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Abstract
Background: With the rapid development of artificial intelligence (AI) technology, especially generative AI, large language
models (LLMs) have shown great potential in the medical field. Through massive medical data training, it can understand
complex medical texts and can quickly analyze medical records and provide health counseling and diagnostic advice directly,
especially in rare diseases. However, no study has yet compared and extensively discussed the diagnostic performance of
LLMs with that of physicians.
Objective: This study systematically reviewed the accuracy of LLMs in clinical diagnosis and provided reference for further
clinical application.
Methods: We conducted searches in CNKI (China National Knowledge Infrastructure), VIP Database, SinoMed, PubMed,
Web of Science, Embase, and CINAHL (Cumulative Index to Nursing and Allied Health Literature) from January 1, 2017, to
the present. A total of 2 reviewers independently screened the literature and extracted relevant information. The risk of bias
was assessed using the Prediction Model Risk of Bias Assessment Tool (PROBAST), which evaluates both the risk of bias and
the applicability of included studies.
Results: A total of 30 studies involving 19 LLMs and a total of 4762 cases were included. The quality assessment indicated a
high risk of bias in the majority of studies, primary cause is known case diagnosis. For the optimal model, the accuracy of the
primary diagnosis ranged from 25% to 97.8%, while the triage accuracy ranged from 66.5% to 98%.
Conclusions: LLMs have demonstrated considerable diagnostic capabilities and significant potential for application across
various clinical cases. Although their accuracy still falls short of that of clinical professionals, if used cautiously, they have the
potential to become one of the best intelligent assistants in the field of human health care.
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Introduction
The Google Brain research team has consistently aimed
to push the boundaries of recurrent language models and
encoder-decoder architectures. In 2017, Vaswani et al [1]
introduced a novel and simple network architecture known
as the Transformer. This architecture uses a new mecha-
nism called “self-attention,” leading to significant advance-
ments in the development and training of large language
models (LLMs). These models possess advanced capabilities
beyond extraction or summarization tasks and include natural
language generation. Although there is no official definition
of LLM, based on the literature [2,3], we define LLM as a
model with over a billion parameters, designed for typical
artificial intelligence (AI) applications.

Accurate clinical diagnosis is essential for patient
treatment outcomes and survival rates. However, even when
health care professionals gather extensive information and
conduct numerous observations and tests, absolute diagnos-
tic accuracy cannot be guaranteed. Minimizing diagnostic
uncertainty and making the most appropriate treatment
decisions remain persistent clinical challenges [4,5]. As of
May 2024, the US Food and Drug Administration has
approved 882 medical devices that use AI or machine
learning assistance. By June 2024, the National Medical
Products Administration of China has approved 17 AI-assis-
ted diagnostic devices. In the era of big data in health care,
the integration of AI with clinical decision support is a
developing trend [6]. Numerous experts and scholars have
explored the application of specialized AI and software tools
in clinical diagnosis, yet there is limited knowledge about
the performance of LLMs in this context. Therefore, this
study aims to comprehensively evaluate the performance and
accuracy of LLMs in clinical diagnosis, providing references
for their clinical application.

Methods
Overview
This systematic review was conducted following the
Preferred Reporting Items for Systematic Reviews and
Meta-Analysis of Diagnostic Test Accuracy Studies
(PRISMA-DTA) statement [7]. Specific details can be found
in Checklist 1.
Data Sources
A computer-assisted literature search of PubMed, Web of
Science, Embase, CINAHL (Cumulative Index to Nurs-
ing and Allied Health Literature), CNKI (China National
Knowledge Infrastructure), VIP, and SinoMed databases was
performed from January 1, 2017, to the present. Search terms
included controlled terms (MeSH [Medical Subject Heading]
in PubMed and Emtree in Embase) and free-text terms. The
following terms were used (including synonyms and closely
related words) as index terms or free-text words: “large
language model,” “medicine,” “diagnosis,” and “accuracy.”
A search filter was applied to limit the results to humans.

Only peer-reviewed cross-sectional studies and cohort studies
were included. Multimedia Appendix 1 provides more details
of the search strategy and study selection.
Selection Criteria
This review included studies meeting the following crite-
ria: (1) investigated the application of LLMs in the initial
diagnosis of human cases, (2) published between January 1,
2017, and the date of the search, (3) study type was either
cross-sectional or cohort, (4) a primary source, and (5) written
in English or Chinese.

