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Abstract

Background: Adequate ventilation in mechanically ventilated patients is contingent upon the monitoring of the arterial
partial pressure of carbon dioxide (PaCO,) during general anesthesia. Despite its significance, continuous monitoring remains
challenging due to the imprecision of noninvasive estimations and the invasive nature of traditional methods such as arterial
blood gas analysis.

Objective: This study aimed to develop a machine learning model to continuously estimate PaCO, in mechanically ventilated
patients, with the goal of potentially improving intraoperative monitoring accuracy under general anesthesia.

Methods: This retrospective study used the VitalDB dataset from Seoul National University Hospital, comprising records
of 6388 noncardiac surgery patients between August 2016 and June 2017. After applying inclusion and exclusion criteria,
data from 2304 surgical cases (4651 PaCO, measurement event points) were analyzed. The CatBoost regressor model was
trained to predict PaCO, using noninvasive physiological parameters and clinical information. The model’s performance was
evaluated using nested cross-validation across hypocapnic (<35 mm Hg), normocapnic (35-45 mm Hg), and hypercapnic (>45
mm Hg) subgroups and compared to conventional estimation methods based on end-tidal carbon dioxide (ETCO5).

Results: The developed model demonstrated superior overall performance compared to traditional estimations. It achieved
a mean absolute error of 2.38 mm Hg and an average intraclass correlation coefficient of 0.87. Furthermore, 90.02% of the
model’s estimations fell within the clinically highly acceptable range (error<+5 mm Hg) while only 1.20% of errors exceeded
+10 mm Hg. Performance improvements were observed across all PaCO, subgroups.

Conclusions: The developed model provides more accurate and reliable estimates of PaCO, than traditional ETCO,-based
methods. This approach shows potential for facilitating real-time monitoring and timely clinical interventions. This study
demonstrated the potential of artificial intelligence to enhance continuous monitoring of PaCO,; however, further validation,
including prospective studies assessing clinical impact, is necessary.
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Introduction

Monitoring the arterial partial pressure of carbon dioxide
(PaCO,) is essential during general anesthesia, as it is a
fundamental indicator of respiratory status in mechanically
ventilated patients. These patients are unable to breathe
on their own because anesthetic drugs and neuromuscular
blocking agents suppress their respiratory responses [1].
During mechanical ventilation, the respiratory rate (RR) is
carefully adjusted through continuous patient assessments to
ensure adequate ventilation [2,3]. PaCO» is a crucial indicator
of the equilibrium between the production and elimination
of carbon dioxide [4,5]. Abnormal levels of PaCO, may
suggest inadequate ventilation, respiratory insufficiency, or
compromised cardiovascular function, which could result in
unfavorable surgical outcomes.

Despite its importance, achieving continuous monitoring
of PaCO; using arterial blood gas analysis (ABGA) has
practical limitations. While ABGA remains the gold standard,
providing accurate PaCO, measurements along with other
vital information, such as pH and pO;, and closely track-
ing PaCO, changes require repeated arterial sampling, even
with an indwelling arterial line (A-line). This necessity for
repeated invasive procedures carries resource implications for
personnel time and consumables, with costs varying across
health care systems [6]. Furthermore, frequent sampling
while utilizing a procedure with generally low individual
risk carries inherent cumulative risks associated with repeated
invasive interventions [7,8]. Crucially, the intermittent nature
of ABGA may not fully capture rapid physiological fluctua-
tions occurring during dynamic surgical periods, potentially
delaying necessary clinical interventions.

End-tidal carbon dioxide (ETCO;) is a fundamental
component of anesthetic practice, recommended by the
American Society of Anesthesiologists (ASA) [9,10], and
is commonly used to estimate PaCO,. ETCO, reflects the
partial pressure of CO2 at the end of exhalation. While
often correlated, a gradient typically exists between PaCO,
and ETCO,, usually ranging from 3 to 5 mm Hg in individ-
vals with normal lung function [11]. However, the accu-
racy of ETCO, and PaCO;, surrogates can be compromised
by various physiological and technical factors. Conditions
such as ventilation-perfusion mismatch, increased physiolog-
ical dead space, and significant changes in cardiac output
(CO) can widen this gradient and disrupt the correlation
between ETCO, and PaCO, [12-14]. Furthermore, patient-
specific variables, including underlying pulmonary pathol-
ogy, hemodynamic status, and metabolic rate, can further
complicate the relationship between these two parameters.
Prior research has highlighted the variable precision of
ETCO,; for estimating PaCO,, particularly in patients with
respiratory disease [15,16]. Studies have also indicated
weaker correlations in certain challenging clinical scenar-
ios or patient populations where gas exchange is signifi-
cantly impaired [17-19]. Therefore, relying solely on ETCO,
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measurements to guide ventilation management may not
always provide the necessary accuracy, especially during
periods of rapid physiological change, which are common in
surgery.

