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Abstract
Background: Artificial intelligence (AI)–based clinical decision support systems are increasingly used in health care.
Uncertainty-aware AI presents the model’s confidence in its decision alongside its prediction, whereas black-box AI only
provides a prediction. Little is known about how this type of AI affects health care providers’ work performance and reaction
time.
Objective: This study aimed to determine the effects of black-box and uncertainty-aware AI advice on pharmacist decision-
making and reaction time.
Methods: Recruitment emails were sent to pharmacists through professional listservs describing a web-based, crossover,
randomized controlled trial. Participants were randomized to the black-box AI or uncertainty-aware AI condition in a 1:1
manner. Participants completed 100 mock verification tasks with AI help and 100 without AI help. The order of no help and
AI help was randomized. Participants were exposed to correct and incorrect prescription fills, where the correct decision was
to “accept” or “reject,” respectively. AI help provided correct (79%) or incorrect (21%) advice. Reaction times, participant
decisions, AI advice, and AI help type were recorded for each verification. Likelihood ratio tests compared means across the
three categories of AI type for each level of AI correctness.
Results: A total of 30 participants provided complete datasets. An equal number of participants were in each AI condition.
Participants’ decision-making performance and reaction times differed across the 3 conditions. Accurate AI recommendations
resulted in the rejection of the incorrect drug 96.1% and 91.8% of the time for uncertainty-aware AI and black-box AI
respectively, compared with 81.2% without AI help. Correctly dispensed medications were accepted at rates of 99.2% with
black-box help, 94.1% with uncertainty-aware AI help, and 94.6% without AI help. Uncertainty-aware AI protected against
bad AI advice to approve an incorrectly filled medication compared with black-box AI (83.3% vs 76.7%). When the AI
recommended rejecting a correctly filled medication, pharmacists without AI help had a higher rate of correctly accepting the
medication (94.6%) compared with uncertainty-aware AI help (86.2%) and black-box AI help (81.2%). Uncertainty-aware AI
resulted in shorter reaction times than black-box AI and no AI help except in the scenario where “AI rejects the correct drug.”
Black-box AI did not lead to reduced reaction times compared with pharmacists acting alone.
Conclusions: Pharmacists’ performance and reaction times varied by AI type and AI accuracy. Overall, uncertainty-aware
AI resulted in faster decision-making and acted as a safeguard against bad AI advice to approve a misfilled medication.
Conversely, black-box AI had the longest reaction times, and user performance degraded in the presence of bad AI advice.
However, uncertainty-aware AI could result in unnecessary double-checks, but it is preferred over false negative advice, where
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patients receive the wrong medication. These results highlight the importance of well-designed AI that addresses users’ needs,
enhances performance, and avoids overreliance on AI.
Trial Registration: ClinicalTrials.gov NCT06795477; https://clinicaltrials.gov/study/NCT06795477
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Keywords: artificial intelligence; AI; human-computer interaction; decision-making; human factors; randomized controlled
trial; clinical decision support; prediction; pharmacist; verification; drug development; drug; diagnosis; clinical decision
support systems

Introduction
Artificial intelligence (AI) is becoming increasingly prevalent
in health care with a wide range of applications such as drug
development [1], computer-aided diagnosis and detection
[2,3], and clinical decision-making [4]. In particular, AI-
based clinical decision support systems (CDSS) can improve
medication safety and reduce medication errors. CDSS have
been shown to significantly improve medication use and
safety in areas such as drug-drug interactions, inappropri-
ate prescribing in older adults and pregnant women, over-
and underprescribing, patient counseling [5,6], and patient
outcomes (eg, increased medication adherence, lower blood
pressure, decreased adverse events) [6].

Recent advances in AI modeling such as deep neu-
ral networks have resulted in CDSS that are “black-box”
systems; black-box outputs do not provide insight into the
model’s decision-making process or confidence in its decision
[7]. To address the calls for increased transparency in
medical AI predictions [8-10], developers have started using
uncertainty-aware AI models. Uncertainty-aware AI models
present the model’s uncertainty, or confidence in its decision,
alongside its prediction [11], thus providing a metric for
the user to assess the AI’s reliability [12]. CDSS reliabil-
ity is an essential component of human evaluation of AI’s
trustworthiness which determines the user’s acceptability of a
technology [7]. While uncertainty-aware AI models increase
transparency, additional knowledge is required to interpret
the findings which may initially confuse users, leading to
increased cognitive effort and degraded decision-making [13].