An article was excluded if it (1) was a nonprimary source
such as theses, conference papers, etc, (2) did not compare
the diagnostic accuracy of clinical professionals in relevant
departments with that of LLMs, (3) did not specify the type
or scale of the LLM used for diagnosis, (4) did not have
LLM independently conduct clinical case diagnoses, (5) was
a duplicate publication, and (6) did not provide complete data
or the full text could not be obtained.
Data Selection and Extraction
A total of 2 reviewers (GS and XC) independently reviewed
the full texts of the eligible articles and extracted data. Any
disagreements between the reviewers were discussed until a
consensus was reached. The detailed characteristics extracted
from each included study were: the first author and publica-
tion year, the country where the research was conducted, the
study type, the study population, the source of cases, sample
size, the LLMs used, control groups, and outcome measures.
Quality of Evidence and Risk of Bias
Due to the significant heterogeneity often present in the
design and implementation of diagnostic accuracy studies,
it is crucial to carefully assess the quality of the included
studies. The Prediction Model Risk of Bias Assessment
Tool (PROBAST) was used to evaluate the risk of bias and
applicability of all included studies [8]. PROBAST assesses
risk of bias across 4 domains: study participants, predic-
tors, outcomes, and statistical analysis, while applicability is
evaluated through the first 3 domains.

Given the complex structure and vast number of parame-
ters in LLMs, they can be considered a “black box” to some
extent, meaning that their internal workings and decision-
making processes may not be entirely transparent or easily
understood by humans [6]. Consequently, during the quality
assessment, certain signal issues were excluded as they were
unrelated to generative AI models [9].

Results
Selection of Studies
A total of 2491 studies were found in the databases by 2
researchers independently following the predefined search
strategies and data collection methods. An additional 12
articles were identified through reference tracing, bringing the
total number of studies screened to 2503. Among these, 169
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studies were read in full, resulting in 30 studies that met the
inclusion criteria for synthesis. Reasons for exclusion at this

stage were recorded and can be found in the flow diagram
(see Figure 1).

Figure 1. Flow diagram. Papers identified in databases, title or abstract screened, read full text, and included in the synthesis. Reasons for exclusion
are listed. CINAHL: Cumulative Index to Nursing and Allied Health Literature; CNKI: China National Knowledge Infrastructure.

Studies Characteristics
The 30 included studies [10-39] were concentrated within
the past 3 years, with 12 published in 2023, 16 in 2024,
and 2 in 2025. These studies cover a wide range of coun-
tries, primarily from Japan, the United States, and China. A
total of 4762 cases were analyzed, involving 19 LLMs. The
studies predominantly focused on GPT-3.5 (n=14) and GPT-4
(n=20) versions (OpenAI), extensively applied in assess-
ing clinical diagnostic accuracy. In contrast, fewer studies
addressed Google Bard (n=3), Bing (n=3), GPT-4o (n=2),
and GPT-4V (n=2). The case diagnoses encompassed various

fields, including ophthalmology (n=9), internal medicine
(n=6), emergency medicine (n=3), and general medicine
(n=3), among others. The control groups included at least
193 clinical professionals, ranging from resident doctors to
medical experts with over 30 years of clinical experience,
to compare their diagnostic capabilities with those of the
LLMs. All included studies used LLMs for data testing
purposes only and were not used for real-time diagnosis of
clinical patients. Table 1 shows the basic characteristics of the
included studies.

Table 1. Characteristics and results of the eligible studies.

Study Year Country Study type Subjects Case source
Sample
size LLMa

Comparison
group

Outcome
measures

Zhang et al [10] 2024 China Prospective
study

Ophthalmology
cases

Patient visit
records

26 GPT-4o Ophthalmolo-
gists

cb, gc

Makhoul et al
[11]

2024 Lebanon Cross-sectional
study

Otolaryngology
cases

Published
case reports

32 GPT-3.5 ENTd
physicians, FMe
specialists

af, bg

Pillai et al [12] 2023 The
United
States

Cross-sectional
study

Autoimmune
diseases cases

Published
case reports

40 GPT-3.5
GPT-4
LLaMa 2

A certified
internist

af, bg
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Study Year Country Study type Subjects Case source
Sample
size LLMa

Comparison
group

Outcome
measures

Levin et al [13] 2024 Israel Cross-sectional
study

Neonatal cases Developed by
researchers

6 GPT-4
Claude-2.0

Certified
neonatal nurse
practitioners

cb, gc

Lyons et al [14] 2023 The
United
States

Cross-sectional
study

Ophthalmology
cases

Developed by
researchers

44 GPT-4
Bing

Ophthalmology
physicians

bg, dh

Sarangi et al
[15]