While a substantial disparity between PaCO, and ETCO,
measurements has been previously linked to a higher risk
of mortality, developing noninvasive methods for estimat-
ing PaCO; more precisely than ETCO, alone remains an
ongoing challenge. The difficulty lies in accurately account-
ing for the simultaneous influence of numerous, interact-
ing physiological factors that affect CO, kinetics. Recent
research demonstrates the potential of artificial intelligence
(AI) and machine learning (ML) to effectively model intricate
biological variables at an individual patient level, potentially
overcoming the limitations of simpler estimation approaches
[20]. ML-driven prediction models possess the ability to
identify and learn complex, nonlinear relationships among
multiple input variables (like those readily available from
noninvasive intraoperative monitoring), even without prior
assumptions about independence or linearity.

Therefore, this study developed an ML-based predic-
tion model to continuously estimate PaCO, using readily
available, noninvasive parameters collected during surgical
operations. This approach leverages the capability of ML
algorithms to process complex, multidimensional data and
potentially capture patient-specific variability more effec-
tively than single-parameter estimates like ETCO;. The
objective of this study was to assess the feasibility of
achieving accurate and reliable real-time PaCO, estima-
tion across diverse surgical procedures and patient popula-
tions using a large dataset of intraoperative recordings. By
providing clinicians with continuous, noninvasive estimates
of PaCO,, the developed model holds the potential to
enhance intraoperative physiological monitoring, comple-
menting standard methods like ABGA and ETCO,; facilitate
timely adjustments to ventilation; and ultimately contribute
to improved patient outcomes following general anesthesia.
Through this study, we aim to contribute to the advancement
of perioperative medicine by harnessing the power of Al to
optimize patient care in the operating room.

Methods
Study Design and Settings

This was a retrospective study using VitalDB, an open dataset
containing intraoperative biosignal data and perioperative
clinical information from Seoul National University Hospital
(SNUH), a tertiary-level hospital in South Korea [21]. The
dataset encompassed 6388 cases of noncardiac surgery, with
an average of 2.8 million data points per case, collected from
August 2016 to June 2017. Vital signs were recorded during
surgery, while pertinent clinical information was retrospec-
tively retrieved from the electronic medical records system.
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Ethical Considerations

This study utilized a publicly available, deidentified dataset
(VitalDB). The collection and use of this dataset for research
purposes were approved by the Institutional Review Board
(IRB) of SNUH (H-1408-101-605). The requirement for
obtaining individual informed consent was waived by the
IRB because the dataset contained only deidentified data.
All data were anonymized before inclusion in the database,
ensuring patient privacy and confidentiality. No compensa-
tion was provided to participants as part of this secondary
data analysis.

Case Selection

Case selection was performed based on the following
inclusion and exclusion criteria. Surgical cases involving
patients meeting the following criteria were eligible: (1)
aged 18-80 years, (2) mechanically ventilated under general
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anesthesia using an oral airway, (3) had ASA physical status
classification grade 5 or lower, (4) had ETCO; monitoring
records, and (5) had at least 1 or more PaCO, measurement
records obtained during surgery. Each PaCO, measurement
obtained via ABGA was defined as an event point. PaCO,
measurements before or after surgery were excluded and not
considered event points.

Event Point Definition and Timing

Each event point was defined by a trigger time and an
observation window for the prediction model that estimates
PaCO, based on noninvasive parameters (Figure 1). The
trigger time is defined as the time at which an estimation
of PaCO, is performed based on intraoperative biosignals and
perioperative clinical information. The observation window is
the time frame during which the biosignals were extracted for
model training.

Figure 1. Schematic diagram of the event point definition and feature extraction process for real-time PaCO, estimation. The process includes
(1) detection of an MAP surge to refine the ABGA timestamp, defining the trigger time for PaCO, estimation; (2) establishment of a 60-second
observation window preceding a blackout period before the trigger time; (3) extraction of medial values from intraoperative biosignals within the
observation window; (4) integration of clinical information from electronic medical records; and (5) input of these features into ML-based model to
estimate PaCO; at the trigger time. A-line: arterial line; ABGA: arterial blood gas analysis; MAP: mean arterial pressure; MBP: mean blood pressure;
ML: machine learning; OP: operation; PaCO»: partial pressure of carbon dioxide.
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PaCO; is measured via ABGA, which evaluates arterial gas
concentrations such as carbon dioxide and oxygen. Usu-
ally, a small volume of blood is extracted from the radial
artery using a syringe and a thin needle. During surgery,
the anesthesiologists draw arterial blood via an A-line. The
temporal point of the ABGA records might be compromised
as a result of the transit time of the specimen to the ana-
lyzer or manual data entry delays. The timestamp of ABGA
records frequently denotes the moment that analysis results
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are entered into the database instead of precisely indicating
the moment at which blood is drawn from the patient.

