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Abstract

Background: Machine learning (ML) systems in health care have the potential to enhance decision-making but often fail to
address critical issues such as prediction explainability, confidence, and robustness in a context-based and easily interpretable
manner.

Objective: This study aimed to design and evaluate an ML model for a future decision support system for clinical
psychopathological treatment assessments. The novel ML model is inherently interpretable and transparent. It aims to enhance
clinical explainability and trust through a transparent, hierarchical model structure that progresses from questions to scores to
classification predictions. The model confidence and robustness were addressed by applying Monte Carlo dropout, a probabilistic
method that reveals model uncertainty and confidence.

Methods: A model for clinical psychopathological treatment assessments was developed, incorporating a novel ML model
structure. The model aimed at enhancing the graphical interpretation of the model outputs and addressing issues of prediction
explainability, confidence, and robustness. The proposed ML model was trained and validated using patient questionnaire answers
and demographics from a web-based treatment service in Denmark (N=1088).

Results: The balanced accuracy score on the test set was 0.79. The precision was ≥0.71 for all 4 prediction classes (depression,
panic, social phobia, and specific phobia). The area under the curve for the 4 classes was 0.93, 0.92, 0.91, and 0.98, respectively.

Conclusions: We have demonstrated a mental health treatment ML model that supported a graphical interpretation of prediction
class probability distributions. Their spread and overlap can inform clinicians of competing treatment possibilities for patients
and uncertainty in treatment predictions. With the ML model achieving 79% balanced accuracy, we expect that the model will
be clinically useful in both screening new patients and informing clinical interviews.

(JMIR Med Inform 2025;13:e64617) doi: 10.2196/64617
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Introduction

Overview
As in most areas of human activity, mental health care has seen
an increase in the application of artificial intelligence (AI),
particularly in assisting the diagnosis and treatment of mental
disorders [1]. While the debate between clinical judgment and
statistical methods is longstanding in the field of clinical
psychology [2], under appropriate conditions, statistical tools
can perform as well as—or better than—clinical judgment in
diagnosing psychopathologies [3]. To be effective, these
statistical tools should be context-based and simple for clinicians
to use [3,4].

When assessing patients for treatment in a mental health setting,
clinicians consider various screening instruments in addition to
demographic and medical information, assessing the scores
related to possible diagnoses and treatments based on the
patient’s answers to questions [5]. Patients with complex clinical
scenarios present a challenge for clinicians in assessing the
various possible symptoms to arrive at a most likely diagnosis
[6]. In diagnosing depression, for example, comorbidity with
anxiety disorders and other factors was found to lead to
uncertainty in diagnosis in as many as 40% of cases [7]. The
consequences of an uncertain diagnosis may be high rates of
treatment-resistant depression [7,8].

Early correct intervention may reduce the burden of disease for
the individual as well as the society. The global costs of mental
disorders were estimated to be US $2493 billion in 2010 and
are expected to more than double by 2030 [9]. Wittchen et al
[10] deemed mental disorders “the core health challenge of the
21st century.” In their key recommendations for future research,
they state that “clinically sensitive and economically feasible
decision algorithms could be explored to determine what types
of interventions should be assigned to which type of patient.”
Therefore, insight into the underlying factors that characterize
a psychopathological diagnosis and the factors that discriminate
between alternative diagnoses is valuable and a contribution to
solving a larger and urgent health need.

Mental health care has benefited from the ability of AI
technologies to analyze data, infer classifications from new
data, and communicate insights from data [11]. AI has been
recognized as an important tool in clinical decision-making for
mental health [12]. In assessment, AI technologies offer the
potential to complement the role of clinicians with diagnostic
decision support technologies [13,14]. Such diagnostic tools
require the AI models to be explainable and interpretable [15],
both in terms of the model itself (global) and the individual
model predictions (local). Interpretability refers to how a model
arrives at a decision, and explainability refers to why the
decision is reached [16]. While explainability in AI has been a
topic of interest since the 1980s, the recent accelerations in the
widespread use of AI have resulted in guidelines on the
responsible use of AI. Responsible AI requires a robust model
that conveys the confidence and degree of uncertainty in
prediction [16-18]. Although confidence and uncertainty
estimation are considered a necessity for medical AI models to
enable safe clinical deployment [19], it has been claimed that

most machine learning (ML) methods in the recent medical
literature neglect the important issue of model uncertainty [19].

This paper presents the design of an ML model for
psychopathological mental health treatment tailored to the
omnipresent questionnaire-type screening instruments. The AI
model described here is based on a novel hierarchical structure
that aims to meet the needs of clinical interpretability while
accounting for decision confidence and uncertainty. The
presented approach facilitates the questionnaire instruments
that are typically used in mental health care to assess symptom
severity, but in a data-driven way [13], while leveraging any
other information known about respondents.