2023 India Cross-sectional
study

General cases Developed by
researchers

120 GPT-3.5
Bard
Bing

Radiology
residents

af

Paslı et al [16] 2024 Turkey Prospective
study

Emergency
cases

Patient visit
records

758 GPT-4 The EDi triage
team

dh

Wang et al [17] 2024 China Retrospective
cohort study

Thyroid cases Patient visit
records

109 GPT-4 Thyroid doctors cb

Huang et al [18] 2024 The
United
States

Cross-sectional
study

Ophthalmology
cases

Patient visit
records

20 GPT-4 Subspecialists (in
glaucoma or
retina)

cb, gc

Stoneham et al
[19]

2023 UK Retrospective
study

Dermatology
cases

Patient visit
records

36 GPT-4 A dermatologist af

Hirosawa et al
[20]

2023 Japan Cross-sectional
study

Internal
medicine cases

Published
case reports

52 GPT-3.5
GPT-4

GIMj physicians af, bg

Horiuchi et al
[21]

2025 Japan Retrospective
study

Musculoskeletal
cases

Published
case reports

106 GPT-4
GPT-4V

Radiologists af, bg

Mitsuyama et al
[22]

2024 Japan Retrospective
study

Brain tumors
cases

Patient visit
records

150 GPT-4 Radiologists af, bg

Hirosawa et al
[23]

2023 Japan Retrospective
cohort study

Internal
medicine cases

  Published
case
reports and
developed
by
researchers

82 Bard GIMj physicians af, bg

Suh et al [24] 2024 Korea Retrospective
study

General cases   Published
case
reports

190 GPT-4V
Gemini Pro
Vision

Radiologists bg

Fraser et al [25] 2023 The
United
States

Cross-sectional
study

Emergency
cases

Patient visit
records

40 GPT-3.5
GPT-4

ED physician af, bg, dh

Hirosawa et al
[26]

2023 Japan Prospective
study

Internal
medicine cases

Developed by
researchers

30 GPT-3.5 GIMj physicians af, bg

Shemer et al
[27]

2024 Israel Retrospective
cohort study

Ophthalmology
cases

Patient visit
records

63 GPT-3.5 Ophthalmology
residents and
ophthalmologists

af, gc

Mohammadi et
al [28]

2024 Iran Retrospective
study

Tibial plateau
fracture cases

Retrospective
study

111 GPT-4
GPT-4o

An ED physician
and radiologist

fk

Arslan et al [29] 2025 Turkey Prospective
study

Emergency
cases

Patient visit
records

468 GPT-4
Copilot Pro

Triage nurses dh

Rojas-Carabali
et al [30]

2023 Singapore Cross-sectional
study

Ophthalmology
cases

Developed by
researchers

25 GPT-3.5
GPT-4

Ophthalmologist
s

af, bg

Kaya et al [31] 2024 Germany Retrospective
study

Myocarditis
cases

Patient visit
records

396 GPT-4 Radiologists af, el

Delsoz et al [32] 2024 The
United
States

Cross-sectional
study

Ophthalmology
cases

Published
case reports

20 GPT-3.5
GPT-4

Cornea
specialists

af

Ming et al [33] 2024 China Cross-sectional
study

Ophthalmology
cases

Published
case reports

104 GPT-3.5 Ophthalmic
residents

af, bg

 

JMIR MEDICAL INFORMATICS Shan et al

https://medinform.jmir.org/2025/1/e64963 JMIR Med Inform 2025 | vol. 13 | e64963 | p. 4
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e64963


 

Study Year Country Study type Subjects Case source
Sample
size LLMa

Comparison
group

Outcome
measures

GPT-4
Nakaura et al
[34]

2024 Japan Retrospective
study

Internal
medicine cases

Patient visit
records

28 GPT-2
GPT-3.5
GPT-4

Radiologists af, bg

Ito et al [35] 2023 Japan Cross-sectional
study

General cases Published
case reports

45 GPT-4 Emergency
physicians

af, dh

Gunes et al [36] 2024 Turkey Cross-sectional
study

thoracic cases Published
case reports

124 10 LLMs
including
GPT-3.5/4
Claude 3
Opus…

Published case
reports

af

Delsoz et al [37] 2023 The
United
States

Cross-sectional
study

Ophthalmology
cases

Published
case reports

11 GPT-3.5 Ophthalmology
residents

af

Liu et al [38] 2023 China Prospective
study

Ophthalmology
cases

Patient visit
records

1226 GPT-3.5 Ophthalmologist
s

el

Li et al [39] 2024 China Retrospective
study

Abdominal
cases

Patient visit
records

300 ERNie, 4.0
Claude 3.5
Sonnet

Radiologists cb

aLLM: large language model.
bAccuracy score.
cOther auxiliary indicators (such as diagnostic completeness, diagnostic time, number of answers, etc).
dENT: ear, nose, and throat.
eFM: family medicine.
fFrequency of correct primary diagnosis (answer).
g Frequency of correct diagnosis in a differential diagnosis list.
hTriage accuracy.
iED: emergency department.
jGIM: general internal medicine.
kAUC: area under the curve.
lF1-score