To increase the precision of the ABGA timestamp, in this
study, we utilized mean arterial pressure (MAP) recordings
available in VitalDB. We hypothesized that the ABGA
procedure (blood draw via A-line) induces a rapid increase
in the MAP due to transient line occlusion or a patient
physiological reaction. On the basis of this hypothesis,
we employed a z score-based outlier detection approach.
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Abnormal periods surpassing a z score of 3 in MAP records
were identified by observing the 20-minute interval that
preceded the originally recorded ABGA timestamp. The
nearest such abnormal period was defined as the estima-
ted actual timepoint at which ABGA was performed. The
trigger time for feature extraction was set at 60 seconds
prior to the newly calculated ABGA timestamp to capture
the patient’s physiological state immediately preceding the
likely blood draw event. In this phase, the PaCO, val-
ues that did not have identifiable MAP surge points meet-
ing these criteria within the preceding 20-minute window
were excluded because they were not considered reliably
timed event points. Of the 6311 potentially relevant PaCO,
measurements considered for this timestamp adjustment, 720
(approximately 11.4%) were excluded due to the absence
of a detectable MAP surge. The median (IQR) difference
between the newly estimated ABGA timepoint based on MAP
surge and the original database timestamp for the remain-
ing measurements was 34.00 (22.00-54.00) seconds, with
a mean standard deviation (SD) of 47.29 (57.53) seconds
(range 0-936.00 seconds), indicating that the original database
timestamp often did not precisely reflect the physiological
event of blood sampling. While this pressure-surge detection
method provides a systematic approach to approximate the
blood sampling time based on physiological responses, we
acknowledge that its precise accuracy compared to the true
sampling time was not formally validated against a gold
standard timestamp in this study.

Data Preparation

A total of 19 variables were selected based on previous
literature and domain knowledge. These variables were
classified as follows: clinical information, including age, sex,
height, weight, surgical approach, surgery type, and preoper-
ative pulmonary function test (PFT) results; and intraopera-
tive biosignals, including body temperature (BT), heart rate,
percutaneous oxygen saturation (SpO;), minute ventilation
from the ventilator (MV), positive end-expiratory pressure
(PEEP), peak inspiratory pressure (PIP), plateau pressure
(PPLAT), mean airway pressure (MAWP), RR based on
capnography, tidal volume (TV), fraction of inspired oxygen
(FiO»), and ETCO,.

During the 60-second observation window before the
trigger time, intraoperative biosignals were extracted.
Extreme outliers were eliminated using the IQR method,
removing data points outside 3 times of the IQR below the
first quartile or above the third quartile. Aberrant points
deemed theoretically unacceptable were also removed based
on clinical expertise. Median values for each biosignal in
the observation windows were then calculated and used
as features for the prediction model, along with the cor-
responding surgical patients’ electronic medical records.
This approach simplifies the high-frequency biosignal data
into static features for point-in-time PaCO; estimation but
does not explicitly model temporal dependencies within the
observation window or directly track dynamic changes over
longer periods.
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Furthermore, additional features were established by
utilizing feature engineering techniques [20]. The variables
for PFT results were reportedly classified into nine classes
in the original dataset description; however, due to poten-
tial inconsistencies or inadequate representation of minority
classes, we regenerated the preoperative PFT as an indica-
tor variable, categorizing it into three grades: obstructive,
restrictive, and mixed type [22]. Another feature engineer-
ing technique employed in this study involved generating
interaction features that comprise combinations of two or
more existing variables. The incorporation of interaction
features, representing known physiological indices, primar-
ily aimed to improve model interpretability by including
recognized clinical parameters, although tree-based models
like CatBoost can implicitly capture interactions.

Several interaction features, including TV per kilogram of
ideal body weight (TV/IBW), oxygen saturation to FiO2 ratio
(SpO,/FiO5), PEEP to FiO; ratio (PEEP/FiO,), compliance
of the respiratory system (CRS), and rapid shallow breathing
index (RSBI), were generated using domain knowledge. Each
of these interaction features brings a dimension of clin-
ical relevance that reflects the interaction between multi-
ple aspects of patient respiratory mechanics and ventilator
settings. Additionally, this study utilized APCONET, which
is an external application programming interface (API) that is
able to estimate CO using arterial pressure waveforms as an
input feature [23]. Detailed information, such as the unit of
data, recording device, and source of data, for all the selected
variables is available in Multimedia Appendix 1.

