CI 0.742-0.776), an accuracy of 0.681 (95%
CI 0.660-0.702), a recall of 0.709 (95% CI 0.692-0.726), and
an F-score of 0.738 (95% CI 0.720-0.756). Despite a lower
accuracy of 0.660 (95% CI 0.635-0.685), VGG 19 played
a key role in positive case identification, with a precision
of 0.707 (95% CI 0.690-0.724), a recall of 0.745 (95%
CI 0.729-0.761), and an Fy-score of 0.729 (95% CI 0.710-
0.748).

Table 3. Average performance metrics with confidence intervals of the top 4 single models and test-time augmentation ensemble models.

Model

Accuracy (95% CI)

Precision (95% CI)

Recall (95% CI)

F1-score (95% CI)

DenseNet® 121

EfficientNet BO

EfficientNet B1

VGG 19

Ensemble 4 models with TTAC
Ensemble 3 models with TTA
Ensemble 2 models with TTA
Ensemble 4 models without TTA

Ensemble 3 models without TTA
Ensemble 2 models without TTA

0.792 (0.776-0.808)
0.736 (0.720-0.752)
0.681 (0.660-0.702)
0.660 (0.635-0.685)
0.836 (0.824-0.848)
0.723 (0.705-0.741)
0.715 (0.697-0.733)
0.709 (0.692-0.726)

0.775 (0.762-0.788)
0.673 (0.655-0.691)

0.821 (0.805-0.837)
0.765 (0.746-0.784)
0.759 (0.742-0.776)
0.707 (0.690-0.724)
0.850 (0.832-0.868)
0.814 (0.801-0.828)
0.781 (0.765-0.797)
0.691 (0.675-0.707)

0.753 (0.740-0.766)
0.750 (0.738-0.762)

0.876 (0.859-0.893)
0.824 (0.809-0.839)
0.709 (0.692-0.726)
0.745 (0.729-0.761)
0.904 (0.890-0.918)
0.789 (0.775-0.803)
0.832 (0.818-0.846)
0.716 (0.700-0.732)

0.759 (0.746-0.772)
0.776 (0.762-0.790)

0.836 (0.820-0.852)
0.784 (0.768-0.800)
0.738 (0.720-0.756)
0.729 (0.710-0.748)
0.875 (0.860-0.890)
0.802 (0.787-0.817)
0.794 (0.778-0.810)
0.752 (0.737-0.767)

0.755 (0.742-0.768)
0.763 (0.745-0.781)

4DenseNet: Densely Connected Convolutional Network.

PVGG: Visual Geometry Group.
°TTA: test-time augmentation.
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Further analysis using ROC curves and the AUC met-
ric provided additional insights into model performance,
demonstrating a long-term high true positive rate against
a lower false positive rate, indicative of robust diagnostic
capabilities. DenseNet 121 consistently exhibited an average
AUC of 0.846 (SD 0.100) across folds (Figure 4). Meanwhile,
EfficientNet BO and B1 also displayed excellent classification
abilities, with average AUCs of 0.796 (SD 0.098) and 0.838
(SD 0.107), respectively (Figures 5 and 6). VGG 19, while
presenting an average AUC of 0.730 (SD 0.115), showcased
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instances of high performance, particularly in folds where
it achieved an AUC as high as 0.920 (Figure 7). However,
a discrepancy was observed in the model’s performance
through confusion matrix analysis; all models accurately
identified severe UC conditions but exhibited inconsistency in
identifying CMV conditions (Figures 4-7). This inconsistency
was particularly evident for DenseNet 121 and EfficientNet
BO, highlighting the need for improvement. These findings
indicate that single models may encounter limitations when
distinguishing CMV.
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Figure 4. Performance evaluation of the DenseNet 121 model using 5-fold cross-validation and receiver operating characteristic curve analysis.
AUC: area under the curve; ROC: receiver operating characteristic.
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Figure 5. Performance evaluation of the EfficientNet BO model using 5-fold cross-validation and receiver operating characteristic curve analysis.
AUC: area under the curve; ROC: receiver operating characteristic.
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Figure 6. Performance evaluation of the EfficientNet B1 model using 5-fold cross-validation and receiver operating characteristic curve analysis.
AUC: area under the curve; ROC: receiver operating characteristic.
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Figure 7. Performance evaluation of the VGG 19 model using 5-fold cross-validation and receiver operating characteristic curve analysis. AUC: area
under the curve; ROC: receiver operating characteristic.
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Incorporating the TTA technique into the ensemble model
approach proved pivotal in addressing these classification
challenges. The ensemble of 4 models augmented with TTA
demonstrated remarkable efficacy in classifying endoscopic
images of UC. The ensemble achieved an accuracy of
0.836 (95% CI 0.824-0.848), a precision of 0.850 (95%
CI 0.832-0.868), a recall of 0.904 (95% CI 0.890-0.918),
and an Fj-score of 0.875 (95% CI 0.860-0.890), indicating
high reliability and balanced classification capabilities. Other
ensemble configurations also yielded noteworthy results. The
ensemble of 3 models with TTA exhibited precision of 0.814
(95% CI 0.801-0.828), while the ensemble of 2 models with
TTA demonstrated recall of 0.832 (95% CI 0.818-0.846)
and Fj-score of 0.794 (95% CI 0.778-0.810), indicating
effective identification of true positive cases. Conversely,
ensemble models without TTA showed a noticeable decline in
performance metrics, with the ensemble of 4 models without
TTA achieving an accuracy of 0.709 (95% CI 0.692-0.726),
a precision of 0.691 (95% CI 0.675-0.707), a recall of 0.716