Quality of Evidence and Risk of Bias
The included articles were evaluated using the PROBAST
tool, with the results presented in Multimedia Appendix
2. Overall, 10/30 (33.3%) studies had a low risk of bias,
while 20/30 (66.6%) exhibited a high risk of bias. Regard-
ing applicability, majority of study had low applicability
concerns. Due to ethical concerns and patient privacy issues
associated with the use of LLMs in clinical settings, most of
the studies consist of retrospective studies with deidentified
data and are limited to data testing. A total of 14 studies
evaluated the diagnostic accuracy of models using small test
sets. In addition, the “black box” nature of LLMs, whose
training data are often undisclosed, complicates external
evaluation and verification.
LLM Feature Analysis
Although a total of 19 different LLMs were used in the
included studies, extracting the LLM with the best diagnostic

performance in studies tested with multiple large models
simultaneously, we found that the optimal LLM did not
belong to the GPT series in only 6 studies. In 80% (24/30)
of the studies, the researchers chose to obtain and use the
corresponding LLMs directly on the official website by online
access, which somewhat lowered the threshold for the use of
the LLMs in the medical field and made it more accessible
to the public. In total, 18 of the included studies specified the
date of access or version of the LLM used. Retrieval-augmen-
ted generation (RAG) is a technique that combines informa-
tion retrieval and generation to enhance task performance by
incorporating relevant information into LLMs [40]. RAG was
mentioned in 2 of the studies by further training of pretrained
models specific to task datasets, and although RAG has been
widely used in large model studies, it needs to be strength-
ened in the medical field. Specific details can be found in
Table 2.
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Table 2. Characteristics of the large language models (LLMs) in eligible studies.

Study
Optimal LLMa
in research

Issuing
company Access mode

Date accessed
(version)

Parameter
settings RAGb

Zhang et al [10] GPT-4o Open AI —c — — Unused
Makhoul et al [11] GPT-3.5 — Application-based ChatGPT 3.5 — — Unused
Pillai et al [12] GPT-4 Open AI Online access August 12, 2023 — Unused
Levin et al [13] Claude-2.0 Anthropic Platform developed by Anthropic

(@Poe)
— — Unused

Lyons et al [14] GPT-4 Open AI Online access March 19-24, 2023 — Unused
Sarangi et al [15] Bing Microsoft Search engine-based GPT-4 June 2023 — Unused
Paslı et al [16] GPT-4 Open AI Online access September 25, 2023 — RAG
Wang et al [17] GPT-4 — Platform-based GPT-4 developed by

researchers (ThyroAIGuide)
— — Unused

Huang et al [18] GPT-4 Open AI Online access May 12, 2023 — Unused
Stoneham et al [19] GPT-4 Open AI Online access — — Unused
Hirosawa et al [20] GPT-4 Open AI Online access April 10, 2023 — Unused
Horiuchi et al [21] GPT-4 Open AI Online access September 25, 2023 — Unused
Mitsuyama et al [22] GPT-4 Open AI Online access May 24, 2024 — Unused
Hirosawa et al [23] Bard Google Online access June 8, 2023 — Unused
Suh et al [24] GPT-4V Open AI Online access — Temperature=1 Unused
Fraser et al [25] GPT-3.5 Open AI Online access July 2023 — Unused
Hirosawa et al [26] GPT-3.5 Open AI Online access January 5, 2023 — Unused
Shemer et al [27] GPT-3.5 Open AI Online access March 2023 — Unused
Mohammadi et al [28] GPT-4o Open AI Online access December 2023 — Unused
Arslan et al [29] GPT-4 Open AI Online access — — Unused
Rojas-Carabali et al [30] GPT-4 Open AI Online access — — Unused
Kaya et al [31] GPT-4 Open AI Online access March to July 2023 — Unused
Delsoz et al [32] GPT-4 Open AI Online access — — Unused
Ming et al [33] GPT-4 Open AI Online access March 5-18, 2024 — Unused
Nakaura et al [34] Bing Microsoft Search engine-based GPT-4 — — Unused
Ito et al [35] GPT-4 Open AI Online access March 15, 2023 — Unused
Gunes et al [36] Claude 3 Opus Anthropic Online access May 2024 — Unused
Delsoz et al [37] GPT-3.5 Open AI Online access — — Unused
Liu et al [38] GPT-3.5 Open AI Online access — Temperature=0 Unused
Li et al [39] Claude 3.5 Sonnet Anthropic Online access June 13 to July 5, 2024 Tempera-