Preprocessing

Event points containing missing values in any of the selected
predictor variables were removed prior to model training. The
listwise deletion approach reduced the number of event points
from an initial 5591 (derived from cases meeting inclusion
criteria before handling missing data for specific event points)
to the final 4651 event points used for analysis. The entire
dataset was split into training, validation, and testing sets
using the nested cross-validation (7 outer folds, 6 inner
folds). This configuration was chosen based on the dataset
size and common practices aiming for stable performance
estimation [24]. All partitioning procedures were conducted
at the surgical case level. For example, all data from a single
surgical case belonged exclusively to either the training/vali-
dation set or the testing set within a given outer fold. This
approach was designed to maintain similar data distributions
across subsets while ensuring patient independence between
training and testing.

Categorical variables were initially processed using
OneHotEncoder for compatibility with some preliminary
models tested. Continuous variables were scaled using
RobustScaler, which scales data using IQR, making it robust
to outliers.

Model Training

To identify a suitable regression model for this task, several
ML algorithms were evaluated in preliminary experiments
(see Multimedia Appendix 2). Based on its superior
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performance in these experiments, CatBoostRegressor was
selected for final model development and evaluation. The
CatBoost model is a robust and effective library for gradient
boosting on decision trees. It is particularly adept at handling
categorical features natively using its built-in encoder, which
was employed in this study for the CatBoost model, thus not
requiring the prior OneHotEncoding for these features when
training the final CatBoost model [25].

To develop the final predictive model for PaCO,, training
sets were utilized for training the CatBoostRegressor model,
and the corresponding validation set was used for hyper-
parameter tuning within each outer fold. The training sets
were used to train the CatBoostRegressor model, and the
validation set was utilized to tune the hyperparameters (see
Multimedia Appendix 3). During hyperparameter optimiza-
tion, we utilized Optuna, a framework designed to stream-
line the hyperparameter tuning process [26]. This framework
facilitates the search for the optimal hyperparameter space
configuration for a given model in an efficient manner.
Subsequently, the performance of the final model was
evaluated using held-out testing sets from the seven outer-fold
cross-validation methods on the testing sets.

Data Analysis

In this study, estimating PaCO, based on noninvasive
parameters was approached as a regression predictive
modeling task. To assess the effectiveness of the ML-based
model, we conducted a comparison with two baseline
methods that employed the ETCO, value. One method was
a simple offset model (ETCO,+5 mm Hg), while the other
method involved utilizing linear regression with ETCO,
measurements as the sole predictor.

Model performance was assessed using two commonly
employed metrics: mean absolute error (MAE) and root
mean squared error (RMSE). Additionally, we evaluated
model performance across different conditions by establishing
subgroups. The subgroups were established based on PaCO,

Table 1. Statistical summaries for PaCO,* and ETC02b measurements.
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levels as follows: hypocapnic (<35 mm Hg), normocapnic
(35-45 mm Hg), and hypercapnic (>45 mm Hg) cases.
A Bland-Altman plot was used to calculate the limits of
agreement and analyze the agreement between the real
and predictive values; additionally, the intraclass correla-
tion coefficient (ICC) was utilized to evaluate the relative
reliability and consistency of the model compared to actual
measurements [27,28].

To assess the clinical utility of the predictive model, the
percentage of estimation errors for PaCO, was computed by
calculating the differences between the real and predicted
values. Disparities below 5 mm Hg were deemed highly
acceptable, those between 5 and 10 mm Hg were moder-
ately acceptable, and any value exceeding 10 mm Hg was
considered unacceptable. The establishment of this thresh-
old was based on prior research and Clinical Laboratory
Improvement Amendments recommendations [29].

Furthermore, model interpretability was analyzed using the
Shapley additive explanation (SHAP) value [30]. The SHAP
values, derived from an additive feature attribution model,
succinctly illustrate the impact of the input variables on the
model outputs, enhancing the understanding of the model’s
decision-making process.

The performance metrics were evaluated by averaging
the results from the testing sets across the outer folds and
computing a CI of 95%. All experimental and data analysis
procedures were conducted in the Python 3.10.12 environ-
ment.

Results

A total of 2304 surgical cases (with 4651 event points) were
eligible and analyzed to develop and validate the proposed
prediction model. The statistical summaries for PaCO, and
ETCO; measurements for the included event points are
displayed in Table 1.

Characteristic Total (n=4651)

Hypocapnic (n=179)

Subgroups

Normocapnic (n=3328) Hypercapnic (n=1144)

PaCO; (mm Hg), median (IQR)

ETCO;, (mm Hg), median (IQR)

PaCO,-ETCO, (mm Hg difference),
median (IQR)

42.00 (39.00-45.00)

35.00 (33.00-37.00)
7.00 (5.00-10.00)

34.00 (33.00-34.00)

32.00 (30.00-33.00)
2.00 (0.50-3.00)

41.00 (38.00-43.00)

34.00 (33.00-36.00)
6.00 (4.00-8.00)

48.00 (47.00-51.00)

37.00 (35.00-40.00)
12.00 (9.00-14.00)

4PaCO,: partial pressure of carbon dioxide.
bETC02: end-tidal carbon dioxide.

