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Abstract
Background: Diabetic nephropathy (DN), a severe complication of diabetes, is characterized by proteinuria, hypertension,
and progressive renal function decline, potentially leading to end-stage renal disease. The International Diabetes Federation
projects that by 2045, 783 million people will have diabetes, with 30%‐40% of them developing DN. Current diagnostic
approaches lack sufficient sensitivity and specificity for early detection and diagnosis, underscoring the need for an accurate,
interpretable predictive model to enable timely intervention, reduce cardiovascular risks, and optimize health care costs.
Objective: This study aimed to develop and validate a machine learning–based predictive model for DN in patients with
type 2 diabetes, with a focus on achieving high predictive accuracy while ensuring transparency and interpretability through
explainable artificial intelligence techniques, thereby supporting early diagnosis, risk assessment, and personalized clinical
decision-making.
Methods: Our retrospective cohort study investigated 1000 patients with type 2 diabetes using data from electronic medical
records collected between 2015 and 2020. The study design incorporated a sample of 444 patients with DN and 556 without,
focusing on demographics, clinical metrics such as blood pressure and glucose levels, and renal function markers. Data
collection relied on electronic records, with missing values handled via multiple imputation and dataset balance achieved
using Synthetic Minority Oversampling Technique (SMOTE). In this study, advanced machine learning algorithms, namely
Extreme Gradient Boosting (XGBoost), CatBoost, and Light Gradient-Boosting Machine (LightGBM), were used due to their
robustness in handling complex datasets. Key metrics, including accuracy, precision, recall, F1-score, specificity, and area
under the curve, were used to provide a comprehensive assessment of model performance. In addition, explainable machine
learning techniques, such as Local Interpretable Model-Agnostic Explanations (LIME) and Shapley Additive Explanations
(SHAP), were applied to enhance the transparency and interpretability of the models, offering valuable insights into their
decision-making processes.
Results: XGBoost and LightGBM demonstrated superior performance, with XGBoost achieving the highest accuracy of
86.87%, a precision of 88.90%, a recall of 84.40%, an F1-score of 86.44%, and a specificity of 89.12%. LIME and SHAP
analyses provided insights into the contribution of individual features to elucidate the decision-making processes of these
models, identifying serum creatinine, albumin, and lipoproteins as significant predictors.
Conclusions: The developed machine learning model not only provides a robust predictive tool for early diagnosis and
risk assessment of DN but also ensures transparency and interpretability, crucial for clinical integration. By enabling early
intervention and personalized treatment strategies, this model has the potential to improve patient outcomes and optimize
health care resource usage.
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Introduction
Background
Diabetic nephropathy (DN), severe microvascular compli-
cations of diabetes, primarily manifests as proteinuria,
hypertension, and a progressive decline in renal function,
potentially leading to end-stage renal disease. The pathogen-
esis of DN is attributed to a high-glucose milieu, oxidative
stress, inflammation, and fibrosis, collectively contributing
to substantial morphological changes in kidneys including
thickening of glomerular basement membrane, glomeruloscle-
rosis, tubular atrophy, interstitial inflammation, and renal
fibrosis [1]. The prevalence of diabetes and diabetic kidney
disease has been increasing, and the International Diabetes
Federation projected that the number of patients with diabetes
would rise to 783 million by 2045. Notably, approximately
30%‐40% of these patients are expected to develop DN [2],
with a mortality rate 30 times higher than that of diabetic
patients without kidney disease [3]. Hence, the importance
of early detection cannot be overstated in managing DN.
Early diagnosis not only significantly reduces the reliance
on costly medical resources such as dialysis and transplan-
tation but also alleviates the economic burden on patients
[4]. By intervening in the early stages of DN, clinicians can
effectively preserve renal function and slow disease progres-
sion, thereby enhancing the quality of life and reducing the
risk of cardiovascular complications, a major cause of death
among patients with diabetes. Moreover, from a perspective
of health economics, early detection is crucial as it reduces
the need for intensive later-stage treatments, allowing for the
reallocation of medical resources to other pressing needs [5].
Consequently, investing in the early detection of DN not only
benefits patients but also enhances the efficiency of health
care resource usage across society.

Machine learning (ML), as a significant branch of artificial
intelligence (AI), has revolutionized the field of medical
research by analyzing complex datasets to discover models
and make predictions. Particularly in disease prediction and
classification, ML algorithms can handle vast amounts of
clinical and biological data, identify risk factors, predict
disease onset, and accurately classify disease subtypes [6]. In
contrast, traditional statistical methods often perform poorly
when dealing with the high dimensionality and nonlinear-
ity of biomedical data, whereas ML algorithms, such as
decision trees, random forests, support vector machines, and
neural networks, exhibit advantages that traditional statistical
methods cannot match [7]. ML algorithms have been widely
applied in clinical research and shown outstanding perform-
ance in various fields. For example, they have achieved

significant results in the early prediction of acute kidney
injury [8], malaria prediction [9], and cervical cancer survival
prediction [10]. Despite the tremendous potential of ML
models in predictive analysis, their application in clinical
environments is often hindered by the “black box” nature of
many algorithms. This opacity limits clinicians’ understand-
ing, trust, and effective use of ML predictions. To address this
issue, explainable machine learning (XML) techniques have
emerged, aiming to enhance the transparency and interpret-
ability of models [11]. By using techniques such as Shap-
ley Additive Explanations (SHAP) and Local Interpretable
Model-Agnostic Explanations (LIME), XML can elucidate
the contribution of individual features to prediction outcomes,
thereby increasing the model’s transparency and interpretabil-
ity [12]. This interpretability is crucial for integrating ML
into clinical workflows, as it allows health care providers to
validate model outputs based on clinical knowledge, explain
decisions to patients, and comply with regulatory standards
[13]. Ultimately, XML holds the promise of bridging the
gap between advanced analytics and clinical applications,
fostering more informed and more confident decision-making
in patient care.
Objective
In the clinical management of DN, early diagnosis and
precise treatment are crucial for improving patient out-
comes. However, traditional diagnostic methods often fall
short in predicting the complex progression of the dis-
ease, necessitating new tools to enhance predictive accuracy
and reliability. This study aims to develop and validate
an ML-based model for predicting DN, emphasizing both
high predictive accuracy and model interpretability to meet
clinicians’ needs for transparency. By addressing the gap
in both predictive performance and interpretability, this
model provides a more holistic approach to managing DN.
By creating a new predictive tool, we aim to provide
clinicians with a deep understanding of the model’s predic-
tive logic, thereby enhancing trust and application of the
predictions. We meticulously designed and integrated various
ML algorithms, including decision trees, random forests,
extra trees, Adaptive Boosting (AdaBoost), Extreme Gradient
Boosting (XGBoost), and Light Gradient-Boosting Machine
(LightGBM), to build a model with significant predictive
accuracy. Concurrently, we used LIME and SHAP methods
for in-depth analysis of the model’s interpretability, ensuring
transparency and fairness in the prediction process. The core
contribution of this study lies in enhancing model interpret-
ability, thereby increasing its credibility and practicality in
real medical applications. This model not only provides a
scientifically transparent decision support system for early