ture=1×10-10 RAG

aLLM: large language model.
bRAG: retrieval-augmented generation.
cNot available.

Results of Diagnosis
The accuracy of the diagnoses made by the LLMs and the
clinical professionals in the studies depends on the “stand-
ard answer” mentioned in the literature. The comparison is
based on how their answers align with this standard. The
“standard answer” in the included studies consists of the final
diagnoses recorded in patient medical records or case reports,
predetermined answers set by case developers, and diagnoses
established by experienced clinical experts in the relevant
departments.
Application of LLMs in Clinical Diagnosis
The most common model task was the free text task, which
appeared in 19 articles, while only 1 article involved a
choice task. English was used for input and output in all
but 2 articles: one used Hebrew for prompting, and the
other used Chinese to compare model diagnostic perform-
ance. In LLM, prompt is an input mode that guides the
model to specific tasks or generates specific outputs, typically

including elements such as instructions (task descriptions),
context (background information), examples, input data,
output instructions, and roles [41,42]. When LLMs are used
for case diagnosis, the most frequently used elements are
commands and input data, which primarily include patient
basic information, complaints, medical history, physical
examination, and laboratory tests. The output content mainly
consists of diagnostic lists or triage recommendations. The
diagnostic accuracy of health care professionals in each study
was evaluated by investigators or experts in relevant fields.

In studies where multiple LLMs were used to diagnose
sample cases, only the data for the model with the best
diagnostic performance were recorded. Of these studies, 85%
(24/30) reported that the ChatGPT series models demon-
strated the best diagnostic performance. Several investiga-
tors noted that the diagnostic accuracy of GPT models
was comparable with that of physicians and did not show
significant differences. Specific details can be found in
Multimedia Appendix 3.
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Comparison of Diagnostic Accuracy
Between LLMs and Health Care
Professionals
Pooling the data revealed that 70% (21/30) of the studies
used the frequency of correct diagnoses in model responses
as the primary evaluation indicator of clinical diagnostic
accuracy, excluding other auxiliary indicators. All accuracy
results were expressed as percentages. For the optimal model,
the accuracy of the primary diagnosis ranged from 25% to
97.8%, while triage accuracy ranged from 66.5% to 98%. In
medical practice, the diagnostic agreement criterion is usually
set at over 80%. The GPT series LLMs achieved diagnostic
accuracy greater than 80% in clinical tasks across 3 stud-
ies in ophthalmology, 2 studies in general medicine, and 1
study each in radiology, emergency medicine, and general

practice. Among the 7 studies focused on ophthalmic case
diagnosis, the diagnostic performance was generally high,
with 77.8% (7/9) of the large models showing diagnostic
accuracy comparable with that of health care professionals.

In these cases, health care professionals received the same
prompting words as the LLMs. In 60% (18/30) of the studies,
control group participants were blinded to the true nature and
goals of the study until it was completed. The diagnostic
accuracy of health care professionals was compared with the
outcomes of LLMs. The results showed that in 33.7% (20/30)
of the studies, professionals had higher diagnostic accuracy
than the models. In 33.3% (10/30) of the studies, the LLMs,
specifically ChatGPT, had higher diagnostic accuracy than
humans. The specific diagnostic accuracy comparisons are
detailed in Table 3.

Table 3. Comparison of diagnostic accuracy between large language models (LLMs) and clinical professionals.