The mean values in this cohort were 42.52 mm Hg for PaCO,
and 3495 mm Hg for ETCO,. The observed differences
between PaCO, and ETCO, measurements were often greater
than the gap derived from existing knowledge, which was 3-5
mm Hg for healthy individuals, with an average difference
of 7.57 mm Hg and a wide range from 16 to 34 mm Hg in
our study population. According to the analysis of subgroups
categorized by PaCO; levels, 71.55% (n=3328) of all cases
used in this study included PaCO, values in the normal
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range (between 35 and 45 mm Hg), whereas 3.85% of the
cases (n=179) were hypocapnic (<35 mm Hg) and 24.60%
(n=1144) were hypercapnic (>45 mm Hg). The differences
in ETCO, values across subgroups were less pronounced
than the differences in PaCO; values, whereas the discrep-
ancy between PaCO, and ETCO, measurements tended to
be greater in subgroups with higher PaCO; levels. More
detailed descriptive statistics for all variables are provided in
Multimedia Appendix 4.
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The performance evaluation results of the developed
model in comparison to the baseline methods are displayed
in Table 2. As shown in Table 2, the error metrics of
the baseline method (Baseline 1), which adds 5 mm Hg
to ETCO,, significantly increased as the subgroup transi-
tions from normocapnic to hypercapnic. High error rates in
the hypercapnic group indicate that it is difficult to accu-
rately estimate PaCO; using this baseline method in patients
with relatively higher PaCO, values. The performance of

Table 2. Performance evaluation results.
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the second baseline method (Baseline 2), which is based
upon linear regression, exhibited slightly better performance
overall than the first one but performed poorly in the
hypocapnic group compared to the normocapnic group. In
both of the two baseline methods, extreme groups (hypo-
capnic and hypercapnic cases) result in wider CIs, which
suggests that the performance of these methods is less certain
in such ranges.

Model MAE? (95% CI)

MSEP (95% CI) RMSES (95% CI)

Baseline 1: ETCO,%4+5 mm Hg

All 3.64(3.51-377)
3.64 (2.99-4.28)
2.45(2.30-2.61)
7.09 (6.90-7.28)

Hypocapnic
Normocapnic
Hypercapnic
Baseline 2: Linear regression
All 326 (3.17-3.36)
6.34 (5.62-7.06)
2.52(242-2.62)
493 (4.77-5.10)

Hypocapnic
Normocapnic
Hypercapnic
ML-based® model: CatBoost regressor
All 2.38(2.34-2.41)

Hypocapnic 3.66 (2.96-4.35)
Normocapnic 1.88 (1.81-1.95)
Hypercapnic 3.63 (3.50-3.76)

24.57 (22.86-26.29)
19.82 (10.61-29.03)
9.96 (8.86-11.06)

67.88 (63.73-72.04)

4.95 (4.78-5.13)
434 (3.33-5.34)
3.15(2.98-332)
8.24 (7.98-8.49)

18.70 (17.34-20.05)
50.20 (32.67-67.73)
9.85(9.00-10.70)

39.55 (36.27-42.82)

432 (4.16-4.48)
6.98 (5.78-8.19)
3.14 (3.00-3.27)
6.28 (6.02-6.54)

10.63 (10.13-11.13)
21.49 (10.23-32.75)

5.81(5.29-6.33)
23.05 (21.18-24.91)

3.26 (3.18-3.34)
451 (3.47-5.56)

241 (2.3-2.52)
4.80 (4.60-4.99)

AMAE: mean absolute error.
PMSE: mean squared error.
‘RMSE: root mean squared error.
4ETCO,: end-tidal carbon dioxide.
°ML: machine learning.