JMIR MEDICAL INFORMATICS Wen et al

https://medinform.jmir.org/2025/1/e64979 JMIR Med Inform2025 | vol. 13 | e64979 | p. 2
(page number not for citation purposes)

https://doi.org/10.2196/64979
https://medinform.jmir.org/2025/1/e64979


diagnosis, risk assessment, and personalized treatment of DN
but also aids doctors in devising more precise intervention
strategies to improve patient outcomes. We believe that the
generalizability and effectiveness of these methods will lay a

solid foundation for the broader application of ML technol-
ogies in various medical scenarios and open new avenues
for medical research. We outline the overall approach of our
study as shown in Figure 1.

Figure 1. Overview of the research framework. This diagram illustrates the complete workflow from data preprocessing to model interpretability,
where the orange module represents the data processing stage, the green module denotes the model construction phase, and the blue module signifies
the result analysis stage. The directional arrows indicate the sequential order of processes. AdaBoost: Adaptive Boosting; AUC: area under the curve;
LightGBM: Light Gradient-Boosting Machine; LIME: Local Interpretable Model-Agnostic Explanations; SHAP: Shapley Additive Explanations;
XGBoost: Extreme Gradient Boosting.

Related Work
XML has been introduced to enhance model transparency and
reliability, helping clinicians better understand the predictions
made by these models. Several studies have successfully
demonstrated how interpretability techniques can improve
the transparency of clinical decision-making. Chadaga et al
[14] used SHAP and LIME to predict COVID-19 prognosis
using clinical markers, aiming to identify high-risk patients
early and provide appropriate treatments to prevent severe
outcomes, while also making AI predictions interpretable
and trustworthy for medical professionals. Khanna et al [15]
built a decision support system using SHAP and LIME to
predict osteoporosis risk, aiming to enhance early diagno-
sis and treatment while making ML models interpretable
and reliable for medical professionals. Guan et al [16] used
SHAP to interpret venous thromboembolism risks in patients
who are critically ill, with the goal of improving early risk
identification, enabling timely interventions, and fostering
transparency and trust in the decision-making process. Zhong
et al [17] introduced SHAP to significantly improve the
accuracy of blood oxygen saturation estimation based on neck
photoplethysmography, thereby enhancing the reliability of
noninvasive oxygen monitoring. Suh et al [18] used LIME to

analyze a deep learning model for osteoporosis risk screen-
ing, identifying and ranking critical features that contribute to
risk prediction. This approach enhances the interpretability of
ML models, facilitating personalized health care and aiding
clinicians in understanding the decision-making process. In
the domain of XML, SHAP and LIME are among the most
commonly used methods; however, other approaches, such
as partial dependence plot (PDP), are also available. Bernard
et al [19] used PDP to visualize the influence of individual
features on the model’s output by isolating their effects while
averaging over all other features. Zhang et al [20] used
PDP to analyze the marginal effect of individual features
on the model’s predictions by averaging their impacts while
keeping other features constant. This method helps reveal
how changes in a particular feature influence the predicted
outcomes, providing clinicians with interpretable insights into
feature significance and supporting informed decision-making
in personalized health care.
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Methods
Data Source
The dataset for this study originated from the National
Population Health Data Center’s “Diabetes Complications
Dataset” and comprised detailed records of 1000 patients
with type 2 diabetes. The complete dataset of 1000 patients
was used for our analysis without applying any additional
inclusion or exclusion criteria, as the dataset had already
undergone an initial selection and screening process before
public release by the data provider. The dataset covers 87
features, including patients’ basic demographic information
such as age, gender, ethnicity, and marital status, biochemi-
cal test results such as blood glucose levels, lipid analysis,
renal function indicators, and other relevant hematologi-
cal parameters, and comorbidities such as kidney disease,
cardiovascular diseases, fatty liver, and many other chronic
conditions. The dataset contained information on 444 patients
with DN and 556 patients without nephropathy, providing a
rich empirical basis for the study of DN risk prediction.

Data Preprocessing
In this study, features with a data missing proportion
exceeding 75% (750/1000) were excluded due to their
severely limited informational content and minimal impact
on the research outcomes. For features with a data missing
proportion less than 75% (750/1000), multiple imputation was
used. This method, based on multivariate regression models
and iterative algorithms, is well-suited for handling clinical
data with diverse feature types due to its ability to preserve
interfeature correlations and prevent the disruption of internal
data relationships, which is typical for singular imputation
methods. The fundamental approach involves initially filling
each feature containing missing values with simple meth-
ods such as the mean to provide initial values, followed
by the use of current filled values from other features
to predict and update missing values through regression
models. This process iterates until the imputation converges
or the predefined maximum number of iterations is reached.
In addition, we noted that the ratio of patients with DN
to those without is 444:556, close to 4:5. Although this
imbalance is not particularly severe, we used the Synthetic
Minority Oversampling Technique (SMOTE) to enhance the
accuracy and reliability of our model predictions. SMOTE
generates new synthetic samples by randomly interpolating
between minority class samples and their nearest neighbors.
This method not only increases the number of minority
class samples but also maintains intraclass diversity, thereby
avoiding the potential overfitting issues associated with
simple sample replication. Through this approach, SMOTE
has effectively addressed the issue of data imbalance, laying
a solid foundation for the development of a more robust and
more accurate predictive model.
Statistical Analysis
This study used Python version 3.9.5, originally developed by
Guido van Rossum and currently maintained by the Python
Software Foundation, for data analysis. In the statistical

data analysis, the Shapiro-Wilk test was first conducted on
continuous variables to determine whether they follow a
normal distribution. If these variables did not follow a normal
distribution, the Mann-Whitney U test was used to explore
their associations with DN. The Mann-Whitney U test helped
examine whether there are significant statistical differences
between the patient and nonpatient groups, making it an
effective nonparametric testing method. If these variables
followed a normal distribution, the Student t test was used
to analyze their associations with DN. This parametric testing
method assessed the significance of differences in the means
of 2 samples, aiding in the identification of key indicators
related to the risk of DN. For categorical variables, chi-
square tests were used to analyze their associations with
DN, detecting distribution differences of categorical variables
across different disease states. Through these tests, we gained
a more comprehensive understanding of how different types
of data characteristics influence the risk of DN. Statistical
significance was defined as P<.001.
Feature Selection
Given the limited sample size and large number of features in
the data involved in this study, we adopted the least absolute
shrinkage and selection operator (lasso) method for feature
selection to ensure the efficiency of the analysis and the
accuracy of the results. Lasso introduces the L1 paradigm as a
penalty term in regression analysis, making it widely used in
high-dimensional data processing [21]. Its objective function
is:

minβ 12n i = 0
n (yi − j = 1

p xijβj)2 + λj = 0
p βj

where, yi is the response variable of the ith observation, xij
is the jth feature of the ith observation, βj is the regression
coefficient of the jth feature, λ is the regularization parameter
used to control the complexity of the model, n is the number
of samples, and p is the number of features.