Kim et al

(95% CI 0.700-0.732), and an Fj-score of 0.752 (95% CI
0.737-0.767). These results emphasize the significant role of
TTA in enhancing classification performance and improving
model generalization in distinguishing CMV from severe UC.

The ROC curves reveal discernible patterns in model
efficacy attributable to integrating TTA and the amalgamation
of models within the ensemble (Figure 8). The ensemble
of 4 models enhanced with TTA is particularly noteworthy,
demonstrating the most pronounced diagnostic proficiency,
with an AUC of 0.927 (95% CI 0.881-0.949). This signifies
superior diagnostic performance and a high true positive rate
compared with the false positive rate. Despite a reduction in
ensemble size, the ensemble comprising 3 models, with TTA
implementation, maintains robust performance, as evidenced
by an AUC of 0.826 (95% CI 0.738-0.872). Conversely, the
ensemble of 2 models with TTA displays a relatively inferior
AUC of 0.698 (95% CI 0.618-0.750).

Figure 8. Receiver operating characteristic curves for endoscopic image classification models: (A) ensemble of 4 models with test-time augmenta-
tion, (B) ensemble of 3 models with test-time augmentation, (C) ensemble of 2 models with test-time augmentation, (D) ensemble of 4 models
without test-time augmentation, (E) ensemble of 3 models without test-time augmentation, and (F) ensemble of 2 models without test-time
augmentation. AUC: area under the curve; ROC: receiver operating characteristic.
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In setups without TTA, there is generally a decrease in
ensemble performance. The ensemble of 4 models without
TTA achieves an AUC of 0.760 (95% CI 0.663-0.809),
confirming the efficacy of the ensemble approach even with a
slight drop in effectiveness. Interestingly, a 3-model ensemble
without TTA exhibits a slightly higher AUC of 0.775 (95%
CI 0.677-0.824), indicating a particularly effective combina-
tion of models. Conversely, the pair of models without TTA
demonstrates the most notable decrease in performance, with
an AUC of 0.693 (95% CI 0.611-0.747), underscoring the
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significance of TTA in enhancing model performance and the
benefits of larger ensembles for diagnostic accuracy.

Discussion

Principal Findings

The study underscores substantial advancements in medical
diagnostics, particularly in gastroenterology, facilitated by
applying deep learning technology. This research distin-
guishes itself by using an ensemble of deep learning models,
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including DenseNet121, EfficientNet B0, EfficientNet BI,
and VGG 19, to differentiate between severe UC and
CMYV infection using endoscopic images. By leveraging an
ensemble approach, this study not only improves classifica-
tion performance but also demonstrates the clinical applic-
ability of deep learning in distinguishing between these 2
conditions.

The evaluation of single models revealed their limita-
tions in identifying CMV, highlighting the need for a
more comprehensive approach. This insight underscores
the utility of the TTA ensemble technique in discerning
CMYV infections and accurately classifying severe UC from
endoscopic images. Furthermore, this approach indicates
the potential to surmount the constraints of single-model
methodologies and enhance diagnostic accuracy in complex
medical image classification tasks. The ability to overcome
the constraints of single-model methodologies and enhance
diagnostic accuracy in complex medical image classification
tasks is a crucial advancement in this field. These findings
suggest that integrating deep learning into clinical workflows
can significantly improve real-world diagnostic processes.

The ensemble of 4 models with TTA achieved remarkable
performance in classifying endoscopic images of severe UC,
with an accuracy of 0.836 (95% CI 0.824-0.848), precision
of 0.850 (95% CI 0.832-0.868), recall of 0.904 (95% CI
0.890-0.918), and F-score of 0.875 (95% CI 0.860-0.890).
These results indicate high reliability and balanced perform-
ance, reinforcing the ensemble’s ability to deliver accurate
and consistent diagnoses. The improved diagnostic accu-
racy can have a direct impact on clinical decision-making,
reducing diagnostic errors and enabling timely intervention.

