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Abstract
Background: Syndrome differentiation in traditional Chinese medicine (TCM) is an ancient principle that guides disease
diagnosis and treatment. Among these, the cold and hot syndromes play a crucial role in identifying the nature of the disease
and guiding the treatment of viral pneumonia. However, differentiating between cold and hot syndromes is often considered
esoteric. Machine learning offers a promising avenue for clinicians to identify these syndromes more accurately, thereby
supporting more informed clinical decision-making in the treatment.
Objective: This study aims to construct a diagnostic model for differentiating cold and hot syndromes in viral pneumonia by
integrating TCM and modern medical features using machine learning methods.
Methods: The application of 8 machine learning algorithms (gradient boosting machine [GBM], logistic regression, random
forest, extreme gradient boosting [XGB], light gradient boosting machine [LGB], ridge regression, least absolute shrinkage
and selection operator, and support vector machine) generated and validated (both internally and externally) a model for
differentiating cold and hot syndromes in viral pneumonia, based on clinical data from 1484 patient samples collected at 2
medical centers between 2021 and 2022.
Results: The GBM model, which combines TCM and modern medicine features, outperformed models using only TCM
features or only modern medicine features in distinguishing cold and hot syndromes in patients with viral pneumonia.
The optimal discrimination model comprised 13 optimal features (temperature, red cell distribution width-SD, creatinine,
total bilirubin, globulin, C-reactive protein, unconjugated bilirubin, white blood cell, neutrophil percentage, aspartate transami-
nase/alanine transaminase, total cholesterol, thrombocytocrit, and age) and the GBM algorithm, achieving an area under the
curve (AUC) of 0.7788. Under internal and external testing, the AUCs were 0.7645 and 0.8428, respectively. Moreover,
significant differences were observed between the cold and hot syndrome groups in temperature (P=.02), red cell distribution
width-SD (P<.001), neutrophil percentage (P=.01), total cholesterol (P=.003), thrombocytocrit (P<.001), and age (P<.001).
Conclusions: This pioneering study integrates the theory of TCM cold and hot syndromes with modern laboratory-based tests
through machine learning. The developed model offers a novel approach for differentiating cold and hot syndromes in viral
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pneumonia, enabling practitioners to identify the syndrome quickly and efficiently, thereby supporting more informed clinical
decision-making. Additionally, this research provides new insights into the modernization and scientific interpretation of TCM
syndrome differentiation.
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Introduction
Traditional Chinese medicine (TCM), a personalized and
holistic approach, treats diseases using natural medical
products tailored to a patient’s TCM syndrome patterns
[1], that is, dialectical treatment of TCM. Specifically,
TCM syndrome, a concept unique to TCM, is an abstrac-
tion of a variety of signs and symptoms. Dialectical treat-
ment is the fundamental principle by which physicians
diagnose, understand, and treat diseases. It involves com-
prehensively collecting patients’ clinical signs and symp-
toms through “inspection, auscultation, olfaction, inquiry,
and palpation” to determine the TCM syndrome pattern.
Subsequently, corresponding therapies, such as acupuncture,
cupping, qigong, massage, and diet, are selected [2] to correct
maladjustments and restore the body’s self-regulatory ability
[3,4]. Guided by this unique principle, TCM has demonstra-
ted remarkable clinical efficacy in treating various acute
and chronic diseases, thus attracting increasing attention [5].
Especially in the fight against viral pneumonia, the impor-
tance of TCM has been widely recognized [6,7]. Conse-
quently, promptly and accurately understanding the TCM
syndrome pattern of a disease can reshape global health and
welfare.

In recent years, with the successive outbreaks of SARS,
influenza A (H1N1), influenza A (H7N9), COVID-19, and
other viruses, viral pneumonia has become a sustained and
widespread disease burden in many countries and glob-
ally. As with other diseases, the accurate identification of
syndrome patterns is a prerequisite for the TCM-based
prevention and treatment of viral pneumonia. Numerous
studies have reported that the cold and hot syndromes
are the pivotal TCM syndrome patterns in cases of viral
pneumonia, such as SARS and COVID-19 [8-10]. Cold and
hot syndromes, originating from the Huangdi Neijing, are
2 key components of the Eight Principle Syndromes—the
general principles of dialectical treatment, which include
cold and hot, sthenia and asthenia, exterior and interior,
and yin and yang—and are used to identify the nature of a
disease, reflecting disruptions in body homeostasis [11-13].
Cold syndrome–related expressions include coldness, cold
pain, tastelessness, and clear, abundant urine, whereas hot
syndrome is mainly characterized by heat, diaphoresis, a
flushed face, burning pain, and deep-colored urine. The cold
and hot syndrome framework has been widely applied in
the diagnosis and treatment of viral pneumonia. Treating
cold and hot syndromes within TCM has been shown to
significantly alleviate clinical symptoms in patients with viral
pneumonia [8,14]. For example, symptomatic treatments with

Chinese medicines such as Lianhua Qingwen capsules and
Xuanfeibaidu granules can markedly reduce the incidence
of severe or critical events and improve clinical recovery
[6,7], indicating that the prediction and differentiation of cold
and hot syndromes play a vital role in the treatment of viral
pneumonia.

Nevertheless, although clinical data and studies have
indicated that TCM treatments for the cold and hot syndromes
of viral pneumonia are effective, a major challenge remains
in distinguishing between these syndromes—similar to the
challenges in identifying other TCM syndrome patterns.
Specifically, (1) the differentiation of cold and hot syndrome
is recondite and lacks a solid scientific foundation in classical
TCM theory, and (2) the accuracy of cold and hot syndrome
diagnosis in TCM relies heavily on the physicians’ skills and
years of clinical experience. Subjective factors play a decisive
role in TCM diagnosis, which inevitably leads to a lack of
standardized criteria and an objective diagnostic basis for cold
and hot syndromes. This unique diagnostic model not only
supports the open and divergent development of TCM, but
also hinders the understanding of cold and hot syndromes
in viral pneumonia from a modern biomedical perspective.
It further restricts the domestic and international dissemina-
tion of TCM syndrome differentiation, making it one of the
key bottlenecks in the development of TCM. Therefore, in
the process of integrating TCM with modern medicine, it is
worth considering how to combine TCM syndrome theory
with modern medicine to enhance the scientific rigor and
objectivity of cold and hot syndrome differentiation in the
treatment of viral pneumonia.