This paper first lays out the rationale for explainable AI (XAI)
methods in medical models, introducing the important issues
of model confidence and uncertainty. Typical ways in which
model confidence and uncertainty can be quantified are
introduced with an emphasis on Monte Carlo dropout (MCD),
the method used in this paper. The model structure is then
introduced and shown to provide interpretability by design with
confidence and uncertainty estimation provided through the use
of MCD. Next, model training and validation on clinical data
from a Danish web-based mental health treatment service are
detailed and results presented. Finally, the implications of the
work are discussed.

Background
After initial interest in the explainability of AI models in the
1980s and 1990s, recent advances in AI and ML, and the
increased use of such technologies in safety-critical,
socioeconomically and medically impactful applications have
driven a renewed interest in XAI [20]. The explainability of AI
models is generally understood as the ability for a wider range
of users to understand the outputs of a given AI or ML model
[21]. The concept of interpretability is closely related and refers
to the ability of a person to understand how a given set of inputs
results in a model output [22].

As an extension to the explainability of ML models, recent
endeavors have put more emphasis on responsible or trustworthy
AI [23], with confidence and robustness being important
technical prerequisites. The confidence of an ML algorithm is
defined as the model’s own assessment that the provided
inferences are correct. Robustness is defined as the ability of a
model to yield consistent results in the presence of uncertainty
[16]. In practice, robustness can be evaluated by perturbing the
model structure to induce distribution shifts [24], introducing
epistemic uncertainty. According to XAI frameworks, robustness
extends explainability while increasing stability and user
satisfaction [16]. Such measures of confidence and robustness
are important for a model aimed at medical decision support
systems (DSSs), such as the one presented in this paper [25].

ML Methods in Relation to XAI
Logistic regression is a classification model used in ML that
applies a linear combination of the data X, with weights W, to
discriminate between classes of the dependent variable Y. It
models the probability of an outcome using a logistic (sigmoid)
function:
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(1)

Since the equation consists of a linear combination of the
features transformed by a sigmoid function, each weight of the
model directly corresponds to the weight of a feature in
determining the output. Because of this linear nature, XAI deems
logistic regression to be a white-box model [16,18]. White-box
models are also referred to as having the property of
transparency [18]. In contrast, gray-box models and black-box
models are categories of AI models with less ability to inspect
the inner workings of the model (less interpretability and less
transparency), but typically with more power to discriminate,
and are often used in complex applications such as computer
vision. This property of powerful models being black-box is
often referred to as the interpretability-performance trade off
[26]. Other common white-box ML models include decision
trees and K-nearest neighbor models [18]. Deep neural networks
are an example of a black-box model due to their many stacked
nonlinear layers, typically consisting of millions of weights,
which make their operation uninterpretable. Post hoc techniques
add interpretability as an additional method or algorithm to the
AI model [16]. One such approach is to add an additional,
surrogate model that simplifies relevant sections of the AI model
to be explained. Local interpretable model-agnostic explanations
(LIME) [27] is a method that can explain the prediction of any
classifier by building a local model that aims to approximate
the original model and its predictions. The new model is chosen
to be an interpretable model (such as logistic regression). This
allows the user to better understand the relationship between a
single input and the corresponding output prediction by
providing a local explanation and is, therefore, an explanation
by simplification. However, LIME has some drawbacks: it does
not inherently provide global explanations of the dataset as a
whole and it can experience inconsistency because it requires
multiple perturbations of input data and retraining local
surrogate models [28]. An alternative XAI method that ranks
the importance of features used by the model is Shapley additive
explanations (SHAP) [29]. SHAP is a method that calculates
an additive feature importance score, which can provide local
explanations for individual predictions as well as global
explanations for the whole dataset. However, SHAP may
experience sensitivity to feature perturbations and to feature
correlations and interactions [30]. As a whole, a drawback of
post hoc explainability techniques is that they approximate the
model’s decision-making rather than directly reflecting its
internal structure.

Since explaining black-box models requires post hoc techniques,
SHAP and LIME have been applied to deep learning models in
medical applications, for example, to aid the explainability of
complex convolutional neural network medical diagnostic
models for chest X-ray classification for COVID-19 infection
[31]. SHAP has also been applied as a backend explanation
module for a neural network predictor of COVID-19 infection
diagnosis in eHealth record data [32], providing both local and
global explanations. Post hoc XAI techniques, such as these,
represent the vast majority of XAI use cases in health care [33].

To overcome the drawbacks of post hoc methods, our new
approach offers an inherently interpretable model for predicting
mental health treatment outcomes. Its transparency stems from
a logistic regression framework, which, as described earlier, is
interpretable as it is possible to make a direct link between the
value of an input parameter, its associated weight, and the
prediction made by the model. Moreover, by using a hierarchical
structure that moves from questions to scores to classification
predictions, this design enables users to understand how and
why the model makes decisions, both at the questionnaire score
level and the individual question level.