By adjusting the regularization parameter λ, lasso achieves
a balance between model complexity and fitting accuracy.
The core mechanism is to drive some of the regression
coefficients to zero through the L1 paradigm penalty,
enabling variable selection and feature downscaling. This
capability gives lasso a significant advantage when dealing
with clinical data, as it is able to automatically screen out
important variables and eliminate redundant or irrelevant
features, making it particularly suitable for high-dimensional
data with a large number of features. Through this regulari-
zation, lasso enhances the stability and predictive power of
the model, preventing overfitting and ensuring more robust
model performance on test sets. In addition, by retaining only
the most predictive features, lasso significantly improves the
accuracy of the model’s predictions.
Model Construction
In this study, we used a series of powerful ensemble learning
algorithms, including random forests, extra trees, AdaBoost,
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XGBoost, and LightGBM. These algorithms are widely
used in a variety of ML applications due to their excellent
predictive performance and efficient processing speed.

Decision tree is a fundamental ML algorithm used for
classification and regression [22]. The data are split into
different subsets based on a series of conditions, ultimately
forming a tree structure. Each node represents a feature, each
branch represents one possible value of the feature, and each
leaf node represents a category or regression value.

Random forest is an ensemble learning method that
enhances prediction accuracy and stability by constructing
multiple decision trees [23]. The core idea is to train multiple
decision trees using different subsets of data and features, and
obtain the final result by voting or averaging the predictions
of all trees. This approach effectively reduces overfitting and
improves the model’s generalization ability.

Extra trees, or extremely randomized trees, is an improved
random forest method that constructs decision trees by
randomly selecting features and split points [24]. Unlike
random forests, extra trees randomly selects multiple split
points at each node, from which the best split point is chosen.
This completely random strategy reduces the variance of
the model and improves generalization while retaining the
interpretability and training speed of the decision tree model.

AdaBoost is a boosting method based on an addi-
tive model that improves overall classification perform-
ance by progressively weighting the training of multiple
weak classifiers [25]. In each round of training, misclas-
sified samples are given higher weights, prompting subse-
quent classifiers to focus more on these difficult-to-classify
samples. The final model is a weighted sum of multiple weak
classifiers, which gradually reduces error and significantly
enhances performance.

XGBoost is an efficient gradient-boosting decision tree
algorithm that combines parallel processing and regulariza-
tion techniques to improve the speed and performance of the
model [26]. Key features include the use of second-order
derivative information, the ability to handle missing values,
and pruning operations on the decision tree. These features
enable XGBoost to perform well when dealing with large-
scale and high-dimensional data.

LightGBM is an efficient gradient-boosting framework
that improves training speed and memory usage through a
histogram-based decision tree learning algorithm [27]. Its
features include support for categorical features, a depth-first
strategy using leaf-count limitation, and efficient parallel
processing. These characteristics allow LightGBM to have a
significant advantage in handling large-scale data.
Model Evaluation
To comprehensively evaluate the model’s performance, this
study used multiple evaluation metrics, including accuracy,
precision, recall, F1-score, specificity, and area under the
curve (AUC). These metrics reflect various aspects of the
model’s performance, ensuring an objective and thorough
assessment.

Accuracy refers to the ratio of correctly predicted samples
to the total number of samples and reflects the overall
prediction accuracy of the model. The formula for accuracy
is:

Accuracy = TP + TNTP + TN + FP + FN
where, TP is true positives, TN is true negatives, FP is false
positives, and FN is false negatives.

A higher accuracy indicates that the model makes correct
predictions in most cases.

Precision represents the proportion of true positives among
all samples predicted as positive. It primarily measures the
accuracy of the model’s positive predictions. The formula for
precision is:

Precision = TPTP + FP
Recall, also known as sensitivity, is the proportion of true
positives among all actual positive samples. A higher recall
indicates fewer false negatives and a better ability of the
model to identify positive samples. The formula for recall is:

Recall = TPTP + FN
F1-score means the harmonic mean of precision and recall,
and is used to evaluate the balance between these 2 metrics. It
is suitable for datasets with class imbalance. The formula for
F1-score is:

F1Score = 2 × Precision × RecallPrecision ＋ Recall
A higher F1-score indicates better performance in both
precision and recall.

Specificity represents the proportion of true negatives
among all actual negative samples. It measures the mod-
el’s ability to identify negative samples. The formula for
specificity is:

Specificity = TNTN + FP
The AUC of the receiver operating characteristic (ROC)
curve is used to evaluate the overall performance of the
model. The ROC curve reflects the trade-off between the
true-positive rate and false-positive rate at different thresh-
olds. A higher AUC indicates better discrimination ability of
the model, balancing the true-positive rate and false-positive
rate more effectively. AUC is especially useful for compar-
ing the performance of different models, providing a global
perspective on evaluation.

By comprehensively assessing these metrics, we can
understand the models’ performance in various aspects,
identify their strengths and weaknesses, and provide a
solid basis for further optimization and improvement. This
multiangle, multidimensional evaluation approach ensures a
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more accurate and comprehensive evaluation of the model’s
performance, enhancing its reliability and effectiveness in
practical applications.
Model Interpretability
For the interpretability of ML models, we primarily used
2 widely recognized methods, LIME [28] and SHAP [29].
LIME approximates complex ML models by fitting an
interpretable linear model within a local neighborhood of
the target prediction point. This approach provides individu-
alized feature importance interpretations for each instance,
thus elucidating the logic behind specific model predictions.
Unlike LIME, which focuses on local interpretation, SHAP
quantifies the global contribution of each feature to the model
prediction based on the Shapley value from game theory. The
SHAP value ensures that the contribution of each feature is
consistent and fair across all possible feature combinations.
By calculating the SHAP value for each feature, SHAP
reveals the interactions and dependencies between features
and model predictions. Both methods have their respective
strengths. SHAP offers a more comprehensive and in-depth
interpretation, while LIME is more intuitive and flexible for
instance-specific explanations. Combining the local interpret-
ability of LIME with the global analysis of SHAP provides
a more thorough and detailed interpretative support for ML
models in clinical data. This combination is crucial for
enhancing the transparency of the models, increasing the
trust of health care professionals, and optimizing the clinical
decision-making process.
Ethical Considerations
This study conducted a secondary analysis using the publicly
available Diabetes Complications Dataset [30] from the
National Population Health Data Center. As this study
exclusively used anonymized secondary data without direct
human participant involvement, it is exempt from additional
institutional ethics review. The original data collection by
the National Population Health Data Center complies with
the “Regulations on the Management of Human Genetic
Resources of the People’s Republic of China” and relevant
ethical guidelines. All data are completely deidentified with
no personally identifiable information included, and formal
data access approval was obtained from the data provider
following their established protocols. The original informed
consent permits secondary analysis of the deidentified data
for research purposes.