In contrast, the ML-based model developed in this study
exhibited superior performance in all subgroups compared to
the other 2 baseline methods, with the normocapnic group
achieving particularly noteworthy results. With the ML-based
model, the error metrics were MAE of 1.88 (95% CI 1.81-
1.95), mean squared error (MSE) of 5.81 (95% CI 5.29-6.33),
and RMSE of 2.41 (95% CI 2.30-2.52) in the normocapnic
group. For extreme PaCO, values of the hypocapnic and
hypercapnic groups, the developed model exhibited MAEs
of 3.66 (95% CI 2.96-4.35) and 3.63 (95% CI 3.50-3.76),
respectively, which were considerably better than the baseline
methods in these challenging subgroups. Given that the
differences between PaCO, and ETCO; in healthy individu-
als are known to range from 3 to 5 mm Hg, these results
indicate that the ML-based model provides more accurate and
reliable results, as evidenced by the consistently lower MAE,
MSE, and RMSE values across all subgroups.
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Bland-Altman plots comparing the predictive model with
the two baseline methods are displayed in Figure 2. The
mean difference, indicated by the central blue dashed line,
represents the average discrepancy between the predicted and
actual PaCO, values. For the second baseline method and
the ML-based model, this difference was exceedingly close
to 0, suggesting minimal systematic deviation on average,
while the first baseline method (ETCO,+5 mm Hg) showed
a slightly larger negative bias (-2.57 mm Hg). The limits of
agreement (+1.96 SD of the differences) with the 95% ClIs for
the baseline methods ranged from —10.89 to +5.76 and —8.48
to 8.47, respectively, and were narrower for the ML-based
model at —6.57 to +6.18. The wider limits of agreement in
the baseline models suggest that there is more variability in
the differences between the actual and predicted values when
estimating the PaCO, with these traditional approaches.
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Figure 2. Bland-Altman plots illustrating the agreement between actual PaCO, and estimated PaCO, values by (1) Baseline 1: ETCO,+5 mm Hg; (2)
Baseline 2: linear regression with ETCO,; and (3) the machine learning—based model. The x-axis represents the mean of actual and predicted PaCO,
values. The central dashed blue line indicates the mean differences (bias), and the outer dashed orange lines represent the 95% limits of agreement

(mean difference +1.96 SD of the differences). ETCO,: end-tidal carbon dioxide; PaCO,: partial pressure of carbon dioxide.
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In addition, the Bland-Altman plot for the ML-based model
demonstrated that the majority of data points were tightly
clustered around the mean difference with less dispersion
compared to the baseline methods. While the baseline
methods showed some tendency for larger underestimation
at higher PaCO, values (negative slope suggestion), the
ML-based model exhibited more consistent agreement across
the range of PaCO, values, with no evident trend of increas-
ing or decreasing differences correlating with the average
PaCO, values. A few outliers were observed, particularly at
higher mean values across all methods, suggesting potential
specific variability under certain conditions or limitations in
the developed model’s performance at extremes.

Table 3. The ICC? values between predicted and actual PaCOQb.

Mean of methods (mmHg)

Baseline 2

50 55 60 65 25 30 35 40 45 S50 55 60 65
Mean of methods (mmHg)

ML-based model

Table 3 presents the ICC analysis results for the baseline
methods and the ML-based model. A statistically significant
ICC (P<.001) indicates some degree of reliability beyond
chance. The narrow 95% CI of the ICC underscores a high
degree of confidence in these reliability estimates. An ICC
of 0.87 (95% CI 0.86-0.87) in the ML-based model signi-
fied good agreement between predicted and actual values,
indicating that the predicted values closely align with the
actual values relative to the overall variance. Conversely,
the baseline methods yielded ICCs of 0.70 (95% CI 0.68-
0.71) and 0.67 (95% CI 0.65-0.69), respectively, reflecting a
moderate level of agreement.

Model ICC (95% CI) P value
Baseline 1 0.70 (0.68-0.71) <.001
Baseline 2 0.67 (0.65-0.69) <.001
MLC-based model 0.87 (0.86-0.87) <.001

4CC: intraclass correlation coefficient.
bpaCO,: partial pressure of carbon dioxide.
°ML: machine learning.

The evaluation results of the clinical utility are displayed
in Table 4 as a percentage of the estimation error for the
PaCO;. The ML-based model exhibited superior perform-
ance, with 90.02% of the test set having errors of less than
+5 mm Hg, in contrast to the baseline methods that had
exhibited 72.41% and 80.43%, respectively. This represents
a substantial absolute increase of nearly 10 percentage points
in highly accurate predictions compared to the better baseline.

Table 4. Clinical utility evaluation results.

Additionally, for the ML model, errors falling within £10 mm
Hg accounted for 98.80% of the test set. The errors exceeded
+10 mm Hg in only 1.20% of cases. The baseline meth-
ods achieved a moderate level of acceptable performance;
however, the percentage of errors exceeding +10 mm Hg was
more than double that of the ML-based model. This indicates
that the ML-based model demonstrated highly acceptable
performance in aspects of clinical utility evaluation.