Recently, with the rapid development of machine learning
[15-18], artificial intelligence has brought unprecedented
challenges and opportunities to the diagnosis of TCM
syndrome. Interdisciplinary models combining TCM and
artificial intelligence have been proposed to model TCM
knowledge, diagnosis, and treatment in clinical practice.
Among these, numerous models have been developed to
simulate the syndrome differentiation process of human TCM
doctors for automatic syndrome diagnosis. For example,
Huang et al [19] successfully identified the liver-gallblad-
der dampness-heat syndrome in patients with breast cancer
using a dataset based on the prescriptions of TCM clini-
cal practitioners. Zhuo et al [20] effectively differentiated
Qi deficiency blood stasis syndrome and phlegm stasis in
channels syndrome in patients with stroke through artificial
intelligence–assisted retinal feature analysis. These exam-
ples demonstrate that machine learning enables a modern
interpretation of the scientific connotation of TCM syndrome
differentiation, supporting improved clinical decision-making
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in disease treatment. However, currently, there is still a lack
of machine learning–based differentiation of cold and hot
syndromes in viral pneumonia.

Among the machine learning algorithms in artificial
intelligence, gradient boosting machine (GBM), logistic
regression (LR), random forest (RF), extreme gradient
boosting (XGB), and light gradient boosting machine (LGB),
among others, have demonstrated promising performance
[21-24]. Consequently, this study aimed to compare 8
machine learning methods, namely, GBM, LR, RF, XGB,
LGB, ridge regression (RIDGE), least absolute shrinkage
and selection operator (LASSO), and support vector machine
(SVM), by integrating laboratory test indicators from modern
medicine with the TCM cold and hot syndrome, to explore
the connection between them and construct a diagnostic
model for differentiating the cold and hot syndromes in viral
pneumonia. This approach seeks to provide a new diagnos-
tic method for the clinical differentiation of cold and hot
syndromes in viral pneumonia and to offer new perspectives
for the scientization, standardization, and objectivity of TCM
syndrome differentiation theory in guiding treatment.

Methods
Source of Materials
In this study, a retrospective review of case sheets was
conducted on samples from 1401 patients diagnosed with
viral pneumonia between January 18 and November 6, 2021,
at the Second People’s Hospital of Lanzhou City in China.
Samples were excluded based on the following criteria:
(1) the diagnosis was not made using the Eight Principle
Syndromes of TCM, and (2) the patient was diagnosed
with both cold and hot syndrome patterns simultaneously.
A total of 602 samples met the inclusion criteria. Samples
with more than 20% (ie, 19/93 features) missing values
were further excluded, resulting in 382 samples ultimately
included for analysis. These comprised 97 negative samples
(cold syndrome) and 285 positive samples (hot syndrome).
Additionally, a stratified sampling strategy was applied to
split the original dataset into training and internal test cohorts
at an 8:2 ratio (details are provided in the “Performance
Evaluation and Model Validation” section).

The external test cohort consisted of 83 patients with viral
pneumonia diagnosed with either cold or hot syndrome at
Lanzhou Heavy Ion Hospital between July and August 2022.
This cohort included 36 patients with the hot syndrome and
47 patients with the cold syndrome.
TCM and Modern Medicine Features
Collection and Cold and Hot Syndrome
Diagnosis
As shown in Multimedia Appendix 1, a total of 93 features
related to TCM and modern medicine were collected in

this study, including 4 general information items, 19 TCM
symptoms, 2 blood gas values, 10 viral pneumonia indica-
tors, 27 biochemical indicators, 30 blood routine indicators,
and 1 coagulation indicator. Among these, patients’ TCM
symptoms were further quantified using a TCM symptom
scoring scale for viral pneumonia (Multimedia Appendix 2).

All patients with viral pneumonia were independently
diagnosed with either the TCM cold or hot syndrome by 2
TCM chief physicians. If both physicians provided the same
diagnosis, the patient was enrolled. In cases of disagreement,
a third investigator participated in the discussion to reach
a consensus. The diagnostic criteria for syndrome differentia-
tion were based on the textbooks TCM Diagnostics [25] and
Guiding Principles of Clinical Research on New Drugs of
Traditional Chinese Medicine [26]. These criteria include the
4 classical diagnostic methods used to determine TCM cold
and hot syndrome patterns: inspection, auscultation, inquiry,
and palpation, to accurately record the TCM characteristics.
Model Training
In this study, 8 machine learning algorithms (GBM, LR,
RF, XGB, LGB, RIDGE, LASSO, and SVM) were used
to train a dataset containing all features, and GBM was
selected as the final classification model. As shown in Figure
1, GBM operates on the principle of ensemble learning,
constructing the final prediction model by iteratively training
a series of weak learners, typically decision trees. The core
mechanism of GBM lies in its ability to correct the predic-
tion errors of previous decision trees. Each newly generated
decision tree is trained to fit the residuals—the differences
between the actual values and the predicted values—of the
previous model, thereby continuously reducing the overall
loss function. Specifically, GBM begins by constructing an
initial decision tree based on the training data, and then
calculates the prediction error of this tree. A second tree
is built to model the residuals, with its predictions aimed
at correcting the deficiencies of the first tree. This process
continues iteratively until a preset number of iterations is
reached or a stopping condition is met. Figure 1 illustrates the
structure and decision-making process of multiple decision
trees in the GBM model. Each decision tree branches based
on input features, and the final prediction is obtained through
a weighted sum of the predictions from all individual trees.

The number of top-ranking indexes was gradually
increased, and the hyperparameters n_estimators and
max_depth were tuned. The final model consisted of 13
top-ranking features, with n_estimators and max_depth set to
797 and 8, respectively. The GBM was implemented using
the scikit-learn library (version 0.24.1) in Python (version
3.8.8; Python Foundation).
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Figure 1. Gradient boosting machine decision tree composition and prediction flowchart.