In addition to transparency, automation bias and aversion
must be considered when developing CDSS. Automation bias
occurs when users forsake their own expertise in favor of
the AI’s advice [12,14]. The overreliance caused by automa-
tion bias may result in users missing AI-generated errors.
Automation aversion causes users to rapidly and persistently
lose trust due to an AI-generated error even when the AI’s
overall performance exceeds humans [12]. Consequently,
human errors are missed. An ideal human-centered AI tool
should generate clinically valid decisions while fostering trust
and avoiding overreliance on AI.

An unexplored avenue for AI-based CDSS is the medica-
tion verification process. Medication verification is a vital
yet time-consuming visual check to ensure the contents
of a filled medication vial match the prescribed medica-
tion. Despite pharmacists’ careful medication verification
process, dispensing errors occur in 1.5% of all prescriptions

[15]. Vigilance, or the ability to maintain focus and alert-
ness over long periods, is essential for repeated tasks such
as medication verification [16]. Pharmacists must remain
alert and cognitively engaged [17]; yet, human vigilance
wanes over time. Waning vigilance may be due to fati-
gue, cognitive overload, or the mundanity of repetitive
tasks [18,19]. This is especially concerning in community
pharmacies due to the increasing prescription volumes. In
2022, the average community pharmacy dispensed approxi-
mately 1215 prescriptions per week [20]. The increase in
prescription volumes necessitates additional effort and time
from pharmacists who spend between 30%‐48% of their time
verifying medications [21,22].

Our team developed an AI prototype to assist pharma-
cists with the medication verification task, with the goal
of reducing dispensing errors, improving patient safety, and
decreasing pharmacists’ workload. The development of our
AI tool using user-centered design principles is described in
a study by Zheng et al [23]. The purpose of this paper is to
determine the effects of black-box and uncertainty-aware AI
advice on pharmacist decision-making and reaction time.

Methods
Overview
We previously developed 2 AI conditions to assist pharma-
cists with making decisions when dispensing medications.
The “black-box” condition does not provide the user with
insight into the AI’s certainty or predicted probability of a
correct decision. The “uncertainty-aware” condition provides
the user with an estimate of certainty from the model
predictions. We tested these conditions in an experimental
study using mock verification tasks with pharmacists.
Trial Design
A crossover, randomized controlled trial was conducted from
January 2023 to May 2023 with licensed pharmacists in the
United States. Eligible participants were randomized to either
the black-box AI or uncertainty-aware AI condition in a 1:1
manner. All participants completed 100 mock verifications
with AI help and 100 mock verifications without AI help. The
order of no help and AI help was randomized.
Participants
Recruitment emails describing the study were sent to
pharmacists through the Minnesota Pharmacy Practice-Based
Research Network listserv and the University of Michigan
College of Pharmacy Preceptor Network listserv. Interested
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individuals contacted the study team directly and completed
a screening phone call. Eligible participants were licensed
pharmacists in the United States who were at least 18
years old and had access to a laptop or desktop computer
with a webcam. Pharmacists were excluded if they required
assistive technology to use the computer, wore eyeglasses
with more than 1 power, had uncorrected cataracts, intraoc-
ular implants, glaucoma, or permanently dilated pupils, or
had eye movement or alignment abnormalities (eg, lazy eye,
strabismus, and nystagmus).
AI Input
We previously obtained a dataset of 432,734 images from
a mail-order pharmacy that fills and ships prescriptions to
all 50 US states [24]. The data contain 1 year’s worth of
images of oral medications (ie, tablets and capsules) inside
a prescription vial filled by a robot. The images were taken
as the final step of an automated system using a robot to
count pills into a vial, label the vial, take photos of the
vial’s contents, and cap the vial. The dataset images are
aligned with a National Drug Code (NDC) label and different
attributes including color, shape, size in millimeters of pills,
manufacturer, tablet scoring, and imprint. The number of
images for each NDC ranges from 3 to 12,105 with a
median of 540. There are 12 different colors of medications
labeled in these images: white (182,178/432,734; 42.1%),
yellow (53,296/432,734; 12.3%), pink (39,241/432,734;
9.1%), orange (30,846/432,734; 7.1%), multi-color
(25,442/432,734; 5.9%), green (22,689/432,734; 5.2%), red
(22,433/432,734; 5.2%), blue (20,704/432,734; 4.8%), brown
(16,260/432,734; 3.8%), purple (13,609/432,734; 3.1%),
turquoise (3090/432,734; 0.7%), and gray (2946/432,734;
0.7%). Seven different shapes are identified in the data:
round (214,475/432,734;49.6%), oval (144,568/432,734;
33.4%), capsule (69,892/432,734; 16.2%), hexagon-6-sided
(1912/432,734; 0.4%), triangle (1226/432,734; 0.3%),
trapezoid (464/432,734; 0.1%) and pentagon-five sided
(197/432,734; 0.04%).
Interventions
The AI model in our study refers to a Bayesian neural
network that predicts the dispensed pills’ NDC along with
the uncertainty of the predictions. It is realized by applying
the random dropout technique [25] to the ResNet-34 [26]
convolutional neural network. Rather than simply predicting
the probabilities of belonging to a specific NDC, the dropout
technique enables the neural network to sample a set of
possible predictions which we use to measure the uncertainty
of the prediction. In our research, the model generated 50
potential probabilities for every image.