Responsible AI
As previously stated, responsible AI requires an understanding
of its own confidence and robustness in inferences. The advent
of deep learning has resulted in a step change in the performance
of models and the associated practical use of AI. However, this
has come with disadvantages. Deep learning models can be
confidently wrong, especially in case of a shift in the input data,
and in recent years, such overconfidence in incorrect inferences
has proved fatal, as illustrated by serious accidents caused by
machine vision models in cars [34]. Most ML algorithms
provide point-estimate predictions, meaning they provide an
inference with, at best, a scalar estimate of the model’s
confidence in the inference. More recently, methods based on
the application of Bayesian statistics have been proposed [35].
In such methods, rather than estimating a point estimate, the
models provide a probabilistic inference modeled by a
probability distribution. This distribution can then be used for
a point-estimate inference (eg, by taking the mode of the
distribution as the inference) and can also be used to assess the
model’s uncertainty in this inference by considering the shape
of the probability distribution. Distributions strongly peaked
around the inference indicate low uncertainty; very wide and
flat distributions around the inference indicate high uncertainty.

These models often also provide probabilistic information on
the effect of model predictions in the face of perturbations in
the input features. For example, Cardelli et al [36] showed that
for Bayesian inference with Gaussian processes, a class of
algorithms overlapping with deep neural networks that have
inherent uncertainty estimates [19], the model’s uncertainty in
response to perturbations in the input space can be
upper-bounded, thus providing a measure for the model’s
robustness.

If a full Bayesian probability distribution is established for all
parameters in the model, with statistics either learned from data
or based on existing knowledge, it can then be used to
investigate the confidence and robustness of the model.
However, a significant drawback of this approach is that it can
be compute-intensive [37].

An alternative method called MCD is inspired by using the
dropout layers in deep neural networks to improve the ability
of a network to “generalize,” or provide good quality predictions
on yet unseen data [38]. When used to allow the model to
generalize well, dropout sets weights of the model to 0 randomly
during training only [38]. The result is that the trained model
does not become overreliant on any one (potentially spurious)
characteristic of the data. In contrast, MCD also uses dropout
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when new predictions are made. It does so by obtaining repeated
inferences from the trained model, but with different weights
dropped out in every iteration of the inference. The result is a
distribution of inferences rather than a point-estimate. Such
inference distributions can be shown to be equivalent to those
obtained by a fully Bayesian model for an important family of
probabilistic models, called Gaussian process models, when
dropout is applied before every weight layer [39]. Consequently,
MCD results in a Bayesian approximation by randomly
switching off connections in the network during inference.

MCD has been applied to estimate uncertainty in medical
imaging AI convolutional neural network models where the
model perturbations allow the estimation of epistemic
uncertainty in the prediction of potentially cancerous skin lesions
[17] and brain tumors [40]. Using this method, the model is
sampled N times with dropout elements set to 0 randomly

according to Bernoulli random variables. Given a prediction s*,

the model is sampled N times, with model parameters at

each iteration, to yield the sample distribution y*. The mean
value of class c (µc) of the sample is the prediction probability

of the class, while the variance of class c (σc
2) is the uncertainty

measure:

(2)

(3)

Methods

Overview
This paper presents a methodology to obtain explainable,
interpretable models that are robust and provide a reliable
confidence score for use with an important class of data in
mental health, namely that of sum-score questionnaires. The
model uses the answers to individual questions as inputs, but
also explicitly represents the traditionally used sum-scores of
such questionnaires in the model. Hence, explainability and
interpretability are provided both at the question level and at
the sum-score level. To also provide robustness and a measure
of model confidence in its predictions, MCD is applied as
described in the previous section.

The ability of the proposed model to provide interpretable
predictions as well as estimates of confidence is demonstrated
with a use case aimed at providing clinicians with treatment
recommendations for several mental disorders.

Metrics
Precision, recall, F1-score, balanced accuracy score, weighted
F1-score, and area under the curve (AUC) are relevant metrics
for evaluating the predictive model’s classification performance.
Precision measures the proportion of correctly predicted

treatment decisions among all predictions for a given class. A
high precision score ensures that the model minimizes incorrect
treatment assignments. Recall (or sensitivity) assesses the
proportion of correctly predicted treatments among all actual
instances of that class, reflecting the model’s ability to identify
the correct treatment when needed. F1-score is the harmonic
mean of precision and recall, balancing both metrics to provide
a single performance measure, particularly useful in cases of
class imbalance. The balanced accuracy score is the average of
recall across all classes, accounting for imbalanced class
distributions by ensuring each class contributes equally to the
overall performance evaluation. Weighted F1-score adjusts the
F1-score by considering class frequencies, preventing minority
classes from being overshadowed in imbalanced datasets. The
AUC measures the model’s ability to distinguish between
different treatment classes, with higher values indicating better
discrimination. During validation these metrics ensure reliable
treatment predictions, minimize incorrect classifications, and
balance performance across all treatment options, reducing
potential clinical risks.