Optimal Feature Ascertainment
“Feature importance,” “coef,” and “SHAP values” are 3
commonly used methods to assess the relationship between
features and machine learning models, and they have received
significant attention in recent research [27]. These meth-
ods calculate the relevance of each feature to the model’s
predictions, which are then ranked in descending order to
produce a feature importance ranking.

In tree-based models (eg, GBM, RF, XGB, LGB), feature
importance is typically evaluated from 2 perspectives: split
count and split gain. Split count refers to how often a
particular feature is selected as a splitting point during tree
construction; a higher count indicates greater importance.
By contrast, split gain measures the improvement in the
model’s objective function (eg, squared error loss) resulting
from splitting on a given feature. A larger gain implies a
greater contribution to model performance and hence higher
importance. Additionally, SHAP (Shapley Additive Explana-
tions) values offer a unified measure of feature importance
based on game theory by calculating the marginal contribu-
tion of each feature to the model’s prediction. SHAP values
provide both global and local interpretability of the model. In
linear models (eg, RIDGE, LASSO, SVM, and LR), “coef”
represents the coefficients assigned to each feature. These
coefficients indicate the strength and direction of the linear
relationship between each feature and the target variable.
SHAP values can complement these coefficients by revealing
nonlinear effects and feature interactions that may not be
captured by standard linear models.

The insights gained from these methods, especially
when combining traditional feature importance metrics
with SHAP analysis, can aid researchers in uncovering
hidden data patterns and insights, thereby supporting
scientific investigations and informing practical applications.

Accordingly, these methods are used to rank the feature
importance for cold and hot syndromes of viral pneumonia
and to ascertain the optimal features.
Performance Evaluation and Model
Validation
During the data preprocessing stage, a stratified sampling
strategy was adopted to divide the original dataset, ensuring
an 8:2 ratio between the training and validation sets. This
approach preserved the proportional distribution of each class
(cold and hot syndromes) as in the original dataset, thereby
avoiding model evaluation bias due to imbalanced category
distributions.

Given the relatively small sample size, 5-fold cross-val-
idation was applied to ensure model accuracy and reliabil-
ity. As illustrated in Figure 2, the dataset was divided
into 5 nonoverlapping subsets of equal size. In each round
of validation, 1 subset was selected as the validation set
(the blue portion in the figure), while the remaining 4
subsets constituted the training set (gray portions). This
process was repeated for 5 rounds. In the first round, the
first subset was the validation set, and the remaining 4
were used as the training set, resulting in Performance₁. In
the second round, the second subset was used for valida-
tion, and so on, resulting in Performance₂ through Perform-
ance5. The final model performance was calculated as the
average of these 5 evaluation results, with the formulaPerformance  =  i  =  1

5 Performancei. This strategy

ensured that each sample was used for both training and
validation, reduced the variance caused by random sample
division, and improved the robustness and reliability of the
model evaluation [28].
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Figure 2. The 5-fold cross-validation process diagram.

In addition, a comprehensive evaluation of the model was
conducted using commonly used metrics, including sensitiv-
ity, specificity (SPE), accuracy (ACC), Matthews correlation
coefficient (MCC), and area under the curve (AUC). These
metrics are calculated based on the values of true positives
(TPs), true negatives (TNs), false positives (FPs), and false
negatives (FNs), as defined below:

(1)Sens = TP + FNTP
(2)Spec = TNTN + FP
(3)ACC = TP + TNTP + TN + FP + FN
(4)MCC = TP ⋅ TN − FP ⋅ FN(TP + FP)(TP + FN)(TN + FP)(TN + FN)

The receiver operating characteristic curve, also known
as the sensitivity curve, is a graphical representation of
the performance of a classification model across various
evaluation thresholds. It plots the true-positive rate against
the false-positive rate at different threshold settings. The
true-positive rate reflects the proportion of actual positive
cases correctly identified by the model, while the false-posi-
tive rate represents the proportion of negative cases incor-
rectly classified as positive. The AUC provides a single
summary metric of the classifier’s overall performance, with
values ranging from 0 to 1. A higher AUC value indicates
better classification performance. Therefore, AUC is widely
used as a standard metric to evaluate the performance of
classification models. The formula for calculating AUC is as
follows:

(5)AUC = 0
1TPR(FDR) dFDR

Ethical Considerations
The study was approved by the Medical Ethics Review
Committee of the Second People’s Hospital of Lanzhou
City and Lanzhou Heavy Ion Hospital (approval number
2021-026-01). Informed consent was obtained on an opt-out
basis, and all data were anonymized. No financial or material
incentives were provided to participants.
Statistical Analysis
All data were analyzed using SPSS version 27.0 (IBM Corp).
Categorical variables are presented as counts and percentages,
whereas continuous variables are reported as means and SDs
or IQRs, as appropriate. Normality was assessed using the
Kolmogorov-Smirnov test. Student 2-tailed t test was used to
compare parametric continuous variables, while the Mann-
Whitney U test was used for nonparametric variables, the
χ2 test was applied for categorical variables, and the Fisher
exact test was used for 2×2 contingency tables. Binomial
distribution tests were performed for each feature within
the cold syndrome and hot syndrome groups. No correction
for multiple comparisons was applied. A 2-sided P<.05 was
considered statistically significant.

Results
Data Extraction
We included only individual samples from patients with viral
pneumonia and excluded those that were not diagnosed using
the Eight Principle Syndromes (cold and hot, sthenia and
asthenia, exterior and interior, and yin and yang), as well as
those simultaneously diagnosed with cold and hot syndrome.
A total of 602 eligible samples were retained. Samples with
more than 20% (ie, 19/93 features) missing values were
further excluded, and the remaining missing values were
imputed using the median of each variable. Ultimately, 382
complete samples were included in the final analysis and used
to construct the mathematical model. The dataset was split
into training and testing sets in an 8:2 ratio. Subsequently,
by integrating indicators from TCM and modern medicine
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and applying 8 machine learning algorithms, we identified the
optimal model for differentiating TCM cold-hot syndromes in
viral pneumonia through 5-fold cross-validation. The model’s

performance was further assessed using an external validation
cohort. The data processing workflow and model construction
process are illustrated in Figure 3.