Fill accuracy is a dichotomous variable (correct fill or
incorrect fill) determined by comparing the fill image to the
reference image (ground truth). Matching fill and reference
image pairs are labeled correct fills and mismatched pairs are
labeled incorrect fills. This serves as the ground truth for the
image pair. AI accuracy (good prediction or bad prediction)
is a variable that indicates the AI’s accuracy in predicting
the fill image’s NDC. A “good prediction” means the AI
correctly identified the NDC, whereas a “bad prediction”

incorrectly predicted the NDC. Good predictions always
recommend the correct user action (accept or reject), whereas
bad predictions typically result in ill-advised recommenda-
tions.

Each AI condition consisted of 100 trials with 76 trials
containing correctly filled medications and 24 trials contain-
ing misfilled medications. For the correctly filled medica-
tions, the AI accurately recommended accepting (AI Accept)
in 60 trials and erroneously recommended rejecting (AI
Reject) in 16 trials. For the 24 trials containing misfilled
medications, the AI accurately recommended AI Reject for
22 trials and erroneously recommended AI Accept for 2
trials. Three of the AI Reject trials contained an incorrect
fill coupled with a bad prediction resulting in the correct
recommendation (AI Reject). Although the AI’s predicted
NDC was incorrect (ie, misidentified the fill image NDC), the
AI renders the correct advice to reject the misfilled medica-
tion.

While the AI model’s overall accuracy is 98.46%, it was
lowered to 79% for the experiment. Participants’ interac-
tion with AI errors is a critical component of the research.
Lowering the model’s accuracy significantly reduced the
number of AI help trials needed to display the requisite
number of AI errors. In the no-help condition, 76% of the
medications were correctly filled.

The NDCs, the reference images, and the filled images
were gathered from the correctly and incorrectly predicted
images of the Bayesian neural network model. To eliminate
potential confounding variables, each reference NDC was
shown no more than twice throughout the experiment. To
avoid loss of variation in colors, capsules, and oddly shaped
pills while excluding blurry fill images, the team members
carefully selected from the model-predicted images. Each
image was reviewed for accuracy by comparing a reference
image (ground truth) to the fill image.

There were 40 unique NDCs in the incorrect prediction
file of the Bayesian neural network model. The NDCs, the
reference images, and the images for cases involving bad AI
predictions (AI approves the incorrect drug, and AI rejects
the correct drug) were gathered from the incorrect prediction
file. The NDCs and the reference images for cases involving
good AI prediction for the incorrectly filled medication (AI
rejects the incorrect drug) were gathered from the incorrect
prediction file. The filled images were gathered from the
correct prediction file.