Results
Feature Selection
As illustrated in Figures 2 and 3, lasso regression effectively
filters and optimizes the variables in the model by adjusting
the regularization parameter λ (Log Lambda). Each curve
represents the coefficients of a feature. It can be observed

that as λ increases, most coefficients gradually approach
zero (Figure 3A). This phenomenon demonstrates the unique
feature selection capability of lasso regression, to reduce
the coefficients of unimportant features by increasing λ, and
thereby simplify the model. Simultaneously, it can be seen
that the mean squared error remains low when λ is small
(Figure 3B), indicating that the model has a good fitting
performance. However, as λ continues to increase, the mean
squared error value starts to rise significantly after a relatively
stable period. This trend indicates that excessive regulariza-
tion will result in an overly simplified model, impairing its
predictive ability. Through lasso regression, we eventually
selected the 24 features, including 14 numerical features and
10 categorical ones.

Table 1 summarizes the differences in features between the
DN group and the non-DN group. The statistical data reveal
significant disparities between the two groups across various
biochemical indicators and health conditions. Specifically, the
albumin level is significantly higher in the non-DN group
(mean 41.9, range 39.7-44.3) than that in the DN group
(mean 38.2, range 32.4-41.4), with a P value of less than
.001. Similar trends are observed for albumin creatinine ratio,
blood pressure high, and blood pressure low. For instance,
the albumin creatinine ratio is significantly lower in the
non-DN group (mean 12.0, range 4.0-60.2) than that in the
DN group (mean 272.7, range 79.0-472.1), with a P value of
less than .001. Blood pressure high and blood pressure low
are also lower in the non-DN group with means of 130.0
(range 120.0-142.0) and 80.0 (range 70.0-86.0) compared to
the DN group with means of 142.0 (range 130.0-160.0) and
80.0 (range 75.0-90.0), respectively, both with P values less
than .001. The levels of CA199, lactate dehydrogenase L,
and lipoproteins indicate more severe renal impairment in
the DN group compared to the non-DN group. For example,
the CA199 level is significantly higher in the DN group
(mean 16.5, range 9.5-26.3) than that in the non-DN group
(mean 13.0, range 7.8-21.9), with a P value of less than .001.
Similarly, the lactate dehydrogenase L level is higher in the
DN group (mean 169.8, range 142.5-203.2) than that in the
non-DN group (mean 153.2, range 135.6-176.6), with a P
value of less than .001. Furthermore, patients with DN exhibit
a higher incidence of certain clinical conditions compared
to those without DN. For instance, the incidence of diges-
tive carcinoma in the DN group is 18.33%, whereas it is
46.06% in the non-DN group, with a P value of less than
.001. Similar significant differences are observed for other
conditions such as rheumatic immunity disease, other tumors,
cerebral apoplexy, and hypertension. Table 1 provides a
detailed comparison of these features between the DN and
non-DN groups, highlighting significant health disparities
and emphasizing the need for targeted clinical interventions.
Table 2 lists the variables and their corresponding abbrevia-
tions used throughout the analysis, providing a clear reference
for understanding the various health indicators assessed in
this study.
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Figure 2. Absolute values of feature coefficients in lasso regression. The color gradient reflects the magnitude of coefficients, with darker shades
indicating higher absolute values. Key features (ALB_CR, CP, SCR, ENDOCRINE_DISEASE, ALB) are highlighted as dominant contributors to
model performance. ALB: albumin; ALB_CR: albumin creatinine ratio; BP_HIGH: blood pressure high; BP_low: blood pressure low; CLD: chronic
liver disease; CP: C-reactive protein; LDH_L: lactate dehydrogenase L; LPS: lipoproteins; MEN: endocrine gland tumors; SCR: serum creatinine;
SUA: serum uric acid; TP: total protein.
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Figure 3. Variable selection via lasso regression. (A) Coefficient paths illustrate the trajectory of feature coefficients as a function of log(λ),
demonstrating variable shrinkage and exclusion. (B) The mean-squared error curve identifies the optimal λ value at its minimum, balancing model
complexity and predictive accuracy.