Figure 3. Research flow for data processing and predictive model construction. After preliminary screening of the collected data, 382 samples
of patients with viral pneumonia with TCM cold and hot syndromes were obtained. The dataset was randomly divided into training and test sets
in an 8:2 ratio. Traditional Chinese medicine and modern medical indicators were extracted through data processing and statistical analysis. The
performance of the 8 machine learning models (gradient boosting machine [GBM], logistic regression [LR], random forest [RF], extreme gradient
boosting [XGB], light gradient boosting machine [LGB], ridge regression, least absolute shrinkage and selection operator [LASSO], and support
vector machine [SVM]) was evaluated. Based on a comprehensive evaluation of all models, the optimal classification algorithm and feature set were
identified. The final model’s performance was further assessed using internal and external test cohorts.

Model Training Based on TCM and
Modern Medicine Features
Modern medical indicators based on laboratory testing
provide the possibility for intelligent discrimination of
TCM syndromes. Therefore, in this study, modern med-
ical indicators were integrated with TCM features for
further exploration. A total of 93 features were used to
construct the model. The evaluation metrics for models
using all 93 features are presented in Table 1 and Figure
4A. We found that GBM and LGB achieved the highest
AUC scores of 0.8329 and 0.7693, respectively, indicat-
ing their superior overall discriminative performance. GBM
also obtained the highest ACC score of 0.8000, closely
followed by RIDGE with a score of 0.7475, suggesting
strong overall classification accuracy. LASSO, RIDGE, and

GBM achieved the highest sensitivity scores of 0.8430,
0.8388, and 0.8283, respectively, indicating good perform-
ance in correctly identifying positive samples and reduc-
ing false negatives. SVM, LGB, RF, and GBM achieved
the highest specificity scores, suggesting these models had
the lowest false-positive rates. Both GBM and LGB also
achieved relatively high MCC scores of 0.5043 and 0.4068,
respectively, demonstrating their effectiveness in handling
imbalanced datasets.

Internal validation showed that GBM, RF, and XGB
achieved the highest AUC scores of 0.7085, 0.7477,
and 0.7146, respectively. Additionally, we calculated the
confusion matrix for each model in the internal validation
cohort, as shown in Figure 4B. The sum of correctly predicted
cold and hot samples reflects the overall predictive accuracy
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of each model. GBM, LR, RF, XGB, LGB, RIDGE, LASSO,
and SVM correctly predicted 53, 52, 53, 57, 56, 49, 53, and
52 cold and hot samples, respectively. These findings further
demonstrate the effectiveness of these models in distinguish-
ing cold and heat patterns in viral pneumonia.

Overall, the results suggest that models incorporating
both TCM and modern medicine features exhibit strong

predictive performance for differentiating between cold and
hot syndromes in viral pneumonia. Among them, the GBM
algorithm demonstrated a particularly prominent discrimina-
tive capability. Therefore, GBM was selected as the optimal
classified model based on the full set of 93 features for
subsequent analysis.

Table 1. Comparison of models based on 5-fold cross-validation results using 93 features from traditional Chinese medicine and modern medicine.

Data cohort and
evaluation

Gradient
boosting
machine

Logistic
regression

Random
forest

Extreme
gradient
boosting

Light
gradient
boosting
machine

Ridge
regression

Least absolute
shrinkage and
selection
operator

Support vector
machine

Training
  Area under the curve 0.8329 0.6477 0.7272 0.7546 0.7693 0.6970 0.6974 0.6514
  Accuracy 0.8000 0.6787 0.6689 0.6984 0.7246 0.7475 0.7475 0.4459
  Sensitivity 0.8283 0.7365 0.6582 0.7172 0.7158 0.8388 0.8430 0.2975
  Specificity 0.7016 0.5187 0.7066 0.6326 0.7327 0.4764 0.4656 0.9018
  Matthews correlation

coefficient
0.5043 0.2341 0.3190 0.3177 0.4068 0.3364 0.3407 0.2161

Internal validation
  Area under the curve 0.7085 0.6854 0.7477 0.7146 0.6800 0.6392 0.6908 0.6031
  Accuracy 0.6883 0.6753 0.6883 0.7403 0.7273 0.6364 0.6883 0.6753
  Sensitivity 0.9615 0.8846 0.9808 0.9808 0.9615 0.8462 0.9231 1.0000
  Specificity 0.1200 0.2400 0.0800 0.2400 0.2400 0.2000 0.2000 0.0000
  Matthews correlation

coefficient
0.1549 0.1609 0.1471 0.3596 0.3093 0.0577 0.1794 0.0000
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Figure 4. Performance evaluation of the cold and hot syndrome identification models based on integrated traditional Chinese medicine (TCM)
and modern medical features. (A) Radar chart comparing the performance of 8 machine learning models in the training and internal validation
cohorts. (B) Confusion matrix analysis of the 8 models in the internal validation cohort. ACC: accuracy; AUC: area under the curve; GBM: gradient
boosting machine; LASSO: least absolute shrinkage and selection operator; LGB: light gradient boosting machine; LR: logistic regression; MCC:
Matthews correlation coefficient; RF: random forest; RIDGE: ridge regression; SEN: sensitivity; SPE: specificity; SVM: support vector machine;
XGB: extreme gradient boosting.

Optimal Feature Ascertainment
Based on the optimum classified model (GBM) and the
ranking of “feature importance,” we identified 23 key features
with importance values more than twice the median. These
were temperature (T), red cell distribution width-SD (RDW-
SD), creatinine (CREA), total bilirubin (TBIL), globulin
(GLO), C-reactive protein (CRP), unconjugated bilirubin
(IBIL), white blood cell (WBC), neutrophil percentage
(NEU%), aspartate transaminase/alanine transaminase (AST/
ALT), total cholesterol (TCHO), thrombocytocrit (PCT),
oxygen saturation under load (SaO2), age, platelets, mean
platelet volume, lactate dehydrogenase, mean corpuscular
hemoglobin concentration, urea, erythrocyte/red blood cell,
Na, ORF1ab gene of novel coronavirus by nose test (nCo-
vORF1ab), and albumin.