Specialty and study
Clinical
professionals Evaluation results (LLMs vs clinical professionals), %

aa bb cc dd ee ff

Ophthalmology
Zhang et al [10] 3 —g — 55 vs 74.7 — — —
Lyons et al [14] 8 — 93 vs 95h — 98.0 vs 86.0 — —
Huang et al [18] 15 — — 50.4 vs 50.3 — — —
Shemer et al [27] 6 68 vs 90 — — — — —
Rojas-Carabali et al [30] 5 64 vs 85.6 72 vs 89.6h — — — —
Delsoz et al [32] 3 85 vs 96.7 — — — — —
Ming et al [33] 3 59.6 vs 60.6 76 vs 65.4h — — — —
Delsoz et al [37] 3 72.7 vs 66.6 — — — — —
Liu et al [38] 2 — — — — 80.1 vs 89.4 —

Internal medicine
Hirosawa et al [20] 3 60 vs 50 81 vs 67i; 83 vs

75j — — — —

Mitsuyama et al [22] 5 73 vs 69.4 94 vs 81.6h — — — —
Hirosawa et al [23] 5 40.2 vs 64.6 53.7 vs 78i; 56.1

vs 82.9j — — — —

Hirosawa et al [26] 2 53.3 vs 93.3 83.3 vs 98.3i — — — —
Nakaura et al [34] 1 54 vs 100 96 vs 100i — — — —
Li et al [39] 5 — — 93.8 vs 99.6 — — —

Emergency department
Sinan Paslı et al [16] Team — — — 95.6 vs 92.8 — —
Fraser et al [25] 3 40 vs 47 63 vs 69h — — — —
Arslan et al [29] Team — — — 66.5 vs 65.2 — —

General medicine
Sarangi et al [15] 2 53.3 vs 60.4 — — — — —
Suh et al [24] 8 — 48.9 vs 60.5h — — — —
Ito et al [35] 3 97.8 vs 91.1 — — 66.7 vs 66.7 — —

Orthopedics
Horiuchi et al [21] 2 43 vs 47 58 vs 62.5h — — — —
Mohammadi et al [28] 2 — — — — — 0.73 vs 0.74

Cardiothoracic
Kaya et al [31] 3 81 vs 91.3 — — — 85 vs 92.7 —
Gunes et al [36] 2 70.3 vs 46.8 — — — — —

Otolaryngology
Makhoul et al [11] 20 — 70.8 vs 71.3h — — — —

Immunology
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Specialty and study
Clinical
professionals Evaluation results (LLMs vs clinical professionals), %

aa bb cc dd ee ff

Pillai et al [12] 1 25 vs 47.5 45 vs 60i; 47.5 vs
75j — — — —

Neonatology
Levin et al [13] 32 — — 70.8 vs 82.5 — — —

Thyroid
Wang et al [17] 40 — — 73.6 vs 87.4 — — —

Dermatology
Stoneham et al [19] 1 56 vs 83 — — — — —

aFrequency of correct primary diagnosis (answer)
bFrequency of correct diagnosis in the 3, 5, or 10 differential diagnoses.
cAccuracy score
dTriage accuracy
eF1-score.
fAUC: area under the curve.
gNot available.
hFrequency of correct diagnosis in the 3 differential diagnoses.
iFrequency of correct diagnosis in the 5 differential diagnoses.
jFrequency of correct diagnosis in the 10 differential diagnoses.

Meta-Analysis
Although this paper synthesizes over 4000 clinical cases,
these cases exhibit significant heterogeneity in terms
of clinical departments, diagnostic methodologies, and
evaluation metrics. Due to these inherent differences, only 18
studies that used primary diagnostic accuracy as the evalua-
tion metric were included in a meta-analysis. The analysis
revealed that clinical professionals generally outperformed

LLMs in diagnostic accuracy across various conditions, as
shown in Figure 2. The P value was less than 0.05, and
the I² value was 77%, indicating significant heterogeneity
among the studies. Sensitivity analysis did not significantly
improve the heterogeneity. Subgroup analyses by clinical
department showed reduced heterogeneity in ophthalmology-
related research, yet results still favored the diagnostic
accuracy of ophthalmology professionals over LLMs.

Figure 2. Forest plot comparing diagnostic accuracy of large language models (LLMs) and clinical professionals
[37,32,25,36,20,23,26,21,35,31,33,22,34,12,30,15,27,19].
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Discussion
Principal Findings
In this systematic review, we analyzed the diagnostic
accuracy of LLMs compared with clinical professionals,
encompassing various LLMs and common medical spe-
cialties. Although the results typically indicated superior
diagnostic accuracy among professionals, this study compiled
the methodologies, functionalities, and outcomes of using
LLMs in medical diagnostics. It affirmed the diagnostic
capabilities of generic LLMs, providing evidence for their
potential as healthcare assistants.
Application of LLMs in Clinical Diagnosis
Still in Exploratory Stage
This review includes only peer-reviewed and published
literature, so the models examined in the included studies
primarily use text-based input and output for diagnostic tasks.
However, with the advancement of large models, multimodal
capabilities have also been integrated [43]. Some preprint
studies [44,45] have explored using GPT-4V, incorporating
imaging data into input prompts. Notably, adding images to
LLM did not improve diagnostic performance. In a study by
Horiuchi et al [44], ChatGPT-4, which relied solely on text
prompts, achieved higher diagnostic accuracy compared to
GPT-4V, which combined text and images. Without few-
shot learning, LLMs may struggle with image recognition
and interpretation, sometimes leading to counterproductive
outcomes.