Model Absolute value of errors (%)

<5 mm Hg 5-10 mm Hg >10 mm Hg
Baseline 1 7241 22.70 4.88
Baseline 2 80.43 16.92 2.64
ML2-based model 90.02 8.77 1.20

4ML: machine learning.
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The feature importance of the ML-based model was analyzed
using the SHAP method, as illustrated in Figure 3. The most
significant variable was ETCO», as expected, given its direct
physiological link to PaCO,. Beyond ETCO;’s dominant
influence, other important features included BT, SpO,/FiO,,
sex, age, and CRS. The SHAP plot suggested that the model
output (predicted PaCO, value) tended to be higher with
lower BT, SpO,/FiO,, and CRS, as well as higher age and
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ETCO,. These findings suggest the additional features help
refine the PaCO, estimate beyond the baseline provided by
ETCO,, potentially capturing patient-specific physiological
states. Variables such as MAWP, CO, and MV exhibited
relatively lower SHAP values with a mix of positive and
negative contributions, indicating a minor or context-depend-
ent impact on model decision-making in this analysis.

Figure 3. SHAP plots illustrating feature importance for ML-based PaCO; estimation model. Left: SHAP summary plot, where each point represents
a Shapley value for a feature and an instance. The position on the y-axis indicates the feature, the position on the x-axis indicates the SHAP value
(impact on model output), and the color indicates the feature values (red for high, blue for low). Right: Bar chart of the mean absolute SHAP values,
indicating the global importance of each feature in the model. BT: body temperature; CO: cardiac output; CRS: compliance of the respiratory system;
ETCO;: end-tidal carbon dioxide; FIO,: fraction of inspired oxygen; HR: heart rate; IBW: ideal body weight; MAWP: mean airway pressure; ML:
machine learning; MV: minute ventilation from the ventilator; PaCO;: partial pressure of carbon dioxide; PEEP: positive end-expiratory pressure;
PFT: pulmonary function test; RR: respiratory rate; RSBI: rapid shallow breathing index; SHAP: Shapley additive explanation; SPO,: percutaneous

oxygen saturation; VT: tidal volume.
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Discussion Interpretability analysis using SHAP identified ETCO,
as the most influential feature, as anticipated. Beyond the
L. T dominant contribution of ETCO,, other parameters such as
Principal Findings .

This study developed an ML-based model capable of
estimating PaCO, in mechanically ventilated patients under
general anesthesia with greater accuracy than traditional
ETCO;-based methods. Utilizing noninvasive physiological
parameters and clinical information, the CatBoost model
demonstrated strong overall performance, achieving an MAE
of 238 mm Hg, an RMSE of 326 mm Hg, and an
ICC of 0.87, indicating excellent agreement with arterial
measurements. Critically, the model significantly increased
the proportion of clinically highly acceptable predictions
(error<+5 mm Hg) to 90.02%, comparable to 80.43% for a
linear regression baseline, and reduced unacceptable errors
(>+10 mm Hg) to 1.20% from 2.64%. The model’s superi-
ority was consistent across hypocapnic, normocapnic, and
hypercapnic subgroups.

https://medinform.jmir.org/2025/1/e64855

BT, SpO,/FiO, ratio, age, sex, and CRS were found to be
important for refining PaCO, estimations. For instance, the
model tended to predict higher PaCO, values with lower BT,
lower SpO,/FiO,, lower CRS, and higher age, suggesting it
learned complex physiological relationships. These findings
highlight the value of a multiparameter approach to capture
variability not explained by ETCO; alone.

Compatrison to Prior Work

The limitations of relying solely on ETCO, for PaCO,
estimation are well documented. While ETCO, provides
some insights, the PaCO,-ETCO, gradient is known to be
variable and influenced by numerous physiological factors,
often exceeding the commonly cited 3-5 mm Hg range in
healthy individuals [11,16,31]. Our study corroborates this,
finding a median gradient of 7 mm Hg (average 7.57 mm Hg,
range —16 to 34 mm Hg), underscoring the unreliability of
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a fixed gradient assumption. Conventional statistical models,
such as multivariable linear regression, offer some improve-
ment but are often constrained by linearity assumptions and
may not fully capture the complex, nonlinear interactions
inherent in physiological systems [32,33].

In contrast, our ML-based approach effectively models
these intricate associations by integrating a wider array of
biosignals and clinical data. The ability of ML to learn from
these complex patterns without a priori assumptions about
relationships has shown promise in various medical predic-
tion tasks [20]. Previous studies have also indicated that
factors like surgical techniques and patient positioning can
affect the PaCO,-ETCO; gradient [34], further supporting the
need for adaptive models like the one developed in this study,
which can account for such patient-specific and contextual
variability more effectively than simpler methods.