Data
A dataset comprising patient questionnaire answers and
demographics was used to train and validate the model. The
data were gathered between November 14, 2019, and December
31, 2022, from patients of the “Internetpsykiatrien” web-based
treatment services delivered by the Centre for Digital Psychiatry,
Denmark. The center delivers routine care internet-delivered
cognitive behavioral therapy with nationwide coverage [41].
The data consisted of answers to the Patient Health
Questionnaire-9 (PHQ-9) [42], the Generalized Anxiety Disorder
Questionnaire-7 (GAD-7) [43], the Social Interaction Anxiety
Scale (SIAS) [44], the Panic Disorder Severity Scale (PDSS)
[45], and the Fear Questionnaire [46]. Additional features
included demographic information and a brief medical history,
such as previously diagnosed conditions.

The ground truth of the dataset was the choice of treatment
selected by the psychologists in the clinic for each patient. The
treatment decision was reached using multiple steps. First,
clinical psychologists or psychologists under the supervision
of a clinical psychologist, assessed patients using questionnaires
to determine the optimal treatment. This assessment used the
same questionnaire and demographic data that was used by the
model, except for free text data, which were available to the
psychologists, but not to the model. Second, they performed a
clinical assessment interview, including the use of the
semistructured interview, Mini Neuropsychiatric Interview.
Any ambiguities were discussed at a clinical conference.

A total of 91 input features were selected for inclusion in the
models (Table 1), with data completeness as the primary
inclusion criterion. The dataset (N=1068) was randomly split
into a training set (n=801, 75%) and a test set (n=267, 25%).
The training data consisted of 4 prediction class categories as
follows: (1) depression (n=269, 33.6%); (2) panic (n=269,
33.6%); (3) social phobia (n=193, 24.1%); and (4) specific
phobia (n=70, 8.7%). The test set class categories were stratified
to match the training set in proportion: 33.7% (90/267); 33.3%
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(89/267); 24% (64/267); and 9% (24/267) for the 4 classes,
respectively.

The percentages of training or test set data per class were: 34%
(269/801); 34% (269/801); 24% (193/801); and 9% (70/801)
(rounded), respectively. Given this class distribution, we opted
against upsampling the underrepresented classes (social phobia
and specific phobia) or downsampling the overrepresented
classes (depression and panic). While upsampling could mitigate
class imbalance, it risks introducing synthetic patterns that may
not generalize well to real-world data. In addition, given the
relatively small sample size of the latter category (70/801, 9%
in training), aggressive upsampling could lead to overfitting,

where the model learns artifacts of the duplicated instances
rather than underlying patterns in the data.

Conversely, downsampling depression and panic would reduce
the total available training data and potentially discard valuable
information, impairing the model’s ability to capture the full
variation within these classes. Furthermore, since the dataset
represents naturally occurring clinical distributions, artificial
class balancing could distort the real-world relevance of model
predictions. Instead, we opted to maintain the original class
distribution and address class imbalance using performance
metrics robust to class imbalance, such as balanced accuracy,
weighted F1-score, and AUC, ensuring that model evaluation
accounts for differences in class representation.
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Table 1. Dataset features.

Feature type and valuesDescriptionFeatureID

Years of educationEducation1 • Ordinal
• 0: primary school (0 to 9th grade)
• 1: high school (10th to 12th grade)
• 2: vocational education
• 3: short further education (≤3 years)
• 4: intermediate further education (4 or 5 years)
• 5: long further education (≥5 years)
• 6: other

Weekly alcohol use (units)AlcoholIntake2 • Ordinal
• 0: 0
• 1: 1-5 or 1-7
• 2: 6-10 or 8-13
• 3: 11-20 or 14-20
• 4: 21-30
• 5: >30

Use of euphoric drugs or pillsUseOfDrugs3 • Categorical
• 0: no
• 1: yes

Current psychopharmacological treatmentCurrentMedication4 • Ordinal:
• 0: none
• 1: <1 month
• 2: 1 to 2 months
• 3: ≥2 months

All 9 questions of PHQ-9a [42] over the previous 2 weeks
scored on a 4-point Likert scale

Phq{One: Nine}5-13 • Ordinal
• 0: not at all
• 1: several days
• 2: more than half the days
• 3: nearly every day

Assessing to what extent the symptoms reported using PHQ-
9 have affected work, household tasks, and relationships scored
on a 4-point Likert scale

PhqTen14 • Ordinal
• 0: not difficult at all
• 1: somewhat difficult
• 2: very difficult
• 3: extremely difficult