Subsequently, to identify the best-performing model with
the fewest features, we examined how the number of
top-ranked features influenced model performance (AUC,
ACC, and MCC) using the GBM algorithm. As shown in
Figure 5A and B, as the number of features increases, model
performance gradually improves. Notably, at the 14-feature
mark, the model achieved strong performance with an AUC
of 0.7604, an ACC of 0.7082, and an MCC of 0.3515. To
validate the robustness of our feature selection approach, we
also used the SHAP feature importance ranking to select
the top 14 features and construct a model. This model
achieved an AUC of 0.7406, which was slightly lower than
that obtained using the feature importance method (0.7604).
Therefore, the feature importance method was ultimately
retained as the feature selection approach for this study.
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Finally, considering both the practicality of indicator
testing and the feasibility of the clinical application, this
study selected the top 14 features, excluding SaO2 (under
load), as the optimal set for differentiating between cold

and hot syndromes in viral pneumonia. These features are
temperature (T), RDW-SD, CREA, TBIL, GLO, CRP, IBIL,
WBC, NEU%, AST/ALT, TCHO, PCT, and age (AGE), as
illustrated in (Multimedia Appendix 3).

Figure 5. Identification of key features based on feature importance analysis and model cross-validation. (A) Effect of the number of selected key
features (n=23) on model performance using the gradient boosting machine (GBM) algorithm. (B) Feature importance scores of the top 14 key
features identified by the GBM model. ACC: accuracy; AUC: area under the curve; AST/ALT: aspartate transaminase/alanine transaminase; CREA:
creatinine; CRP: C-reactive protein; GLO: globulin; IBIL: unconjugated bilirubin; MCC: Matthews correlation coefficient; NEU%: neutrophil
percentage; PCT: thrombocytocrit; RDW-SD: red cell distribution width-SD; SaO2: oxygen saturation under load; T: temperature; TBIL: total
bilirubin; TCHO: total cholesterol; WBC: white blood cell.

Performance Evaluation and Optimal
Model Establishment
To achieve optimal GBM model performance, we recon-
structed the GBM model based on 13 optimizing features.
Ultimately, the model was adjusted to threshold=0.99999,
n_estimators=797, max_depth=8, min_samples_split=2, and
min_samples_leaf=1. Simultaneously, the performance of
the model with 13 features was further evaluated using
5-fold cross-validation, and the results suggested that the
model performance was outstanding, as the average AUC
value reached 0.7788 (Figure 6A). Model verification results
showed that the AUC was 0.7645 by the internal test
cohort (Figure 6B). Furthermore, the additional external test
results showed that the model performance for AUC, ACC,
sensitivity, specificity, and MCC is 0.8428, 0.6627, 0.7222,
0.6170, and 0.3369, respectively. These results validated the
excellent performance of the model.

Moreover, we found that the temperature in the hot
syndrome group was significantly higher than in the cold

syndrome group (P=.02). By contrast, RDW-SD (P<.001),
NEU% (P=.01), TCHO (P=.003), PCT (P<.001), and AGE
(P<.001) were significantly lower in the hot syndrome group
compared with the cold syndrome group, as shown in Table 2
and Figure 7. These results align with previous studies, which
have reported that temperature, AGE, CREA, and RDW-SD
are closely associated with the severity of viral pneumonia
[29-33], supporting the validity of our findings.

These results suggest that machine learning algorithms
perform well in differentiating between TCM cold and hot
syndromes in viral pneumonia. The optimal model was
constructed using 13 key features (T, RDW-SD, CREA,
TBIL, GLO, CRP, IBIL, WBC, NEU%, AST/ALT, TCHO,
PCT, and AGE), combined with the GBM algorithm. Among
these, temperature (T), RDW-SD, NEU%, TCHO, PCT, and
AGE appear to be the most relevant features for predicting
cold and hot syndrome.

JMIR MEDICAL INFORMATICS Jin et al

https://medinform.jmir.org/2025/1/e64725 JMIR Med Inform 2025 | vol. 13 | e64725 | p. 9
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e64725


Figure 6. ROC curves and corresponding AUCs for cross-validation on the training and test sets. (A) ROC curve and classification performance of
the final model set on the training set using 5-fold cross-validation. The x-axis represents the false-positive rate (FPR), and the y-axis represents the
true-positive rate (TPR). (B) ROC curve and classification performance of the final model on the test set. The x-axis represents the FPR, and the
y-axis represents the TPR. AUC: area under the curve; GBM: gradient boosting machine; ROC: receiver operating characteristic.

Table 2. The 13 optimal features for distinguishing between cold and hot syndromes in analysis.
Clinical features Cold (n=97), median (IQR) Hot (n=285), median (IQR) P value
Temperature (°C) 36.600 (36.500-36.950) 36.800 (36.500-36.95) .02
Red cell distribution width (%) 44.500 (42.800-46.850) 43.400 (41.80-45.100) <.001
Creatinine (μmol/L) 63.000 (54.000-78.000) 61.000 (51.000-73.500) .13
Total bilirubin (μmol/L) 9.400 (7.350-12.450) 9.000 (7.200-11.550) .31
Globulin (g/L) 27.500 (24.150-30.750) 26.600 (23.600-29.600) .18
C-reactive protein (mg/L) 2.670 (1.355-6.530) 2.670 (0.865-7.235) .41
Unconjugated bilirubin (μmol/L) 5.400 (4.000-6.900) 5.200 (3.900-6.800) .28
White blood cell (×109/L) 5.300 (4.450-6.400) 5.100 (4.100-6.250) .22
Neutrophil percentage (%) 62.000 (56.000-68.500) 58.000 (50.500-67.000) .01
Aspartate transaminase/alanine transaminase (%) 1.200 (0.800-1.445) 1.100 (0.800-1.500) .68
Total cholesterol (mmol/L) 3.900 (3.630-4.400) 3.700 (3.190-4.365) .003
Thrombocytocrit (%) 0.240 (0.210-0.290) 0.240 (0.200-0.290) <.001
Age (years) 47.000 (34.000‐67.000) 37.000 (24.000‐57.000) <.001
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Figure 7. Violin plots showing the relationships between cold and hot syndromes and the expression levels of optimal clinical features. The
horizontal axis represents the different syndromes (cold and hot), while the vertical axis indicates the expression levels of the corresponding clinical
features. The plots illustrate the distribution and density of feature values, highlighting differences between the 2 syndrome groups. AST/ALT:
aspartate transaminase/alanine transaminase; CREA: creatinine; CRP: C-reactive protein; GLO: globulin; IBIL: unconjugated bilirubin; NEU%:
neutrophil percentage; ns: not significant; PCT: thrombocytocrit; RDW-SD: red cell distribution width-SD; T: temperature; TBIL: total bilirubin;
TCHO: total cholesterol; WBC: white blood cell; *P<.05, **P<.01 versus the cold.