Table 1. Feature differences between diabetic nephropathy (DN) and non-DN groups.
Variable name DN (n=444), median (IQR) Non-DN (n=556), median (IQR) P value
Albumin 38.2 (32.4-41.4) 41.9 (39.7-44.3) <.001
Albumin_Creatinine_Ratio 272.7 (79.0-472.1) 12.0 (4.0-60.2) <.001
Blood_Pressure_High 142.0 (130.0-160.0) 130.0 (120.0-142.0) <.001
Blood_Pressure_Low 80.0 (75.0-90.0) 80.0 (70.0-86.0) <.001
CA199 16.5 (9.5-26.3) 13.0 (7.8-21.9) <.001
C-Peptide 2.4 (1.5-3.5) 2.4 (1.5-3.1) .25
Lactate_Dehydrogenase_L 169.8 (142.5-203.2) 153.2 (135.6-176.6) <.001
Lipoproteins 134.8 (78.6-212.7) 100.2 (48.8-163.1) <.001
Serum_Creatinine 95.8 (68.7-161.0) 67.5 (55.2-78.7) <.001
Serum_Uric_Acid 352.6 (292.1-416.1) 302.8 (242.6-363.2) <.001
Total_Protein 63.3 (58.2-68.1) 67.2 (63.9-70.9) <.001
Weight 74.0 (66.0-83.0) 72.9 (66.0-79.0) .10
Other_Tumor, n (%) .36
  No 46 (50.55) 510 (56.11)
  Yes 45 (49.45) 399 (43.89)
Endocrine_Disease, n (%) <.001
  No 169 (47.08) 387 (60.37)
  Yes 190 (52.92) 254 (39.63)
Gynecological_Tumor, n (%) >.99
  No 16 (55.17) 540 (55.61)
  Yes 13 (44.83) 431 (44.39)
Cerebral_Apoplexy, n (%) .09
  No 29 (44.62) 527 (56.36)
  Yes 36 (55.38) 408 (43.64)
Endocrine_Gland_Tumors, n (%) <.001
  No 9 (21.95) 547 (57.04)
  Yes 32 (78.05) 412 (42.96)
Renal_Failure, n (%) <.001
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Variable name DN (n=444), median (IQR) Non-DN (n=556), median (IQR) P value
  No 0 (0.00) 556 (59.15)
  Yes 60 (100.00) 384 (40.85)
Lung_Tumor, n (%) .08
  No 18 (75.00) 538 (55.12)
  Yes 6 (25.00) 438 (44.88)
Urologic_Neoplasms, n (%) .04
  No 1 (12.50) 555 (59.15)
  Yes 7 (87.50) 437 (44.05)
Gender, n (%) .06
  Male 347 (53.38) 209 (59.71)
  Female 303 (46.62) 141 (40.29)
Chronic_Liver_Disease, n (%) .002
  No 67 (43.79) 489 (57.73)
  Yes 86 (56.21) 358 (42.27)
Digestive_Carcinoma, n (%) <.001
  No 49 (81.67) 507 (53.94)
  Yes 11 (18.33) 433 (46.06)
Diabetes_Disease_Type, n (%) <.001
Type 2 diabetes 182 (36.4) 374 (74.8)
Diabetic retinopathy 318 (63.6) 126 (25.2)

Table 2. Variable names and their abbreviations.
Variable name Abbreviation
Albumin ALB
Albumin creatinine ratio BU
Blood pressure high BP_HIGH
Blood pressure low BP_LOW
CA199 CA199
C-reactive protein CP
Lactate dehydrogenase L LDH_L
Lipoproteins LPS
Serum creatinine SCR
Serum uric acid SUA
Total protein TP
Weight WEIGHT
Other tumor OTHER_TUMOR
Other endocrine diseases ENDOCRINE_DISEASE
Gynecological tumor GYNECOLOGICAL_TUMOR
Cerebral apoplexy CEREBRAL_APOPLEXTY
Endocrine gland tumors MEN
Renal failure RENAL_FAILURE
Lung tumor LUNG_TUMOR
Urologic neoplasms UROLOGIC_NEOPLASMS
Gender SEX
Chronic liver disease CHRONIC_LIVER_DISEASE
Digestive carcinoma DIGESTIVE_CARCINOMA
Diabetes disease type DIABETES_DISEASE_TYPE
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Model Performance
In this study, we used various ML algorithms to construct
predictive models, including decision tree, random forest,
extra trees, AdaBoost, XGBoost, and LightGBM. In order
to determine the optimal model parameters, we used ten-
fold cross-validation and grid search strategies, ensuring
thorough and accurate model tuning. The final results,
presented in Table 3, show that XGBoost and LightGBM
exhibited superior performance across multiple evaluation
metrics, including accuracy, precision, recall, F1-score, and
specificity. In particular, XGBoost achieved the highest

accuracy of 86.87%, with a precision of 88.90%, a recall of
84.40%, an F1-score of 86.44%, and a specificity of 89.12%.
LightGBM followed closely with an accuracy of 86.78%,
a precision of 88.72%, a recall of 84.37%, an F1-score of
86.35%, and a specificity of 88.88%. These results highlight
the exceptional capability of both XGBoost and LightGBM in
handling complex datasets, making them ideal for predic-
tive modeling in this context. The other effective models,
however, did not match the overall performance of XGBoost
and LightGBM.

Table 3. Performance comparison of different machine learning models.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)
Specificity
(%)

Decision tree 78.24 85.02 69.88 76.07 86.26
Random forest 85.07 88.25 80.72 84.22 89.16
Extra trees 84.26 89.06 78.32 83.16 89.98
AdaBoosta 83.10 85.44 79.77 82.29 86.31
XGBoostb 86.87 88.90 84.40 86.44 89.12
LightGBMc 86.78 88.72 84.37 86.35 88.88

aAdaBoost: Adaptive Boosting.
bXGBoost: Extreme Gradient Boosting.
cLightGBM: Light Gradient-Boosting Machine.

As shown in Figure 4, through a comprehensive performance
evaluation that included ROC curves, precision-recall curves,
decision curve analysis, and calibration curves, we found
that LightGBM and XGBoost performed exceptionally well.
Both models demonstrated strong discriminative abilities with
an AUC of 0.93, indicating their effectiveness at distinguish-
ing between positive and negative classes. The precision-
recall curves, particularly valuable for imbalanced datasets,
also showed an AUC of 0.93 for both models, reflecting
their capability to maintain high precision and recall, which
minimizes false positives and negatives. In the decision curve
analysis, XGBoost provided the highest net benefit, high-
lighting its robustness and wide applicability across various
clinical decision thresholds. This indicates that XGBoost
can be particularly useful in diverse clinical scenarios,
offering reliable support for decision-making processes. The

calibration curves further confirmed the reliability of the
predicted probabilities from both models, showing that their
predictions closely matched the actual outcomes, especially
in the high probability prediction range. This means that
when the models predict a high probability for an event,
the prediction is likely to be accurate, which is essential for
building trust in model predictions. In summary, LightGBM
and XGBoost excelled across all evaluated metrics, demon-
strating superior performance and robustness. Their high
AUC values, significant net benefit, and accurate probabil-
ity predictions collectively underscore their effectiveness
in handling complex clinical datasets, making them highly
suitable for predictive modeling in health care where accurate
and reliable predictions are critical for effective patient
management and treatment planning.
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Figure 4. Comprehensive evaluation of model performance. (A) Receiver operating characteristic (ROC) curves demonstrate discriminative ability,
with LightGBM achieving the highest AUC (0.93) [6,10]. (B) Precision-recall curves highlight performance in imbalanced datasets, where XGBoost
and LightGBM maintain high precision across recall ranges. (C) Decision curve analysis reveals net clinical benefit, indicating LightGBM’s
superiority over alternative models at most threshold probabilities. (D) Calibration curves assess predictive accuracy, showing LightGBM aligns
closest to the ideal calibration line. AdaBoost: Adaptive Boosting; AUC: area under the curve; LightGBM: Light Gradient-Boosting Machine;
XGBoost: Extreme Gradient Boosting.