All 7 questions of GAD-7b [43] scored on a 4-point Likert
scale

Gad{One:Seven)15-21 • Ordinal
• 0: not at all
• 1: several days
• 2: more than half the days
• 3: nearly every day

Binary categorical variable of self-reported previous phobia
diagnosis

HasPhobia22 • Categorical
• 0: no previous phobia
• 1: previous phobia
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Feature type and valuesDescriptionFeatureID

• Items 1-17:
• ordinal
• 0: would not avoid it
• 2: slightly avoid it
• 4: definitely avoid it
• 6: markedly avoid it
• 8: always avoid it

• Item 18:
• ordinal
• 0: no phobias present
• 2: slightly disturbing or not really dis-

abling
• 4: definitely disturbing or disabling
• 6: markedly disturbing or disabling
• 8: very severely disturbing or disabling

• Items 19-24:
• ordinal
• 0: hardly at all
• 2: slightly troublesome
• 4: definitely troublesome
• 6: markedly troublesome
• 8: very severely troublesome

All 24 questions of the Fear Questionnaire [46] Items 1-17
assess avoidance. Item 18 assesses phobic symptom severity.
Items 19-24 assess how reported phobia affects the respondent.

Fq{One:TwentyFour}23-46

• Ordinal
• 0: not at all
• 1: slightly
• 2: moderately
• 3: very
• 4: extremely

SIASc questionnaire [44] assesses the respondent’s social in-
teraction anxiety using 20 statements, which the respondent
indicates agreement with (“... characteristic or true of me”)
on a 5-item Likert scale

Sias{One:Twenty}47-66

• Separate ordinal answer key for each item with
severity of responses rated as follows:
• 0: no or not
• 1: mild, occasional, or slight
• 2: moderate or significant
• 3: severe, very often, or substantial
• 4: extreme or nearly constantly

PDSSd questionnaire [45]Pdss{One:Seven}67-73

• Ordinal
• 1: could not be worse
• 2: displeased
• 3: mostly dissatisfied
• 4: mixed
• 5: mostly satisfied
• 6: pleased
• 7: couldn’t be better

Questions 10, 24, and 25 of the 25-item MANSAe question-
naire [47]

MansaTen,
MansaTwentyFour,
MansaTwentyFive

74,75,76

• One-hot encoded
• DAD0: not previously diagnosed with anxiety

or depression
• DAD1: previously diagnosed with depression
• DAD2: previously diagnosed with anxiety
• DAD3: previously diagnosed with anxiety and

depression

Previous diagnosis one-hot encoded using dummy variables
DAD0-DAD3

DAD77-80

• One-hot encoded
• INC_1: employed
• INC_2: social security
• INC_3: sickness benefit or pay
• INC_4: unemployment benefit
• INC_5: stipend
• INC_6: pension
• INC_7: other

Describing source of income of the respondent. One-hot en-
coded using dummy variables INC_1 to INC_7

INC81-87
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Feature type and valuesDescriptionFeatureID

88-91 • One-hot encoded
• APP_1: applied for anxiety treatment
• APP_2: applied for depression treatment
• APP_3: applied for both anxiety and depres-

sion treatment
• APP_4: does not know what treatment to apply

for

Treatment applied for one-hot encoded using dummy variables
APP_1 to APP_4

APP

• Categorical
• 1: depression
• 2: panic
• 3: social anxiety
• 4: specific phobia

Treatment decision (ground truth)TreatmentTypeGT

aPHQ-9: Patient Health Questionnaire-9.
bGAD-7: Generalized Anxiety Disorder Questionnaire-7.
cSIAS: Social Interaction Anxiety Scale.
dPDSS: Panic Disorder Severity Scale.
eMANSA: Manchester Short Assessment of Quality of Life.

Ethical Considerations
Data were extracted from Internetpsykiatrien after approval
from The Regional Council in Southern Denmark. Since this
was a secondary data analysis, separate informed consent was
not required. However, the Regional Committees on Health
Research Ethics for Southern Denmark were informed about
the study and were provided with the case number
S-20232000-65. In accordance with Danish national ethical
guidelines, no additional ethics approval was needed. The study
was reported to the Danish Data Protection Agency. Data was
anonymized before being provided to the researchers. No
compensation was provided.

Model
The proposed model was designed to interpret the traditional
sum-score questionnaires used in mental health treatment in a
data-driven, explainable fashion. Sum-score questionnaires offer
several prespecified answers to each question, with each answer
associated with a numeric, typically integer, score. These scores
are then summed and in many cases a threshold is then applied,
which indicates whether the respondent demonstrates clinically
significant symptoms for the disorders tested by the instrument.
Hence, such sum-scores play an important role in clinical
decision-making. ML models such as logistic regression strongly
align with this principle while also offering inherent
interpretability due to the nature of the output activation being
related to a weighted sum of the inputs. Such inherent
explainability is appealing; however, the complexity of the
information conveyed when models contain many weights can
lead to cognitive overload, hampering decision-making [15]
and explainability [16].