Interactive Web Server
To enhance user experience, an interactive web server named
ACHVP was developed in this study, allowing users to
test, explore, and experience the proposed method. The
platform is designed to be highly convenient and user-friendly
—users simply input relevant numerical data into designa-
ted textboxes and click the “Submit” button. The system
then performs comprehensive data processing and analysis,
presenting the predicted syndrome classification results on
the output interface. The home page of the web server,
developed for identifying cold and hot syndrome patterns
in patients with viral pneumonia, is illustrated in Figure
8. The server is deployed in a Linux environment. The

backend is developed in Python using the FastAPI framework
to ensure efficient data processing and application program-
ming interface management, while the front end is built with
JavaScript and the Vue.js framework for a responsive and
interactive user interface. Users can access the web server
via any standard web browser, such as Google Chrome,
Mozilla Firefox, or Safari, using the link specified in [34].
This web-based tool demonstrates significant potential as a
practical diagnostic aid, facilitating early detection of cold
and hot syndromes in patients with viral pneumonia. It can
support TCM practitioners in syndrome differentiation and
guide more precise Chinese herbal medicine prescriptions in
clinical practice.
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Figure 8. Web server of the ACHVP method.

Discussion
Principal Findings
Dialectical treatment is a fundamental principle in TCM
for diagnosing and treating diseases, with cold and hot
syndromes serving as 2 key components for identifying the
nature of illness [11,35-38]. In recent years, the study of
TCM cold and hot syndrome has become a focal point in
disease research. Numerous studies have shown that cold and
hot syndromes also exhibit major TCM diagnostic patterns in
various viral pulmonary diseases, including COVID-19 and
SARS [8,14]. Based on these syndrome classifications, TCM
has demonstrated a prominent role in alleviating symptoms,
shortening treatment duration, and reducing the progression to
severe pneumonia in patients with viral pneumonia [39-43].
For example, formulas such as Hanshiyi for cold syndrome
[44] and Jinhua Qinggan Granules for hot syndrome have
shown favorable clinical efficacy [45]. Therefore, the rapid,
accurate, and specific identification of cold or hold syn-
drome is essential for the effective application of TCM in
the treatment of viral pulmonary diseases. However, the
abstract and complex nature of TCM syndrome differentia-
tion poses challenges in accurately distinguishing between
cold and hot syndromes in clinical practice. Machine learning
offers a promising solution to this challenge by supporting
clinicians in syndrome differentiation and facilitating more
precise treatment decisions. Consequently, there is an urgent
need to integrate TCM theories of cold and hot syndromes
with modern laboratory diagnostics and machine learning
approaches to advance the modernized differentiation and
treatment of viral pneumonia.

In this study, 8 machine learning algorithms were applied
to develop and evaluate a model for differentiating TCM
cold and hot syndromes in viral pneumonia, using clinical
data from 1484 patients across 2 medical centers. Among
the models incorporating both TCM and modern medical
features, the GBM model demonstrated superior learning
capability, achieving an AUC of 0.8329. This indicates that
GBM was particularly effective in distinguishing cold and hot
syndromes based on a given dataset. The “feature impor-
tance” method of the GBM model was subsequently used to
rank all features, from which the top 13 features were selected
based on the highest AUC value. To validate the model’s
effectiveness and generalizability, both internal and external
test sets were used, each demonstrating strong discriminatory
performance. As a result, the optimal model was construc-
ted using the GBM algorithm and 13 selected features (T,
RDW-SD, CREA, TBIL, GLO, CRP, IBIL, WBC, NEU%,
AST/ALT, TCHO, PCT, and AGE), achieving an AUC
of 0.7788. These findings suggest that effectively combin-
ing modern medical indicators, primarily based on labora-
tory tests, with TCM features primarily based on clinical
observation may offer a viable pathway toward the mod-
ernization of TCM syndrome differentiation. This approach
provides a foundation for the objectification and standardiza-
tion of TCM diagnostic practices. Furthermore, the proposed
model holds promise as a practical tool to assist clinicians
in accurately identifying cold and hot syndromes in viral
pneumonia, thereby informing appropriate and individualized
treatment strategies.
Comparison With Prior Work
Machine learning, as an advanced artificial intelligence
technology, has demonstrated broad potential in the field
of “artificial intelligence+TCM diagnoses.” For example,
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Zhang et al [46] proposed a comprehensive model using
convolutional neural networks to classify 187 types of TCM
diseases. Wen et al [47] also applied deep neural net-
works to identify tongue image data and determine patients’
constitutions, effectively addressing the imbalance problem
among constitution categories. However, limited research
has focused on identifying TCM cold and hot syndromes
in viral pneumonia by integrating both TCM theory and
modern medicine through machine learning approaches.
Although some scholars have attempted to explore the cold
and hot attributes of diseases to guide clinical treatment,
most studies have been limited to network analysis, clus-
tering, or laboratory testing, without incorporating artificial
intelligence methods. For instance, Li et al’s [11] network
analysis revealed that the leptin biomarker indicated low
levels of energy metabolism in patients with cold syndrome,
while the human monocyte chemoattractant protein-1 (CCL2/
MCP1) biomarker suggested intensified immune regulation
in patients with hot syndrome, based on a study involving
patients with chronic superficial gastritis and chronic atrophic
gastritis. Wang et al [13] differentiated heat and cold patterns
in rheumatoid arthritis through cluster and factor analyses to
guide clinical medication. Wu et al [48] investigated TCM
cold and hot constitutions using pulse wave parameters such
as augmentation index and heart rate variability. Although
some individual studies have applied artificial intelligence
to differentiate cold and hot properties, most efforts have
been limited to identifying the properties of Chinese herbal
medicines. For example, Lin et al [49] developed a classifi-
cation strategy for the cold and hot properties of Chinese
herbal medicines using artificial intelligence and biological
experiments. Wei et al [50] applied machine learning

techniques to intelligently identify the cold-hot nature of
Chinese herbal medicines based on the similarity of their
volatile oil ingredients. Therefore, this study innovatively
constructs a model for differentiating cold and hot syndromes
in viral pneumonia using machine learning approaches that
integrate TCM and modern medicine, aiming to assist in
diagnosis and medication guidance for viral pneumonia in
clinical practice.