Model Explainability
In the analysis of the LIME diagram, we identified a series of
key biomarkers and clinical indicators closely associated with
the occurrence and progression of DN. As depicted in Figure
5A, the values next to each feature represent the contribution
of that feature to the model’s prediction outcomes, denoted
as the importance score. Blue indicates a positive correla-
tion between the feature value and the model’s prediction
outcomes, meaning that as the feature value increases, the
likelihood of the model predicting the positive class also
increases. Conversely, red indicates a negative correlation,
suggesting that as the feature value increases, the likelihood

of the model predicting the negative class increases. LIME
technology provides an intuitive explanation of the factors
influencing model predictions by constructing local surro-
gate models around the model’s predictions in the form of
linear models, approximating the original complex model.
Specifically, the level of serum creatinine was identified
as a significant positive predictive factor, with a threshold
exceeding 99.78 µmol/L associated with an increased risk
of DN. This finding aligns with the clinical understanding
that elevated creatinine levels typically indicate decreased
kidney filtration capacity. Albumin levels within the range
of 9.00 to 64.95 g/L were also associated with the risk
of DN. As the main protein in plasma, abnormal albumin
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levels may indicate malnutrition or an inflammatory state,
both of which can impact kidney health. The lipopolysacchar-
ide level exceeding 191.68 mg/dL was identified as another
positive predictive factor. As an inflammatory mediator,
elevated lipopolysaccharide levels may be linked to the
inflammatory processes in DN. The level of serum uric acid
exceeding 392.32 µmol/L was also identified as a positive
predictive factor. Hyperuricemia is associated with various
kidney diseases and may increase the risk of DN through
mechanisms such as promoting inflammation and oxidative
stress. Blood pressure indicators, including diastolic blood
pressure (BP_LOW) at 72.24 mmHg and systolic blood
pressure (BP_HIGH) not exceeding 125.00 mmHg, were also
considered to be significant in the LIME analysis. Effective
blood pressure control is crucial for slowing the progression

of DN. In addition, the levels of total protein within the
range of 61.30 to 65.70 g/L and lactate dehydrogenase
within the range of 160.55 to 188.66 U/L played a role in
the model’s predictions. Abnormalities in these indicators
may reflect systemic metabolic disorders or tissue damage,
both of which are related to the risk of DN. The presence
of other medical conditions such as gynecological tumors,
endocrine diseases, and lung tumors also showed a negative
correlation with the risk of DN, suggesting that these factors
may have a protective or neutralizing effect in this specific
dataset. Through this detailed analysis, LIME technology
provided a comprehensive and intuitive explanation of the
key factors influencing model predictions, thereby enhancing
our understanding of the biomarkers and clinical indicators
associated with DN.

Figure 5. Feature importance analysis of the LightGBM model. (A) LIME explanation highlights individual feature contributions, where blue/red
bars indicate positive/negative impacts on predictions. (B) SHAP values reveal global feature influence, with ALB_CR and SCR exhibiting the
strongest associations (purple/blue gradient reflects feature magnitude). ALB: albumin; ALB_CR: albumin creatinine ratio; BP_HIGH: blood
pressure high; BP_LOW: blood pressure low; CLD: chronic liver disease; CP: C-reactive protein; LDL_L: lactate dehydrogenase L; LightGBM:
Light Gradient-Boosting Machine; LIME: Local Interpretable Model-Agnostic Explanations; LPS: lipoproteins; MEN: endocrine gland tumors; SCR:
serum creatinine; SHAP: Shapley Additive Explanations; SUA: serum uric acid; TP: total protein.

Figure 5B illustrates the SHAP importance of features within
the LightGBM model, identifying primary factors such as
lipoprotein A, serum creatinine, C-reactive protein, albumin,
and blood pressure high as crucial ones in evaluating DN.
These features are pivotal across models, underscoring their
integral role in disease assessment. Lipoprotein_A and other
lipoproteins serve as critical lipid markers, essential for

gauging the cardiovascular risks and progression of kidney
disease in patients with diabetes. Abnormal lipid metabo-
lism is intimately linked with the onset of DN, highlighting
a potential need for enhanced lipid management strategies
to thwart disease advancement. Furthermore, Serum_Cre-
atinine and Blood_Urea nitrogen are paramount biochem-
ical indicators for renal function assessment. Elevated
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concentrations of these markers generally denote diminished
kidney filtration ability, serving as significant indicators of
DN progression. Regular monitoring of these parameters is
vital for the early detection of renal impairment and timely
medical intervention. Albumin serves as a sensitive biomarker
for early DN. The abnormal rate of urinary albumin excre-
tion reflects the extent of renal damage. Early detection
and continual monitoring of urinary albumin levels enable
physicians to assess disease progression and the efficacy of
their treatment protocols, thereby facilitating the development
of customized therapeutic strategies aimed at decelerating
disease progression. Hypertension significantly accelerates
DN development; thus, effective blood pressure management
is imperative for delaying or preventing disease progres-
sion. Optimal control of hypertension not only preserves
renal function but also mitigates the risk of cardiovascu-
lar incidents. The collective significance of these features
underscores their pivotal role in DN assessment. Through
a comprehensive analysis of these factors, physicians can
obtain a deeper understanding of the disease’s complex-
ity, and develop more effective monitoring and treatment
modalities that enhance patients’ management and prognosis.

Figure 6 delineates the correlation between various
biochemical indicators and their SHAP values in interpret-
able ML models designed for predicting and evaluating
the risk of DN. An in-depth analysis of these biochemi-
cal markers furnishes critical scientific insights into their
influence on DN risk predictions, thereby informing clinical
intervention strategies. The analysis reveals a pronounced
negative correlation between the levels of blood urea nitrogen
(blood urea) and the model’s predictive accuracy. As blood
urea nitrogen levels increase, the associated SHAP values
decline markedly, signifying an augmented risk of DN.
This trend underscores the prognostic importance of blood
urea nitrogen in the early detection of renal dysfunction,
establishing it as an essential indicator for kidney disease
risk assessments. Similarly, fluctuations in albumin levels
are critical for forecasting DN. The presented data indicate
that rising albumin levels correlate with decreasing SHAP
values, underscoring albumin’s predictive utility, particu-
larly in detecting microalbuminuria—an early manifestation
of kidney damage. Elevated levels of C-reactive protein,
a marker of systemic inflammation, also correspond with
reduced SHAP values, suggesting that high concentrations
of this protein are linked to an increased risk of DN. This
relationship may stem from chronic inflammatory states that
foster the progression of DN. The findings concerning serum
creatinine demonstrate that increased creatinine levels are
indicative of reduced kidney filtration capabilities, mirrored
by a decline in SHAP values. This reinforces the value
of serum creatinine as a crucial indicator of renal insuffi-
ciency and a metric for assessing the risk of DN. The
analysis also highlights the significant negative impact of
elevated lipoprotein markers on the model’s predictions,
emphasizing the imperative role of lipid management in
the prevention and treatment of DN. The perturbations in
these indicators not only relate to cardiovascular diseases but
also pose a substantial risk factor for DN. Furthermore, the
notable SHAP values for endocrine disease and diabetes type

underscore the critical role of these conditions in assessing
DN risk, indicating that they are significant contributors to
the disease’s development. By synthesizing these data, we
can enhance our comprehension of the risk factors associated
with DN. This integration aids medical professionals in more
accurately identifying patients at high risk, thereby facilitating
the development of more effective treatment strategies and
management practices to improve the renal health of patients
with diabetes.

