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Abstract

This study demonstrated that while GPT-4 Turbo had superior specificity when compared to GPT-3.5 Turbo (0.98 vs 0.51),
as well as comparable sensitivity (0.85 vs 0.83), GPT-3.5 Turbo processed 100 studies faster (0.9 min vs 1.6 min) in
citation screening for systematic reviews, suggesting that GPT-4 Turbo may be more suitable due to its higher specificity and
highlighting the potential of large language models in optimizing literature selection.
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Introduction

Systematic reviews are essential in guideline development.
Manual citation screening, however, is a time-consuming and
labor-intensive process, often resulting in human errors and
increased workloads [1,2]. Large language models (LLMs)
have demonstrated the ability to comprehend and proc-
ess natural language, underscoring their utility in medical
applications [3]. Consequently, LLMs have emerged as
promising tools for citation screening in systematic reviews

[4].

LLMs, including GPT, Gemini, and Claude, could serve
as secondary reviewers in title and abstract screening, with
the downsides of needing to reconcile false positives and
potentially missing some relevant citations [5-8]. Although
more advanced LLMs are expected to outperform previous
models in sensitivity, specificity, and efficiency [9], the full
impact of model development in citation screening remains to
be fully understood.

This study aimed to compare accuracy and efficiency
between GPT-3.5 Turbo and GPT-4 Turbo (OpenAl)—

https://medinform jmir.org/2025/1/e64682

widely used LLMs in the medical field—in title and abstract
screening.

Methods

We conducted a post hoc analysis of our previous study
to evaluate the performance of GPT-3.5 Turbo and GPT-4
Turbo in LLM-assisted title and abstract screening, using data
from 5 clinical questions (CQs) developed for the Japanese
Clinical Practice Guidelines for Management of Sepsis and
Septic Shock 2024 [6,10]. The two models determined the
relevance of each reference based on patient characteristics,
interventions, comparisons, and study designs specific to the
selected CQs (Table S1 in Multimedia Appendix 1). LLM-
assisted screening was conducted by using Python (v3.9.0)
and the OpenAl application programming interface. The
same prompt—optimized to increase sensitivity from our
previous study—was applied to both models (Multimedia
Appendix 1). Evaluation metrics were expressed as sensitiv-
ity and specificity with 95% Cls, using the final list of
included studies in the conventional review as the reference
standard. These measures were aggregated to estimate the
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pooled sensitivity and specificity of LLM-assisted proce-
dures. Additionally, we measured the time taken by each
model to screen 100 studies. Further analysis details are
available in Multimedia Appendix 1. LLM-assisted citation
screening was conducted between June 6 and 7, 2024.
STARD (Standards for Reporting of Diagnostic Accuracy)
guidelines were followed.

Results

In the conventional citation screening process, 0.24%
(41/16,669) of citations for 5 CQs were selected during the
full-text evaluation. GPT-3.5 Turbo exhibited a combined
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sensitivity and specificity of 0.83 (95% CI 0.67-0.92) and
0.51 (95% CI 0.39-0.63), respectively (Figure 1). In contrast,
GPT-4 Turbo demonstrated greater performance, with a
sensitivity and specificity of 0.85 (95% CI 0.63-0.95) and
0.98 (95% CI 0.97-0.99), respectively (Figure 1, Table S2 in
Multimedia Appendix 1). A significant difference was found
in specificity between both models (median difference 0.48,
95% CI 0.29 to 0.62) but not in sensitivity (median differ-
ence —0.06, 95% CI —0.50 to 0.23; Figure S1 in Multimedia
Appendix 1). GPT-3.5 Turbo processed 100 studies faster
than GPT-4 Turbo (0.9 min vs 1.6 min, respectively; mean
difference 0.69, 95% CI 0.53-0.86 min; Figure 2, Table S3 in
Multimedia Appendix 1).

Figure 1. Comparison of GPT-3.5 Turbo’s and GPT-4 Turbo’s accuracy in citation screening. The results of the included publications were
qualitatively analyzed, using the conventional method as the standard reference. The individual sensitivity and specificity for each CQ and the
integrated sensitivities and specificities across CQs 1 to 5 were compared between GPT-3.5 Turbo (A and B) and GPT-4 Turbo (C and D), with 95%

CIs and inconsistency values (12). CQ: clinical question.
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Figure 2. Comparison of citation screening time for 100 studies between GPT-3.5 Turbo and GPT-4 Turbo. The difference in processing time was
0.69 (95% C10.53-0.86) min. An unpaired, 2-tailed ¢ test was used for analysis. CQ: clinical question. *Statistically significant at P<.001.
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Discussion

Our analysis showed that GPT-4 Turbo had similar sensitivity
to but higher specificity than GPT-3.5 Turbo, with minimal
impact on screening speed. The high specificity of GPT-4
Turbo is crucial for reducing workloads in subsequent review
phases by minimizing the inclusion of irrelevant studies.
Although GPT-3.5 Turbo demonstrated shorter screening
times, its lower specificity may increase review times. Given
the trade-off relationship between sensitivity and specificity,
LLM users should choose the optimal model according to
their situations.

Our findings emphasize the impact of LLMs’ development
on their performance for citation screening and the need
to reinforce a model’s suitability for accurate and reliable
citation screening [8,9]. Although LLMs are promising tools
for title and abstract screening in systematic reviews [4],

caution is warranted until further investigations validate their
reliability in real-world applications.

This study has several limitations. First, the focus on
sepsis limits the generalizability of the findings. Further
validation with diverse datasets in other medical domains
would enhance the robustness of our conclusions. Second, the
post hoc nature of this study may have introduced selec-
tion bias. Third, evaluation metrics depend on the reference
standard. Fourth, this study did not investigate other LLMs
or prompts created via prompt engineering, which could have
improved performance. Fifth, the results were based on the
LLMs available at the time of analysis. Future investigations
should use OpenAl ol or newer models.

In conclusion, GPT-4 Turbo demonstrated higher
specificity than and similar sensitivity to GPT-3.5 Turbo,
making GPT-4 Turbo more suitable for systematic reviews,
despite having slightly longer processing times.
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Supplementary content regarding the clinical questions, the conventional citation screening, the command prompt used, the
automated implementation of the citation screening process, and further data on the comparisons conducted.
[DOCX File (Microsoft Word File), 111 KB-Multimedia Appendix 1]
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