It is worth noting that in this study, we collected a large
number of clinical features, including patients’ symptoms,
signs, laboratory examination results, and other relevant
information, which were essential for training and testing the
machine learning models. As shown in Table 3, based on
the model training results using only 19 TCM features, we
found that the AUC values of GBM, LR, RF, XGB, LGB,
RIDGE, LASSO, and SVM were 0.6942, 0.6317, 0.6783,
0.6787, 0.6055, 0.6151, 0.6145, and 0.5874, respectively.
Meanwhile, the study also attempted to build models using
only 70 laboratory results. The AUC values for GBM, LR,
RF, XGB, LGB, RIDGE, LASSO, and SVM were 0.6799,
0.6282, 0.6797, 0.6910, 0.7345, 0.6637, 0.6157, and 0.6618,
respectively. Among them, the GBM model constructed using
TCM features achieved an AUC of 0.6942, outperforming
the GBM model constructed using laboratory features, which
had an AUC of 0.6799. Internal validation and the confu-
sion matrix results also demonstrated performance consistent
with the training results, as shown in Multimedia Appendix
4. These findings suggest that the models possess auxili-
ary diagnostic value for differentiating TCM cold and hot
syndromes in viral pneumonia.

Table 3. Comparison of model results by 5-fold cross-validation based on different features of traditional Chinese medicine and modern medicine.

Features and
evaluation

Gradient
boosting
machine

Logistic
regression

Random
forest

Extreme
gradient
boosting

Light
gradient
boosting
machine

Ridge
regression

Least absolute
shrinkage and
selection
operator

Support vector
machine

Traditional Chinese medicine
  Area under

the curve
0.6942 0.6317 0.6783 0.6787 0.6055 0.6151 0.6145 0.5874

  Accuracy 0.6851 0.5312 0.5509 0.6031 0.5155 0.5180 0.5049 0.7508
  Sensitivity 0.7365 0.4737 0.5077 0.5908 0.4389 0.4258 0.4117 0.9928
  Specificity 0.5804 0.7316 0.7457 0.7006 0.7233 0.7854 0.7723 0.2601
  Matthews

correlation
coefficient

0.2737 0.1689 0.2145 0.2400 0.1332 0.1821 0.1563 0.2385

Modern medicine
  Area under

the curve
0.6799 0.6282 0.6797 0.6910 0.7345 0.6637 0.6157 0.6618

  Accuracy 0.7508 0.7508 0.7541 0.7672 0.7803 0.7639 0.7180 0.7639
  Sensitivity 0.9441 0.9185 0.9742 0.9400 0.9314 0.8968 0.8539 1.0000
  Specificity 0.1257 0.2105 0.0410 0.2067 0.2914 0.3324 0.2762 0.0000
  Matthews

correlation
coefficient

0.1269 0.1585 0.0335 0.1927 0.2871 0.2672 0.1752 0.0000

Traditional Chinese medicine and modern medicine
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Features and
evaluation

Gradient
boosting
machine

Logistic
regression

Random
forest

Extreme
gradient
boosting

Light
gradient
boosting
machine

Ridge
regression

Least absolute
shrinkage and
selection
operator

Support vector
machine

  Area under
the curve

0.8329 0.6477 0.7272 0.7546 0.7693 0.6970 0.6974 0.6514

  Accuracy 0.8000 0.6787 0.6689 0.6984 0.7246 0.7475 0.7475 0.4459
  Sensitivity 0.8283 0.7365 0.6582 0.7172 0.7158 0.8388 0.8430 0.2975
  Specificity 0.7016 0.5187 0.7066 0.6326 0.7327 0.4764 0.4656 0.9018
  Matthews

correlation
coefficient

0.5043 0.2341 0.3190 0.3177 0.4068 0.3364 0.3407 0.2161

Based on “feature importance” or “coef,” the 8 models were
further used to evaluate the significance of TCM features in
distinguishing cold and hot syndromes of viral pneumonia.
We found that, according to the significance values, there
were 7 common features with importance values equal to or
greater than the median in the GBM, RF, XGB, and LGB
models, namely, fatigue, sore throat, fever, expectoration,
cough, body pain, and diminished sense of smell. Interest-
ingly, sore throat and fever also appeared among the features
with importance values equal to or greater than the median in
LR, RIDGE, LASSO, and SVM models. Based on this, we
believe that fatigue, sore throat, fever, expectoration, cough,
body pain, and diminished sense of smell may be the primary
distinguishing factors for differentiating between cold and hot
syndromes in the TCM diagnosis of viral pneumonia, which
aligns with the key symptomatology commonly used by
clinical TCM practitioners [51,52]. Therefore, more attention
should be given to these features, especially sore throat
and fever, in the discrimination of cold and hot syndromes
in viral pneumonia, as shown in Multimedia Appendix 5.
Unfortunately, the AUC values of these models did not
exceed 0.7. We boldly speculate that this might be due
to the quantification of TCM features not aligning with
modern medical standards. Specifically, TCM features lack
precise numerical values and are typically categorized as
none, mild, moderate, or severe. Moreover, the identification
of TCM features primarily relies on the subjective judg-
ment of TCM practitioners and years of clinical experience,
leading to a lack of standardization and objectivity. These
factors may introduce noise and reduce the effectiveness of
model training. Therefore, it is essential to develop objec-
tive indicators for TCM syndrome differentiation, further
supporting the original intent of our study. In subsequent
experiments, we integrated modern medicine features with
TCM indicators and were pleasantly surprised to find that,
compared with models trained solely on TCM features,
those based on integrated TCM and modern medical features
demonstrated superior performance in distinguishing cold and
hot syndromes in viral pneumonia across 8 machine learning
algorithms. This suggests that modern medical features can
enhance the predictive value of TCM features.