To improve the model’s explainability while also retaining its
inherent interpretability, a hierarchical model was proposed. As
can be seen in Figure 1, this model mimics the sum-score models
in the hidden layer of the model, in which the responses of each
individual instrument are multiplied by their respective weight
and then summed to yield pseudosum scores. These scores differ
from normal sum-scores by applying a learned weighting to

each answer before summing. These pseudosum scores
incorporate a rectified linear unit activation function to ensure
a linear sum while also ensuring the sum cannot be negative
(due to the model learning negative weights during training).
These scores and their weights allow inherent interpretability
on a per-score basis, which will be familiar to clinical users of
traditional questionnaire instruments. These pseudosum scores
are then weighted before being combined in the output layer
with the weighted sum-score of all other used instruments. In
addition to the pseudosum scores, any other features with
potentially discriminative power, such as sociodemographical
information, can be added. All weights have dropout applied
during prediction, consistent with the use of MCD as described
previously. A softmax-type activation function is used in the
output layer. The softmax activation function ensures that the
sum of all the outputs of the model equals 1. Hence, each of the
outputs can be interpreted as the probability that the
corresponding treatment should be recommended. This output
probability is illustrated as p(depression), as shown in Figure
1. Note that the output layer will typically contain 1 output node
for each of the treatments considered by the model and that this
number is not necessarily the same as the number of screening
instruments used as inputs to the model.

With this specific architecture, the model achieved three
important goals as follows: (1) the model allows the nonlinear
combination of multiple instruments to achieve a treatment
prediction, (2) the model allows the explanation of its
predictions based on pseudosum score results and thus provides
score-level explainability and trust in the model, and (3) at the
same time, the model allows for the analysis of model
predictions based on the input features, enabling users to
understand which particular responses to each questionnaire
drive the model predictions. These insights may provide
therapists with valuable information on how to personalize the
therapy.

The model’s structure inherited its interpretability from its
foundation in logistic regression, while confidence and
robustness of the model were addressed using the
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aforementioned MCD. As previously stated, MCD can be shown
to approximate the probabilistic results obtained by Bayesian
approaches for a class of models called Gaussian Processes.
The latter are a generalization of generalized linear models, one
of which is the logistic regression model chosen in our approach
for its explainability. The hierarchical logistic regression model
has dropout applied before every weight layer, since the
Bayesian properties of MCD apply for neural networks of
arbitrary depth and nonlinearities, as long as dropout is applied
in this way [39]. While it is usual for dropout to be applied to
neural networks to fulfill the function of regularization during
training time [38], as explained, MCD also applies dropout
during inference. The probability of a node being dropped, the
dropout rate, is a parameter of the dropout layers. In MCD, the

dropout rate is typically set heuristically. Extensions to the
technique, such as learnable Bernoulli dropout [48], allows the
dropout rate to be jointly optimized in the model training phase.
When MCD is used in this way, to approximate a Bayesian
network, it should not be seen as a regularization method [49].
Therefore, L1 regularization is applied during training to reduce
overfitting. L1 regularization attempts to achieve good
generalization (ie, good performance on yet unseen data) by
forcing the influence of unimportant features to 0. L2
regularization can be applied as an alternative, fulfilling the
regularization function without enforcing sparsity in the weights.
Further justification for the choice of L1 regularization is
provided in the Results section. Multimedia Appendix 1 shows
the model details.

Figure 1. Model structure. The structure of the hierarchical model shows the questionnaire input features (Q) being passed to the pseudosum score
layer and then to the output layer. The pseudosum layer incorporates a rectified linear unit activation function to ensure the pseudosum scores cannot
be negative. The output layer performs a softmax function, predicting the probabilities of the 4 classes. The weights are represented by the arrows, with
the thicker arrows representing the weights in the softmax layer. The demographic features (f) pass directly to the output layer with softmax weightings.
GAD-7: Generalized Anxiety Disorder Questionnaire-7; PHQ-9: Patient Health Questionnaire-9.