Strengths of the Study

This study possesses several strengths that enhance the
credibility and potential impact of its findings. First, the use
of VitalDB, a large, publicly available, real-world dataset
from a tertiary university hospital, provides a diverse cohort
from various noncardiac surgeries, improving the general-
izability of our results. Second, model performance was
rigorously assessed using nested cross-validation, offering
a robust estimate of its predictive capabilities on unseen
data. Third, the ML model was benchmarked against two
clinically relevant baseline methods, clearly demonstrating its
superior accuracy. Fourth, our evaluation encompassed not
only standard error metrics (MAE, RMSE) but also reliability
(ICC) and clinical utility based on predefined error catego-
ries (Table 4), providing a multifaceted view of perform-
ance. Fifth, the inclusion of SHAP analysis offers a degree
of transparency into the model’s decision-making process,
which is crucial for clinical translation. Finally, the explora-
tion of an MAP-based timestamping method, while requiring
further validation, represents a novel attempt to address a
common challenge in retrospective EMR-based research.

Limitations

Nevertheless, several limitations should be acknowledged
when interpreting the results of this study. First, while the ML
model outperformed baselines across all PaCO; subgroups,
its performance was relatively lower in the hypocapnic and
hypercapnic groups compared to the normocapnic group. This
may be partly due to data imbalance, as these extreme ranges
were less frequently observed. Future work could explore
techniques like targeted data augmentation or specialized
modeling to address this. Second, our SHAP analysis
focused on explaining direct PaCO, predictions. As ETCO,
is inherently a dominant feature, this makes it harder to
isolate the specific contributions of other features to the
PaCO,—ETCO, gradient. Analyzing this gradient directly
would be a valuable future direction. Third, the model relies
on point-in-time estimations using median values from a
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60-second window, simplifying the rich time-series data
available. This approach does not capture temporal trends
or predict rapid PaCO, changes. Fourth, the MAP-surge-
based ABGA timestamping method, though systematically
applied, was not formally validated against a gold-standard
timing reference. Any imprecision here could introduce noise
into the feature-target alignment. Fifth, the listwise deletion
approach for handling missing data, which reduced our event
points from 5951 to 4651, may have introduced selection bias
if the pattern of missingness was not completely at random
and reduced the overall sample size available for training.
Seventh, estimated CO via an external API did not emerge
as a highly influential feature in SHAP plots. This might
be attributed to the indirect nature or potential inaccuracies
of the CO estimation rather than CO itself lacking physiolog-
ical relevance. Finally, being a single-institution study, the
findings require external validation to ensure generalizability
across different settings and populations.

Future Directions

Building on these findings and limitations, several avenues
for future research are essential for advancing noninvasive
PaCO, monitoring. First and foremost, external validation
of the ML model in diverse, multicenter clinical settings is
crucial to confirm its robustness and general applicability.
Second, developing time-series models, such as recurrent
neural networks, long short-term memory, and transform-
ers, which can process the continuous stream of biosignals,
is a key next step. This could improve accuracy and ena-
ble the prediction of PaCO, trends and rapid changes.
Third, future studies should explicitly investigate the model’s
capacity to track longitudinal changes in the PaCO,-ETCO,
gradient within individual patients. Exploring the linkage
between the predicted PaCO,-ETCO, gradient and critical
events like hemodynamic instability could yield clinical
value. Fourth, research correlating intraoperative PaCO;
deviations identified by accurate monitoring with postoper-
ative outcomes would further strengthen the rationale for
enhanced continuous monitoring. Finally, the MAP-based
timestamping approach warrants further investigation and
validation.

Conclusions

This study demonstrated that an ML-based model integrating
multiple noninvasive parameters can estimate PaCO, with
higher accuracy and reliability than traditional ETCO,-based
methods in mechanically ventilated surgical patients. The
model shows particular strength in increasing the proportion
of highly accurate predictions. While acknowledging the
need for further development, particularly in incorporating
time-series data and external validation, this work highlights
the considerable potential of Al to serve as a valuable
supplementary tool for enhancing respiratory monitoring and
patient management in the perioperative setting.
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A-line: arterial line

ABGA: arterial blood gas analysis

Al artificial intelligence

API: application programming interface
ASA: American Society of Anesthesiologists
BT: body temperature

CO: cardiac output

CRS: compliance of the respiratory system
ETCO;: end-tidal carbon dioxide

FIO;: fraction of inspired oxygen

IBW: ideal body weight

ICC: intraclass correlation coefficient
IRB: Institutional Review Board

MAE: mean absolute error

MAP: mean arterial pressure

MAWP: mean airway pressure

ML: machine learning

MSE: mean squared error

MYV: minute ventilation from the ventilator
PaCO;: partial pressure of carbon dioxide
PEEP: positive end-expiratory pressure
PFT: pulmonary function test

PIP: peak inspiratory pressure

PPLAT: plateau pressure

RMSE: root mean squared error

RR: respiratory rate

RSBI: rapid shallow breathing index
SHAP: Shapley additive explanation
SNUH: Seoul National University Hospital
SPO2: percutaneous oxygen saturation
TV: tidal volume
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