For the purpose of evaluating the predictive models
for DN, the SHAP value plots for three distinct samples
(Figure 7) offer a nuanced understanding of the contribu-
tion of various biochemical and physiological indicators to
disease risks prediction. These comprehensive data enable
insights into how different indicators, either individually or
synergistically, influence disease risk assessment, thereby
furnishing a scientific foundation for clinical decision-mak-
ing. The analysis of the first sample elucidates that elevated
levels of serum creatinine and C-reactive protein markedly
enhance disease risks. Serum creatinine, a key marker of
renal function impairment, signals a significant reduction
in kidney function, which is particularly crucial in DN
where renal lesions often correlate with prolonged subopti-
mal diabetes control. C-reactive protein, indicative of the
body’s inflammatory response, suggests the presence of
an inflammatory state that is instrumental in accelerating
renal damage. Furthermore, hypertension is a significant risk
factor for DN, and the notably increased low blood pressure
might suggest inadequate blood pressure management in this
sample, exacerbating the renal burden. Conversely, higher
levels of serum uric acid and albumin are generally viewed
as protective in the first sample. Although elevated serum
uric acid levels are linked to other conditions like gout,
they may indicate preserved renal excretion function to a
degree. Albumin, a crucial component of plasma proteins,
with maintained levels suggests a favorable nutritional state
and some preservation of kidney filtration function. The
analysis of the second sample, with its positive prediction
value indicating disease absence, highlights the critical role of
lipoprotein A in increasing disease risks. Lipoprotein A, an
independent risk factor for cardiovascular diseases, under-
scores a possible link between cardiovascular and renal health
in the context of DN. Moreover, an elevated level of serum
lipase (lipopolysaccharides) contributes to lowering disease
risks in this sample, possibly due to its role in modulat-
ing immune responses and inflammation. The third sam-
ple’s negative prediction value signals a heightened disease
risk. In this context, increased serum creatinine and high
blood pressure significantly elevate disease risks, emphasiz-
ing the importance of vigilant monitoring and control of these
indicators. Although blood urea contributes less significantly
to the prediction value, its elevation is typically associ-
ated with renal insufficiency and warrants clinical attention.
Through this meticulous SHAP value–based analysis, we
unveil not only the specific contributions of each biochem-
ical indicator to disease risks but also the intricate inter-
play and connections among these indicators. This profound
understanding provides invaluable information for medical
professionals in the early diagnosis, risk assessment, and
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therapeutic decision-making of DN, facilitating personalized
medicine and enhancing treatment outcomes of patients.

Figure 6. SHAP value distributions for key biochemical indicators in nephropathy risk prediction. Each subplot illustrates the relationship between
feature values (x-axis) and SHAP values (y-axis), with color gradients indicating feature magnitude. Red dashed lines denote baseline thresholds,
where features above/below these thresholds significantly influence model predictions. Notably, ALB_CR and SCR exhibit the strongest associations
with nephropathy risk due to their wide SHAP value ranges and distinct clustering patterns. Detailed subfigures are available in Multimedia
Appendices 1–9. ALB_CR: albumin creatinine ratio; BP_HIGH: blood pressure high; CP: C-reactive protein; LDL_L: lactate dehydrogenase L; SCR:
serum creatinine; SHAP: Shapley Additive Explanations; SUA: serum uric acid; TP: total protein.
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Figure 7. Comparative analysis of Shapley Additive Explanations (SHAP) values across three patient samples for diabetic nephropathy prediction.
Each waterfall plot illustrates individual feature contributions to the final prediction score, where red/blue segments indicate positive/negative
impacts on diabetic nephropathy risk. The base value represents the average model output without feature effects, while the final f(x) reflects
personalized risk assessment. Notably, SUA and ALB exhibit consistent positive associations in high-risk samples (first/second), whereas MEN and
HTN dominate negative contributions in low-risk cases (third). ALB: albumin; BP_HIGH: blood pressure high; BP_LOW: blood pressure low; BU:
albumin creatinine ratio; CP: C-peptide; CRP: C-reactive protein; LP_A: lysophosphatidic acid; LPS: lipoproteins; DC: digestive carcinoma; HTN:
hypertension; LPS: lipoproteins; MEN: endocrine gland tumors; OT: other tumor; PL: phospholipid; SCR: serum creatinine; SUA: serum uric acid.

Discussion
Principal Findings
In this study, we focused on developing a predictive model
for DN risks and conducted an extensive feature analy-
sis, aiming to identify patients at risk of progressing to
severe kidney disease in a clinical setting. To achieve
this goal, we thoroughly analyzed a range of biomarkers
and clinical indicators and evaluated several popular ML
algorithms. Among these various algorithms tested, we found
that the gradient-boosting–based algorithms, XGBoost and
LightGBM, performed exceptionally well on our dataset.
The models not only demonstrated significant advantages in
training speed and handling large datasets but also exhibi-
ted superior predictive performance across key metrics such
as accuracy, precision, recall, and AUC, showcasing their
outstanding predictive capabilities. Our study also found
that serum creatinine, the albumin-creatinine ratio (ACR),
abnormal levels of lipoproteins, C-peptide, and hypertension
were the most relevant factors associated with DN, aligning
with findings from clinical research on the key risk factors for
DN progression.
Comparison With Prior Work
Serum creatinine is a key biomarker for evaluating DN and
core indicator of kidney function, and its elevated levels are
often closely associated with kidney damage. In patients with

diabetes, even a slight increase in serum creatinine levels is
sufficient to indicate early kidney function impairment [31].
As serum creatinine levels rise, the risk of kidney damage
also increases; thus, it is recommended to closely monitor
serum creatinine levels in diabetes management [32]. Serum
creatinine levels have independent predictive value in the
progression of DN. Regular monitoring of serum creatinine
levels helps the early identification of potential kidney disease
risks and the taking of appropriate preventive measures [33].
By optimizing medical management for patients with diabetes
and regularly assessing serum creatinine levels, clinicians can
detect and address kidney function damage earlier, thereby
reducing the progression risk of DN.