The distinction between CMV and severe UC through
endoscopic images has been a topic in previous research
[11-13]. Although specific endoscopic features can differ-
entiate these 2 conditions, the differences are often sub-
tle and require meticulous observation. Features, such as
severe ulcers, punched-out ulcers, geographical ulcers, and
spontaneous bleeding, can be crucial in differentiating
certain diseases [12]. However, identifying these features
through conventional observation methods is often challeng-
ing. Applying the ensemble model with TTA represents a
substantial advancement in this context [39]. It stands out
as the first initiative to harness the capabilities of deep
learning or machine learning for this purpose. The insights
derived from the AUC values and the corresponding ROC
curves are pertinent. The ensemble method enhanced by
TTA underscores the potential of deep learning in medical
diagnostics. When integrated into clinical workflows, these
advanced models have the potential to substantially enhance
patient care by enabling more precise and accurate diagno-
ses, thereby laying the groundwork for improved patient
outcomes and marking a noteworthy advancement in health
care technology.

To further contextualize these advantages in clinical
practice, deep learning models can contribute to reducing
interobserver variability, which is a critical challenge in
medical imaging. By providing consistent and objective
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assessments, Al-driven diagnostic tools can complement
physician expertise, particularly in resource-limited settings
where access to highly experienced endoscopists may be
restricted. In addition, Al-powered systems can expedite
the diagnostic process, enabling real-time or near-instanta-
neous assessments that facilitate prompt therapeutic inter-
ventions. These improvements translate into enhanced
patient management, reduced hospital stays, and minimized
complications associated with diagnostic delays.

Furthermore, integrating Al-based diagnostic models into
real-time clinical decision support systems could significantly
enhance their clinical utility. Future research should explore
embedding these AI models into endoscopic software or
electronic health record systems. This integration could
provide real-time diagnostic support to gastroenterologists,
improve the efficiency of the diagnostic process, and facilitate
quicker treatment decisions. Ultimately, this could become a
key factor in enhancing the overall quality of patient care.

A substantial limitation identified during the research
process was the occurrence of false negatives in the vali-
dation phase [40]. These findings underscore the necessity
for further adjustments to improve the model’s sensitivity,
particularly in medical diagnostics, where distinguishing
between similar conditions, such as CMV and UC, is critical.
False negatives can cause delayed or inappropriate treatment,
negatively impacting patient outcomes [41]. To address this,
future studies should incorporate advanced augmentation
techniques to enhance model sensitivity while maintaining
specificity. In addition, exploring hybrid Al approaches that
combine deep learning with rule-based algorithms could
further refine diagnostic accuracy [42,43].

Another limitation is the lack of datasets; the data used in
this study were limited in scope and quantity, thus constrain-
ing the generalizability and reliability of the model. As with
other studies using proprietary datasets, our research also
faces challenges in generalization, as the model was trained
on a specific dataset. However, it is important to note that
endoscopic imaging, compared with other imaging modali-
ties, exhibits relatively minimal variation across different
manufacturers due to its reliance on optic imaging rather than
quantitative imaging [44]. This consistency helps maintain
uniformity in image quality, which can positively impact Al
model training and application.

Nevertheless, to address these generalization limitations,
future research endeavors aim to mitigate these challenges by
acquiring more diverse and extensive data through collab-
oration with multiple institutions. Multi-institutional data
collection and incorporating various patient populations will
enhance the model’s robustness and ensure its applicability
across different clinical settings. Incorporating data gathered
from various patient groups and regions will enhance the
model’s generalization capability and facilitate the develop-
ment of more reliable diagnostic tools [45]. Such collabo-
rative efforts across multiple institutions are essential for
augmenting the accuracy and reliability of the model.

This study uses deep learning technology to introduce
a novel approach to medical diagnostics, particularly in
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gastroenterology. As the first to use deep or machine learning
in distinguishing between severe UC and CMYV, it heralds
new possibilities in medical diagnostics. Implementing deep
learning, notably the ensemble model with TTA, facili-
tates rapid, noninvasive, and remarkably accurate diagnostic
techniques. These holds promise for substantially enhanc-
ing patient experience compared with conventional diagnos-
tic approaches, resulting in time and resource savings and
diminishing the necessity for unnecessary invasive proce-
dures. Such methodologies alleviate patient discomfort and
risk, expediting treatment decisions.

Conclusion

This study marks a significant advancement in medical
diagnostics by leveraging deep learning, specifically an

Kim et al

ensemble model with TTA, to differentiate between severe
UC and CMV infections using endoscopic images. While our
findings demonstrated high accuracy, precision, and recall,
the model’s reliance on a specific dataset may limit its
generalizability, necessitating further validation in diverse
clinical settings. By introducing a streamlined, noninvasive,
and accurate approach, this research highlights the potential
of Al-driven diagnostics in gastroenterology while under-
scoring the need for further refinement to enhance clinical
applicability.
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