In addition, the best model we developed indicated that the
identification of cold and hot syndromes in viral pneumo-
nia is closely related to 13 features: temperature, RDW-SD,

CREA, TBIL, GLO, CRP, IBIL, WBC, NEU%, AST/ALT,
TCHO, PCT, and AGE. Numerous studies have reported that
temperature (T), CRP, and WBC hold statistical significance
in distinguishing TCM cold and hot syndromes in rheumatoid
arthritis [53]. Furthermore, features such as AGE, NEU%,
RDW-SD, and CRP are strongly associated with the severity
of viral pneumonia and the development of chronic lung
sequelae. For example, a study by Liu et al [33] suggested
that AGE and NEU% could serve as predictive factors for the
severity of viral pneumonia. Shen et al [31] also reported that
RDW-SD is a key indicator for assessing the severity of viral
pneumonia. Additionally, CRP and AGE play crucial roles in
the diagnosis of viral pneumonia [54,55], which is consistent
with the findings of this study.
Limitations
The accuracy of traditional TCM diagnosis of cold and
hot syndromes largely depends on the skills and years of
clinical experience of the practitioner. Subjective factors play
a decisive role in this process. Compared with traditional
TCM methods, the model developed in this study offers
a more objective approach to differentiating cold and hot
syndromes in viral pneumonia. It provides valuable deci-
sion support and medication guidance in clinical practice,
especially for practitioners with limited TCM experience.
This shift toward an objective, data-driven approach helps
reduce reliance on subjective judgment, improves diagnostic
accuracy, and ensures greater consistency in clinical decision-
making. Additionally, the model can serve as a practical tool
for TCM practitioners, especially in complex cases where
traditional diagnostic methods may fall short.

Of course, this study has some limitations. First, it was
a retrospective study, and all patient history data were
obtained from the internal electronic medical record systems
of the Second People’s Hospital of Lanzhou and Lanzhou
Heavy Ion Hospital. This may have introduced inaccuracies
in the collection and recording of medical history, making
it difficult to avoid information bias. Moreover, due to
the limited clinical sample size, the conclusions, although
statistically sound, require further validation and refinement
in real-world applications to enhance the model’s accuracy
and stability.
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In recent years, emerging large language models
(LLMs) have demonstrated remarkable capabilities in natural
language processing, knowledge integration, and complex
reasoning [56]. Given the nature of TCM theory, which
often involves complex textual descriptions and implicit
knowledge, LLMs could potentially offer new perspectives
for model development in this study. These models may
better understand and integrate the rich, diverse information
contained in TCM literature, clinical records, and expert
knowledge, thereby enriching the feature set and enhancing
the interpretability of the models. For instance, LLMs could
analyze the semantic relationships among TCM symptoms,
syndromes, and treatment methods, helping to extract more
meaningful features that may be difficult to identify using
traditional machine learning approaches. Moreover, LLMs
could assist in standardizing and structuring the subjective
and qualitative information in TCM, thereby reducing the
impact of inconsistent data representation. However, applying
LLMs also poses challenges, such as ensuring the reliabil-
ity of the extracted knowledge, addressing potential biases
inherent in pretrained models, and efficiently integrating
LLM-derived features with existing laboratory test data. In
future work, we plan to collect more data to establish a local
database and explore the integration of LLMs with tradi-
tional machine learning algorithms. By fully leveraging the
advantages of both approaches, we aim to further enhance the
performance of the TCM cold and hot syndrome differentia-
tion model and advance the modernization and standardiza-
tion of TCM diagnosis.

Conclusion
This study aimed to establish a differentiation model for TCM
cold and hot syndromes in patients with viral pneumonia
using machine learning by exploring correlations between
cold/hot syndromes and features from both TCM and modern
medicine (such as general information, TCM characteristics,
blood gas values, viral pneumonia indicators, biochemical
indicators, routine blood test indicators, and coagulation
indicators). We found that machine learning algorithms based
on integrated TCM and modern medicine features outper-
formed models that used only TCM or only modern medi-
cine features. Specifically, a model composed of 13 optimal
features (T, RDW-SD, CREA, TBIL, GLO, CRP, IBIL,
WBC, NEU%, AST/ALT, TCHO, PCT, and AGE) and the
GBM algorithm effectively differentiated TCM syndromes.
This study is the first to integrate the TCM cold and hot
syndrome theory with laboratory-based modern medical tests
using machine learning. By establishing the relationship
between TCM syndrome theory (cold and hot syndromes)
and indicators from both TCM and modern medicine, we
aim to provide a new auxiliary diagnostic method for the
clinical differentiation of cold and hot syndromes. This can
support practitioners in making comprehensive diagnoses
and identifying effective Chinese herbal medicine treatments,
while also offering new insights for the modernization and
scientific interpretation of TCM syndrome differentiation
theory to guide treatment.
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Multimedia Appendix 2
The traditional Chinese medicine symptom scoring scale for patients with viral pneumonia.
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Multimedia Appendix 3
The optimal features for the TCM cold and hot syndrome discrimination of viral pneumonia. AGE: age; AST/ALT: aspartate
transaminase/alanine transaminase; CREA: creatinine; CRP: C-reactive protein; GLO: globulin; IBIL: unconjugated bilirubin;
NEU%: neutrophil percentage; PCT: thrombocytocrit; RDW-SD: red cell distribution width-SD; T: temperature; TBIL: total
bilirubin; TCHO: total cholesterol; WBC: white blood cell.
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Multimedia Appendix 4
The performance evaluation of the cold and hot syndrome identification model based on traditional Chinese medicine (TCM)
features. (A) The performance evaluation’s radar chart of the 8 models based on TCM features. (B) The confusion matrix
analysis of the 8 models based on TCM features.
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Multimedia Appendix 5
Heat diagram of traditional Chinese medicine features on 8 screened models (the values of gradient boosting machine, random
forest, extreme gradient boosting, and light gradient boosting were obtained using feature importance, and those of ridge
regression, least absolute shrinkage and selection operator, support vector machine, and logistic regression were obtained using
coef).
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