Prediction Explainability and Confidence
The distribution of the softmax output classes over the N

samples , are visualized using Violin plots of the
output class probability distribution over the N samples of a
single patient prediction. A prediction for a single patient is
shown in Figures 2 and 3. The outer, colored, “violin” shape
visualizes the probability distributions over the N samples of
the single patient example, while the embedded box-plots
illustrate the medians and IQR of the model’s predictions. The
confidence and uncertainty of the prediction can be understood

by observing the shape and overlapping of the violin plots.
Figure 2 provides an example of depression being predicted
with high likelihood and nonoverlapping with the other 3
classes, whereas the predictions for all 3 other disorders have
a low median probability. Predictions with low confidence (ie,
low probabilities) and high uncertainty (ie, large probability
variation), where more than 1 class may credibly be predicted,
resulted in outputs, such as shown in Figure 3. This is an
example of the relation between XAI concepts [16], using
visualization to enhance explainability, contributing to improved
interpretability, and the interpretability of the model leading to
validation of the explanation.
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Figure 2. A representation of the output class distribution. A violin plot showing the probability distribution of the 4 treatment classes for a single
example over N runs (samples) of Monte Carlo dropout. The separation of the probabilities (x-axis) indicates high model confidence in the prediction
of depression compared to the other classes. The low dispersion in the predictions indicates low uncertainty.

Figure 3. Class distribution of high uncertainty and low confidence. A violin plot showing the probability distribution of the 4 treatment classes for a
single example over N runs (samples) of Monte Carlo dropout. The overlap of the probabilities (x-axis) indicates low model confidence in the prediction
of panic compared to depression. The high dispersion in the predictions indicates high uncertainty.

Prediction Interpretability and Robustness
Interpretability at the model level is aided by examining the
learned weights after training. Since the scores are weighted

linear sums of the question inputs WTX, the learned weights
(W) are informative of the importance of each of the question
features in determining the score used in the output class
predictions in the softmax layer. The softmax layer implements
a multiclass logistic regression function for each class (subscript
c) and score (subscript s):

(4)

Where σ represents the sigmoid (or logistic) function, Xs is the
input coming from the score layer or demographic features, Wc

represents the weights in the softmax layer for class c, and Bc

represents a bias value for each class.

Determining feature importance is an important aspect of
explainability. At the model level, applying L1 regularization
to logistic regression tends to force the weights of unimportant
features to zero, leaving more important features as nonzero
[50]. However, it is important to be aware that collinear features
may not be equally important for a model since they can be
accounted for by just one of the collinear features, with the
others set to 0. Constraining trained weights to be nonnegative
in the score layer aids interpretability since traditionally,
questions are summed to produce a score. Therefore, the relative
weights play a useful role in determining feature importance,
provided that the inputs have been normalized to the same scale
during training and prediction.

At the model level, standardized coefficients obtained by
multiplying the original coefficients by the SD of the
corresponding feature, provides a scale-free measure of
influence, allowing the comparison of the relative importance
of different features [51].

At the prediction level, for a specific patient record, the weights
can be interpreted as the feature importance, given the
normalized input range and positive weight constraint.
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Results

Overview
The model was constructed using the TensorFlow library for
Python (Python Software Foundation) and trained over 2000
epochs with a batch size of 32. The Adam optimizer was used
at default setting, with L1 regularization of 0.001 and a dropout
rate of 0.05 [52].

During development, both L1 and L2 regularization were
considered, with evaluations involving 5-fold cross-validation
on the training set. The optimal balanced accuracy score for
both L1 and L2 corresponded to a regularization factor of 0.001
for both, with L1 and L2 achieving similar cross-validated mean
balanced accuracy scores. Since L1 regularization tends to lead
to a sparse solution by forcing unrequired weights to 0, it may
be favored over L2 for transparent interpretability. However,
when there are multiple near-equivalent predictors (eg,
correlated measures), small fluctuations in initialization can
lead the model to “select” a slightly different subset of features
for its nonzero coefficients, eliminating one correlated feature,
for example, while retaining the other. In consistency tests over
30 training runs, consistency in the top features was observed,
although the order of importance may switch the top positive
weight. In the depression class, for example, the top positive
feature was PHQ-9 in 70% (21/30) of the runs and DAD_1.0
(previously diagnosed with depression) in 30% (9/30) of the
runs. In the panic class, PDSS was always the top positive
feature, with GAD-7 taking second place in 40% (12/30) of the
runs and fq_total in 30% (9/30) of the runs. Examining the
softmax weights, 80% (24/30) of the cumulative sum of the
weights for each class were represented in the top 6 factors for
L1 regularization, whereas for L2, up to 11 factors were required
to represent the 80% (24/30). Therefore, L1 regularization was
adopted for interpretability since: (1) both L1 and L2
regularization demonstrated similar accuracy; (2) L1
regularization enforces sparsity, requiring fewer weights to
explain the top 80% (24/30); (3) the top weights are consistently
in the top 3; and (4) the model transparency ensures the same
weights are used in both prediction and explanation.