Currently, the performance of general LLMs continues
to improve, showing strong results in health care question
answering, text classification, and clinical concept extrac-
tion [46]. However, these studies remain experimental and
laboratory-based. Issues such as the interpretability of model
responses and medical ethics pose significant challenges
to applying these models in real clinical settings. Further-
more, the trust and acceptance of AI models by clinicians
directly affect their adoption and implementation. Therefore,
education and training programs are crucial for enhancing
physicians’ AI literacy [47].
Evolution of Artificial Intelligence in
Clinical Diagnosis
The evolution of AI in clinical diagnosis has progressed from
simple specialized systems to complex deep learning models.
Early AI systems were based on fixed rules and expert
knowledge bases. While these systems achieved some success
in specific tasks, they had limited scalability and flexibility.
The advancement of deep learning technologies, particularly
the emergence of LLMs, has ushered AI applications in the
health care sector into a new era [48,49].

LLM can learn from vast amounts of medical data
to autonomously discover and summarize diagnostic rules,
significantly enhancing diagnostic accuracy and reliabil-
ity. The development of RAG technology and fine-tuning
techniques has further enabled LLM to acquire advanced
domain expertise and effectively perform specialized tasks.

Ethics of Artificial Intelligence in Clinical
Diagnosis
Although the pace of artificial intelligence development is
swift, its broad implementation in clinical settings contin-
ues to encounter numerous obstacles, including concerns
over data privacy, accountability, and ethics. Consequently,
numerous scholars [50-53] underscore the imperative of
utmost caution in using these technologies. Advances in
the future will necessitate not only technological innova-
tions but also comprehensive enhancements in legal and
ethical frameworks to ensure that AI technology is safely
and effectively woven into clinical diagnostic processes.
In deploying LLMs within actual clinical workflows, it
is crucial to first guarantee the transparency of all used
data and secure patients’ informed consent. In addition, to
tackle potential biases within AI models, periodic audits are
advised to identify and amend any discrepancies. Further-
more, to safeguard patient safety and adhere to regulatory
demands, medical institutions should work alongside legal
and ethical experts to establish stringent guidelines and
oversight mechanisms for AI use. For instance, forming an
ethics committee to assess and monitor AI applications could
ensure compliance with ethical standards and legal require-
ments. These targeted measures are essential to surmount
existing challenges and foster the successful incorporation of
AI technologies in clinical diagnostics.
Application of LLMs in Specific Medical
Fields
The application of LLMs in the medical field is gradually
expanding, especially in imaging diagnosis, clinical decision
support, and personalized treatment planning. Due to their
specific needs and challenges, each medical field shows
different ways and effects of LLMs’ application.

Ophthalmology is one of the pioneers of LLMs’ applica-
tions. In ophthalmic diagnosis, imaging data such as fundus
images, retinal scans are typically complex, but LLMs excel
in processing and analyzing these types of data [45,54].
Research has shown that LLMs can identify minor lesions
in fundus images and diagnose conditions such as glaucoma
and macular degeneration [55,56]. Ophthalmic diagnostics
rely not only on imaging but also on additional data such
as patients’ genetic information and blood sugar levels. In
the future, LLMs could integrate these multimodal data to
achieve more accurate disease predictions through personal-
ized treatment. Particularly in resource-limited areas, easily
accessible LLMs with low usage thresholds could replace
some ophthalmologists in preliminary screenings, further
providing efficient diagnostic support in remote regions.

There are many internal medicine diseases that require
long-term follow-up and monitoring. LLMs can process
all historical data of patients simultaneously and updating
personalized treatment plans, assisting clinical professionals
in making more beneficial decisions [57-59]. In the future,
LLMs will be paired with wearable devices to monitor
patients’ health in real time, predict potential risks through
data analysis, and provide early intervention for patients
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with medical diseases, thereby reducing the incidence and
recurrence of the disease.