The ACR is an important method for detecting microalbu-
minuria, used to evaluate early changes in kidney disease in
patients with diabetes. An increase in ACR is closely related
to the progression of DN, and even a slight elevation in ACR
should be considered as a warning signal for the develop-
ment of DN [34]. Elevated ACR is an independent predic-
tor for the progression of DN, and regular monitoring of
ACR levels helps the early identification of potential kidney
disease risks, aiding clinicians in assessing disease progres-
sion and treatment response [35]. Moreover, a reduction in
ACR is associated with a slowdown in the progression of DN
and a decrease in cardiovascular event rates. By optimizing
medical management for patients with diabetes and regularly
monitoring ACR levels, clinicians can detect and address
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kidney function damage earlier, thus reducing the risk of
progression of DN [36].

Abnormal levels of lipoproteins, particularly elevated
low-density lipoprotein (LDL) and very low–density
lipoprotein (VLDL), are significant risk factors in the
development of diabetic kidney disease. These lipid parti-
cles damage vascular endothelium, thereby accelerating the
progression of diabetic kidney disease. Research indicates
that changes in the size and number of LDL particles in
patients with diabetes are significantly correlated with renal
function impairment [37]. Elevated LDL levels not only lead
to atherosclerosis but also directly harm renal function by
promoting inflammation and oxidative stress. This damage
mechanism is primarily manifested by the thickening of
the glomerular basement membrane and glomerulosclerosis,
which may ultimately result in renal failure [38]. Simi-
larly, elevated VLDL levels are closely associated with the
progression of kidney disease. VLDL carries a large amount
of triglycerides and can be absorbed by renal tubular cells,
causing cytotoxic reactions that further exacerbate tubular
damage and accelerate the progression of kidney disease [39].
Even after other comorbid factors are controlled, high LDL
levels remain significantly associated with the progression of
kidney disease. Multiple studies have also shown that high
LDL levels are closely related to increased urinary pro-
tein excretion and decreased renal function [40,41]. There-
fore, managing lipoprotein levels is crucial to slowing the
progression of diabetic kidney disease. Dietary adjustments,
medication treatments such as statins, and lifestyle changes
can effectively lower LDL and VLDL levels, thus protecting
renal function.

C-peptide is an important marker for evaluating β-cell
function in the pancreas, with its levels closely associated
with metabolic control in diabetes. Low C-peptide levels
are linked to an increased risk of DN, possibly due to
metabolic disorders caused by insufficient insulin secretion.
In contrast, high C-peptide levels are associated with a
reduced risk of renal function deterioration in patients with
type 2 diabetes. Research indicates that patients with higher
C-peptide levels would experience slower declines in renal
function and less increase in albuminuria [42]. Moreover,
C-peptide shows potential in the treatment of DN. C-pep-
tide replacement therapy can reduce glomerular hyperfiltra-
tion, decrease albumin excretion, and prevent glomerular and
renal hypertrophy [43]. Supporting this view, another study
demonstrates that C-peptide at physiological concentrations
can improve glomerular filtration rate and increase renal
plasma flow, and effect further validation in clinical trials
[44]. C-peptide levels play a crucial role in the progres-
sion and management of DN. Monitoring and potentially
modulating these levels through therapeutic interventions can
provide significant benefits for the prevention and treatment
of DN.

Hypertension is a major risk factor for the development
and progression of DN. Persistent hypertension can lead
to structural and functional changes in the renal vascula-
ture, accelerating the decline in renal function. Patients
with hypertension experience faster progression of kidney

damage and thus require earlier intervention to prevent
further deterioration of renal function [45]. In the context
of hypertension, a sustained high pressure load on the renal
blood vessels results in the thickening and hardening of the
vessel walls. These structural changes weaken the kidney’s
filtration function and accelerate glomerulosclerosis and renal
fibrosis [34]. Effective hypertension management typically
includes the use of angiotensin-converting enzyme inhibitors
and angiotensin receptor blockers, which not only lower
blood pressure but also provide renal protection [46]. On the
other hand, although hypotension is less common in patients
with diabetes, it can have negative effects on renal function
in certain situations. In severe circulatory failure or shock,
hypotension can lead to inadequate renal perfusion, reducing
blood flow to the kidneys and exacerbating renal damage.
In clinical practice, the management strategies for hyperten-
sion and hypotension need to be individualized. For patients
with hypertension, the goal is to reduce blood pressure to
recommended levels while avoiding excessive hypotension.
For patients at risk of hypotension, particularly older adults,
close monitoring of blood pressure fluctuations is essential to
prevent inadequate renal perfusion. Overall, blood pressure
management plays a crucial role in the prevention and
treatment of DN. Appropriate pharmacological treatment and
lifestyle interventions can control blood pressure effectively,
protect renal function, and delay the progression of DN.

Limitations
This study has made notable progress in predicting DN;
however, certain limitations remain. First, the data used in
the study were sourced from a single medical institution.
Although the model performed well on this dataset, valida-
tion with data from other institutions is needed to assess
its effectiveness and generalizability. Additionally, the model
has not yet undergone comprehensive clinical validation, and
some features selected by the algorithm may lack diagnostic
significance, while commonly used clinical indicators might
not have been included.
Future Directions
Future research should focus on the following improve-
ments: collecting data from multiple institutions to validate
the model’s robustness, strengthening collaboration with
clinical experts to optimize feature selection based on clinical
knowledge, and investigating potential nonlinear relationships
among features. Developing a user-friendly online platform
and a simplified scoring system would make the model
more intuitive and accessible for clinical use. Furthermore,
incorporating multimodal data, such as imaging and genomic
information, could enhance the model’s predictive perform-
ance and clinical value, providing robust support for the early
diagnosis and personalized treatment of DN.
Conclusion
In this study, we developed a robust predictive model for
DN using various ML techniques. Among the models tested,
XGBoost and LightGBM demonstrated superior performance,
achieving notable metrics across other performance indica-
tors. The integration of XML techniques, such as LIME
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and SHAP, provided valuable insights into the contribution
of individual features, enhancing the model’s transparency
and interpretability, which is crucial for clinical application.
Our analysis identified several significant risk factors for
DN, including serum creatinine, C-peptide, albumin, and
lipoproteins. These findings are well-supported by extensive

literature, reinforcing the reliability and relevance of our
predictive model. The ability to accurately predict DN
and understand the underlying risk factors allows for early
intervention and personalized treatment strategies, ultimately
improving patients’ outcomes and optimizing health care
resource usage.
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