The study used Labvanced (Scicovery GmbH), an online,
browser-based platform, to conduct the mock verifications.
Participants met with a study team member through Zoom
(Zoom Communications Inc) before completing the medica-
tion verification tasks to ensure technical and environmen-
tal requirements were met (eg, working webcam, adequate
lighting, and quiet space). After confirming the participant’s
setup was sufficient, the study team member provided
the participant with a link to the experiment and a pass-
word. A video presentation explained how to perform the
mock medication verification task using the study interface.
Participants were informed that the goal of the task was to
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determine whether an image of a filled medication bottle
matched a known reference image. The video presentation
also explained the AI help condition to the participant with
a tailored explanation based on randomization assignment.
The interface displayed an image of a filled medication, a
reference image, and prescription information (Figure 1). The
task was to compare the “reference image” on the left to the
“fill image” on the right to determine whether to accept or

reject the dispensed medication. The “reference image” is the
ground truth. For half the trials there was AI help on the
bottom right of the screen. In the AI help conditions, the
interface displayed AI advice as green checkboxes indicating
AI matches based on characteristics of the pill (ie, black box),
or a histogram with predicted probabilities (ie, uncertainty)
and the checkbox figure (Figure 2). The AI advice was
created from a ResNet-34 neural network.

Figure 1. An example of the interface.

Figure 2. Presentations of 2 artificial intelligence (AI) models. The left-hand graphs are “black-box AI,” which displays “yes” or “no” for 4 pill
characteristics: imprint, color, shape, and score. The right-hand graphs are “uncertainty-aware AI,” which illustrates the predicted probability of each
set of predictions summarized in a histogram.

Each participant completed 200 verification tasks, a block of
100 verifications with AI help, and a block of 100 verifica-
tions without AI help. The order of the AI help and no
AI blocks was randomized for each participant to avoid an

order effect, but the order of trials within each block was
fixed. The pharmacist’s decision to approve or reject the filled
medication and the time to decide were recorded for each
verification. After each verification in the AI help condition,
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participants rated how much they trusted the AI advice on a
scale of 0 to 100.
Analyses
The outcomes of accuracy and reaction time were analyzed
in mixed model generalized linear models with catego-
rical predictors. The generalized linear models formulas
were Performance~main.eff+(1|Participant_Nr) for accuracy
and Reaction_Time~main.eff+(1|Participant_Nr) for reaction
time. Categorical predictors included the AI type (ie,
black-box AI, uncertainty-aware AI, or no AI help), and AI
correctness versus ground truth, making the 2 × 2 comparison
with 4 categories. Likelihood ratio tests compared means
across the 3 categories of AI type for each level of AI
correctness. The simple effects of uncertainty-aware AI and
black-box AI and user performance based on AI type were
examined. Statistical comparisons were performed with R
statistical software (version 4.2.2, R Foundation for Statistical
Computing) [27].
Randomization
A random number generator in R software was used to ensure
unbiased study designs. Numbers from 1 to 8 were randomly
generated for each participant and participants had an equal
probability of being assigned to either the uncertainty-aware
AI condition or the black-box AI condition at the start. An
equal number of participants were sought for each of the 8
study conditions.

Ethical Considerations
The University of Michigan Institutional Review Board
determined this research (HUM00213493) met the crite-
ria for Exemption #3 and was exempt from institutional
review board oversight. All participants signed a prospec-
tive agreement before any research activities. Participants
received a US $150 check for completing the study. All study
data have been deidentified. The experimental data were
collected in Labvanced using a computer-generated unique
6-digit code.

Results
Recruitment
Recruitment began in January 2023 and the final participant
visit was in May 2023. The single study visit was conduc-
ted remotely using a laptop or desktop computer. The trial
ended when the target enrollment was met. In total, 40
pharmacists were assessed for eligibility. After excluding
9 pharmacists who did not meet the inclusion criteria, 31
participants were randomized for allocation in the “black-
box AI” condition or the “uncertainty-aware AI” condition.
Ultimately, 15 participants in each condition completed the
experiment and were included in the subsequent analysis
(Figure 3). The median length of the study visit was 59.3
(IRQ 53‐65.1) minutes.

Figure 3. Participant flow of the randomized controlled trial for effect of AI models on medication dispensing in pharmacists. AI: artificial
intelligence.

Study Population
As shown in Table 1, 30 pharmacists were included in
the final analysis (black-box AI and uncertainty-aware AI
condition). We investigated demographic characteristics for
age, sex, race, practice settings, and working years. All the

variables were well-balanced according to P values (P>.05).
However, according to the effect sizes, some variables were
unbalanced. Age had the largest value (0.68). Sex had the
only true “small” effect size of 0.07 SD units. The rest were
within the range of 0.07 and 0.42 SD units.
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Table 1. Pharmacist demographics.