In the fields of otolaryngology [60,61] and dermatology
[62,63], LLMs have been used to analyze imaging data
for detecting lesions in respective areas. The latest models
now offer voice input features, allowing patients to use the
model anytime and anywhere to help in the early detection
of speech disorders and vocal cord issues. In the future,
integrating voice recognition with physiological data can also
assist physicians in more accurately locating lesion areas
during otolaryngological surgeries, thus improving treatment
efficacy. Furthermore, by combining images of skin lesions
with patients’ genetic data, LLMs can help predict the risk of
dermatological conditions and provide early warnings.
Exploration of the Use of LLMs in Various
Clinical Departments
Currently, extensive research in fields such as ophthalmol-
ogy, internal medicine, and radiology has demonstrated
the substantial potential of LLMs in clinical diagnostics
and pathological analysis. These models have even been
implemented in some hospitals. Many clinical professionals
are actively exploring how to integrate these technologies into
their daily diagnostic and treatment routines.

However, the application of LLMs in other specialized
areas remains limited, and research in these fields appears
to be lacking. Several reasons account for this disparity:
First, the departments mentioned above primarily focus on
diagnostic issues, providing rich training data for large
models, especially in terms of imaging and case data. Second,
the main challenges these departments face in clinical
practice, such as accurate diagnosis and disease prediction,
are areas where LLMs can excel. In contrast, other depart-
ments such as surgery, although also using imaging data,
face complexities in surgical and procedural tasks that hinder
the maturity of AI applications. Gynecology has seen some
applications of image recognition, but lacks depth in research
and sufficient data accumulation, making model training
challenging. In addition, real-world factors such as data
privacy protection and technology dissemination also restrict
the application of large models in certain departments.
Future Directions
The “human-AI collaboration” model involves an initial
diagnosis provided by AI, which is then reviewed and
confirmed by clinicians. AI’s capability to analyze clinical
data in real time enables it to offer personalized monitor-
ing plans based on the specific conditions of patients. This
continuous tracking of patient health and treatment outcomes
helps achieve the goals of personalized medicine and precise
diagnosis [64,65]. In addition, AI can provide customized
services and recommendations based on user preferences and
backgrounds, enhancing user experience and effectiveness.
This model combines the rapid processing capabilities of
AI with the expert judgment of clinicians, improving the

efficiency and reliability of clinical trials. It also enhances
data analysis and patient management, offering significant
advantages in cost reduction, resource use, and ensuring the
reliability of trial results.

Although LLMs are not inherently designed for clini-
cal diagnostic tasks, advancements in technology and data
accumulation are expected to improve their performance
in clinical settings. Techniques such as large-scale medical
literature analysis, specific clinical data training, task-specific
fine-tuning, personalized training for particular scenarios,
and integration with APIs or other supplementary software
tools are anticipated to enhance the diagnostic support
and treatment recommendations provided by these models
[66,67]. Hybrid models could be developed by combining
rule-based clinical decision support systems with the pattern
recognition capabilities of LLMs. For example, Vision China
2023 introduced Eye GPT [68], a system that integrates
ophthalmic medical knowledge with LLM. This system aims
to assist clinicians in disease diagnosis and improve medical
efficiency by combining extensive ophthalmic information
with powerful computational capabilities. This innovation in
integrating large models with specialized clinical fields is
expected to play a crucial role in future clinical applications
and provide research directions for other medical specialties.
Limitations
This study has several limitations. First, the inclusion criteria
restricted the review to studies comparing the diagnostic
accuracy of LLMs with that of clinical health care profes-
sionals using case groups. This limitation may affect the
comprehensiveness of the review and introduce selection bias.
In addition, there is no specialized tool for assessing the risk
of bias in literature related to LLMs. Although PROBAST
was used to evaluate the quality of the included studies,
its focus on diagnostic accuracy may influence the evalu-
ation results. Finally, significant heterogeneity among the
studies was observed, with variations in outcome measures
potentially related to differences in intervention subjects,
prompt inputs, and information modalities. Further explo-
ration of LLM diagnostic performance is needed through
large-scale, multicenter, and high-quality cross-sectional and
cohort studies.
Conclusions
This systematic review included 20 studies comparing the
diagnostic accuracy of LLMs with that of health care
professionals, encompassing various generative AI models
and medical specialties. The findings indicate that while
LLMs still have a long way to go in accurately diagnosing
real-world clinical scenarios and currently lack the level of
understanding of human experts, they undeniably possess
significant potential as health care assistants. With ongoing
advancements and optimizations in technology, it is anticipa-
ted that LLMs will play an increasingly important role in
future clinical diagnostics.
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