Characteristics Overall (n=30)
Uncertainty-aware
(n=15)

Black-box
(n=15) P value Effect size Interpretation

Age (year), median (IQR) 36 (32.25-45.75) 35.73 (9.68) 43.07 (11.79) .07 0.68a Medium
Sex (male), n (%) 13 (43.3) 7 (46.7) 6 (40) >.99 0.07 Small
Ethnicity (non-Hispanic or Latino), n (%) 28 (93.3) 15 (100) 13 (86.7) .46 0.27 Medium
Race, n (%) .55 0.2 Small
  Asian 5 (16.7) 3 (20) 2 (13.3)
  More than one race 1 (3.3) 0 (0) 1 (6.7)
  White 24 (80) 12 (80) 12 (80)
Practice setting, n (%) .25 0.42 Large
  Community pharmacy 15 (50) 6 (40) 9 (60)
  Grocery store/mass merchandise

pharmacy
1 (3.3) 1 (6.7) 0 (0)

  Hospital pharmacy 6 (20) 5 (33.3) 1 (6.7)
  Other 7 (23.3) 3 (20) 4 (26.7)
  Specialty pharmacy 1 (3.3) 0 (0) 1 (6.7)
Years worked (years), n (%) .34 0.33 Medium
  1‐5 7 (23.3) 4 (26.7) 3 (20)
  6‐10 7 (23.3) 4 (26.7) 3 (20)
  11‐20 10 (33.3) 6 (40) 4 (26.7)
  21 or more 6 (20) 1 (6.7) 5 (33.3)

aEffect size: Cohen’s d, the others are Cohen’s omega. Cohen’s omega chosen over phi coefficient due to zero cells.

Outcomes
The effects of AI assistance on user trust are reported by Kim
et al [28] In summary, pharmacists’ trust varied by AI help
type and the verification outcome. Overall, uncertainty-aware
AI significantly increased pharmacists’ trust.

Pharmacists made the correct decision 91.3%, 93.1%, and
94.2% across all trials in the no-help, uncertainty-aware

AI, and black-box AI blocks, respectively (χ22=12.5, P
value=.001). Performance differences emerged across the 3
conditions when examining performance by AI advice type.
Figure 4 illustrates pharmacists’ performance based on AI
accuracy (ie, good advice or bad advice). Similar differences
were found for reaction time (Figure 5).

JMIR MEDICAL INFORMATICS Lester et al

https://medinform.jmir.org/2025/1/e64902 JMIR Med Inform 2025 | vol. 13 | e64902 | p. 6
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e64902


Figure 4. Plot of pharmacists’ decision-making performance (% of correct decisions; higher is better). AI: artificial intelligence.

Figure 5. Plot of reaction time (in seconds; higher is worse) of included pharmacists. AI: artificial intelligence.

AI advice was divided into “Good advice” and “Bad advice.”
For “Good advice,” 2 subtypes were identified: “AI Rejects
Incorrect Drug” (Figure 4, Row 1) and “AI Approves Correct
Drug” (Figure 4, row 3). In the first subtype, pharmacists
rejected the incorrect drug 96.1% and 91.8% of the time

for uncertainty-aware AI and black-box AI respectively,
compared with no AI help (81.2%). When the AI suggested
approving the correct drug, performances with black-box AI
help surpassed those with uncertainty-aware AI help and no
AI help (99.2% vs 94.1% vs 94.6%).
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“AI Approves Incorrect Drug” (Figure 4, row 2) and “AI
Rejects Correct Drug” (Figure 4, row 4) were classified in
the Bad advice category. Despite AI’s incorrect predictions,
pharmacists demonstrated superior outcomes with uncer-
tainty-aware AI compared with black-box AI help. Uncer-
tainty-aware AI helped protect against AI advice to approve
an incorrectly filled medication in contrast with black-box
AI (83.3% vs 76.7%). False alerts from AI to reject the
correct drug, degraded pharmacists’ performance compared
with baseline performance without AI help. Accuracy for no
AI help, uncertainty-aware AI help, and black-box AI help
was 94.6%, 86.2%, and 81.2%, respectively.

Figure 5 displays the reaction time for each condition.
Pharmacists assisted by uncertainty-aware AI consistently
exhibited shorter reaction times than those aided by black-box
AI in the 4 scenarios discussed above (5.41 vs 6.33, 5.80 vs
7.72, 4.82 vs 5.08, 7.61 vs 9.28). Furthermore, the uncer-
tainty-aware AI help condition showed improved reaction
times compared with the no AI help condition except in the
scenario where “AI rejects the correct drug.” Black-box AI
did not lead to reduced reaction times in any of the situations
as contrasted with no AI help.

Discussion
Principal Findings
In this study, we performed a randomized controlled trial
to assess the effects of black box and uncertainty-aware
AI tools on pharmacist decision-making and reaction time
during the medication verification process. In our assessment
of the impact of AI assistance on pharmacists’ reaction
times, distinct patterns emerged between uncertainty-aware
AI and black-box AI. Black-box AI increased reaction
times compared with pharmacists acting alone. In contrast,
pharmacists receiving uncertainty-aware AI advice had the
quickest reaction times except when the AI erroneously
recommended rejecting a correctly filled medication.

Research on the effectiveness of AI tools to improve
efficiency in health care has shown mixed results. Wysocki et
al’s [29] research showed that health care providers required
significantly less time to make a decision when there was
AI-user congruence with explainable AI assistance compared
with the black-box AI assistance, which mirrors our results.
However, in the face of health care provider-AI disagreement,
no significant differences in time to decision were found
between explainable AI and black-box AI [29]. A systematic
review examining AI tools’ effects in safety-critical fields
uncovered mixed results in AI’s ability to improve patho-
logists’ efficiency [30]. One study in the review showed
pathologists with explainable AI assistance completed the
task in only 35% of the time required for manual task
completion [31], while another study found explainable AI
assistance resulted in a significantly longer time to complete
the task compared with pathologists working alone [32].
The variability of efficiency underscores the current state
of affairs for AI in health care; the field is still in its
infancy and more research is needed to understand how to

balance transparency and interpretability. In our research with
pharmacists, black-box AI’s inability to reduce reaction times
in any of the scenarios prompts concerns about its practical
efficacy in fast-paced pharmacy practice. Future research
should examine the design of explainable AI visualizations
to facilitate more immediate decision-making when the AI
and user disagree.

Ensuring patients receive safe, accurate medication is
the bedrock of the pharmacy profession. The pharmacist’s
role mandates that the 5 rights of medication administration
are upheld: right medication, right dose, right route, right
patient, and right time [33]. Medication errors can result
in significant patient harm, including emergency department
visits, hospitalizations, and death [34-36] for which the
pharmacist can be held legally responsible [37]. In safety-crit-
ical fields like medicine, the benefits of AI tools must be
weighed against the risks [30]. In our study, the black-box AI
facilitated greater acceptance of a correctly filled medica-
tion and thus, a reduction in unnecessary double-checks;
however, this benefit is overshadowed by its propensity
to misguide pharmacists to accept a potentially harmful
misfilled medication. Crucially for this safety-critical field,
the uncertainty-aware AI condition facilitated faster and
more accurate identification of a misfilled medication than
black-box AI or pharmacists acting alone. This demonstrates
that uncertainty-aware AI safeguards against dispensing a
misfilled medication. Gu et al’s [32] study of a human-AI
diagnostic tool found pathologists preferred the AI system
to err in the direction of false positives due to the harmful
outcomes of missed diagnoses and delayed treatment. Similar
to the medication verification process, pathologists’ reviews
are performed quickly and pathologists indicated that the
extra review is preferable to a missed diagnosis. Extrapolating
these results to our study, uncertainty-aware AI’s ability to
improve pharmacists’ identification of misfilled medications
is preferable to the black-box AI help, and the potential
workload increase due to unnecessary double-checks is offset
by improved patient safety.

The histogram shown in the uncertainty-aware AI advice
was developed based on pharmacists’ feedback during the
user-centered design phase wherein they expressed a desire
to see the probability of each predicted NDC to increase
the model’s transparency [23]. In this case, the histogram
may have attuned pharmacists to the idea of the AI advice
being fallible and dispensing a wrong medication, whereas
this factor was not apparent in the black box scenario.
Pharmacists receiving uncertainty-aware advice were more
likely to reject correctly and incorrectly filled medication
regardless of the AI’s advice (accept or reject) suggesting
the histogram introduced doubt which caused pharmacists
to act more cautiously in order to avoid an incorrect dis-
pense. Previous research has shown ambiguity in decision-
making heightens an individual’s sensitivity to errors and
results in more conservative behavior [38,39]. Pharmacists
tend to be risk-averse individuals who dislike ambiguity [40],
and when faced with ambiguity are likely to act conserva-
tively (eg, reject a filled medication). In contrast, the black-
box AI advice did not induce this same kind of doubt,
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perhaps leading pharmacists to “go with their gut.” Future
research should explore more readily interpretable uncertainty
visualizations to decrease ambiguity. A systematic review
of 24 studies of human-AI collaboration in safety-critical
fields found users prefer clean, simple, and easy-to-read
visualizations [10]. Alternative ways to present AI uncertainty
information to domain experts may balance transparency,
uncertainty interpretability, and user performance.

Obtaining second opinions from colleagues is a common
health care practice. AI can stand in for colleagues by quickly
providing second opinions, but it is critical to communi-
cate any ambiguity or uncertainty in its prediction to foster
user trust and allow users to make judgments about when
to trust the AI [8]. In interviews with pathologists about
an AI tool, pathologists discussed the benefit of knowing
their colleagues’ experiences, strengths, and weaknesses, thus
allowing them to calibrate their responses to a colleague’s
second opinion [38]. They identified needing a similar level
of familiarity with the AI’s training, strengths, and weak-
nesses to successfully incorporate the AI’s advice in their
decision-making process. Relatedly, previous research has
shown that AI errors result in a significant and persistent loss
of trust [41]. Explainable AI has been proposed as a solution
to increase users’ trust by explicitly acknowledging the AI
limitations [39]. However, Buçinca et al [42] found explain-
able AI may contribute to overreliance on AI advice. This
contradicts our results from the uncertainty-aware condition;
pharmacists with uncertainty-aware AI were more likely
to reject a correctly filled medication when the uncertainty-
aware AI suggested accepting it compared with black-box
AI and the pharmacist acting alone. Conversely, our results
indicate that black-box AI can be over-relied upon, espe-
cially false negative errors from the AI. A balance between
fostering trust and avoiding overreliance is needed to ensure
an optimal human-AI teaming experience.

The timing of AI advice relative to the user’s decision
may influence the user’s performance and trust. Gajos and
Mamykina [43] recently examined AI advice timing in 3
conditions: (1) AI recommendation and explanation before
making a decision, (2) AI recommendation and explana-
tion after making a decision, and (3) AI explanation only
before making a decision. While all 3 conditions led to
improved decision accuracy, only the third condition showed
improvement in both decision accuracy and learning gain. A

2022 study of AI timing in clinical imaging found veterinary
radiologists had lower trust in the AI, lower perceived utility
of the AI, and less agreement with the AI, regardless of
the AI’s correctness, when the advice was presented after
their initial clinical decision [44]. Additional research should
examine the timing of AI advice on pharmacists’ trust and
accuracy.
Limitations
The study has several limitations. First, the no help condition
used a different image set than the AI help conditions. The
same image set was used for both AI help conditions. While
the images were randomly selected for both AI help and no
help conditions, unanticipated biases in the image selection
may exist. Second, the images were presented in a fixed
order, which may have unintentionally biased the results.
Future research should randomize the presentation of the
images across all conditions for all participants to eliminate
any inherent bias. Third, the small number of participants
from 2 professional pharmacy networks may not be represen-
tative of the pharmacy community at large. Future research
should be conducted with a broader, more diverse population
of pharmacists. Finally, medication verification is only 1 step
in the medication dispensing process. Additional research
could examine the use of AI tools to support pharmacy staff
at all steps of the dispensing process such as order entry,
patient directions, and medication count.
Conclusion
The effectiveness of AI assistance on pharmacists’ perform-
ance and reaction times varied by AI type and AI accuracy.
Overall, uncertainty-aware AI resulted in faster decision-mak-
ing, and black-box AI had the slowest decision-making.
Concerningly, black-box AI worsened users’ accuracy when
the AI provided bad advice, thus increasing the potential
for patient harm. Uncertainty-aware AI acted as a safeguard
against bad AI advice to approve a misfilled medication,
reducing the chance of patient harm. However, pharma-
cists with uncertainty-aware AI performed worse and had
longer reaction times when the AI recommended incorrectly
rejecting a correctly filled medication compared with no AI
help, leading to unnecessary double-checks. These results
reinforce the importance of well-designed AI to meet users’
needs to ensure consistent benefits over no AI help.
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