Following training, the model was evaluated on the held-out
test set, achieving a balanced accuracy score of 0.79, indicating
good generalization. The validation metrics (Table 2) indicate
strong predictive performance across all 4 classes, with F1-scores

ranging from 0.71 to 0.86, which indicates a balanced trade off
between precision and recall. Specific phobia achieved the
highest precision (0.84) and the highest recall (0.88), suggesting
that the model is highly accurate in predicting this class when
it does make a prediction. However, social phobia had the lowest
recall (0.70) compared to other classes, indicating some
difficulty in correctly identifying all cases of this condition. The
AUC values, all >0.90, suggest strong discrimination between
classes. The aggregated metrics demonstrate an overall balanced
accuracy score of 0.79 and a weighted F1-score of 0.78,
confirming that class imbalance did not severely impact overall
model performance. The use of these weighted metrics ensures
that smaller classes, such as specific phobia, contribute
proportionally without distorting the results.

The confusion matrix (Table 3) details the number of treatment
recommendations proposed by the model, with correct
classifications appearing on the main diagonal of the table.
Off-diagonal elements quantify the number of cases in which
the model chose a different treatment than the clinician.

Patients assessed with social phobia were misclassified as
depression in 4.9% (13/267) cases and as panic disorder in 1.9%
(5/267) cases, suggesting that the model struggles to distinguish
social phobia from other anxiety-related conditions. This was
consistent with the lower recall observed for social phobia in
Table 2, indicating that some patients with social phobia were
incorrectly classified into other categories.

For specific phobia, the model correctly identified 7.9% (21/267)
cases, but 1.1% (3/267) cases were misclassified as panic
disorder (2/267, 0.7% cases) or social phobia (1/267, 0.4% case).
Given that specific phobia was the least represented category
in the dataset, the model’s relatively strong performance in this
class may be influenced by its high specificity (0.98, Table 2),
which suggests that when the model does predict specific
phobia, it does so with a high degree of accuracy. However, the
smaller sample size in this class may also lead to performance
variability.

The model generally performed well in classifying depression
and panic disorder, with high agreement between model
predictions and clinician labels (72/267, 27% and 69/267, 25.8%
correct classifications, respectively). However, 3.7% (10/267)
panic disorder cases were misclassified as depression, indicating
some overlap in how these conditions were represented in the
feature space or possible comorbidities.

Table 2. Validation metrics on the test set.

AUCaPer-class balanced accu-
racy

SpecificityF1-scoreRecall (sensitivity)PrecisionTreatment

0.930.840.870.780.810.76Depression

0.920.840.910.790.770.82Panic

0.910.810.910.710.700.71Social phobia

0.980.930.980.860.880.84Specific phobia

aAUC: area under the curve.
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Table 3. Confusion matrix on the test set.

Model proposed treatment, n (%)Clinician proposed treatment (ground truth)

Specific phobiaSocial phobiaPanic disorderDepression

0 (0)9 (3.4)8 (3)72 (27)Depression

3 (1.1)8 (3)69 (25.8)10 (3.7)Panic

1 (0.4)45 (16.8)5 (1.9)13 (4.9)Social phobia

21 (7.9)1 (0.4)2 (0.7)0 (0)Specific phobia

Model Level (Global) Explainability of Classes From
Score Totals and Demographics
Examining the learned weights of the softmax layer that predicts
the class probabilities from the score and demographic features
is informative to interpret their relative importance at the model
level. Positive weights contribute toward a more probable class
prediction, while negative weights detract. Examining the top
6 positive and negative contributions, the depression class
(Figure 4), is mostly influenced by the PHQ-9 score,
application-related variables (APP_4.0, APP_3.0), and the
previous diagnosis of depression (DAD_1.0). The Fear
Questionnaire Global Phobia rating (question 18) detracts from

this class prediction. The panic class (Figure 5) is most
influenced positively by the PDSS score and the Fear
Questionnaire total score (fq_total) and most negatively by the
use of euphoric drugs or pills (UseOfDrugs), so drug use detracts
from this class probability. The social phobia class (Figure 6)
is most influenced by the SIAS score and the Fear Questionnaire
Global Phobia rating (fq_global). Having been previously
diagnosed with depression (DAD_1.0) works against this class.
The specific phobia class (Figure 7) is most influenced by the
Fear Questionnaire main level of avoidance (item 1), and the
Global Phobia rating (fq_global), while having applied for both
anxiety and depression treatment (APP_3.0) counts against this
class.

Figure 4. Weights of the softmax depression class node (top 6 positive and negative). The chart shows the top 6 positive and negative weights of the
softmax output layer with respect to the depression class. The relative magnitude and sign indicate the importance of the feature for the prediction.
Positive weights contribute to the class prediction probability. Negative weights detract from it. The chart indicates that the Patient Health Questionnaire
(PHQ-9) score (phq), and application-related variables (APP_4.0, APP_3.0) have the most influence on the prediction of the depression class, while
the Fear Questionnaire Global Phobia rating (fq_global) has the strongest negative influence.
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Figure 5. Weights of the softmax panic class node (top 6 positive and negative). The chart shows the top 6 positive and negative weights of the softmax
output layer with respect to the panic class. The relative magnitude and sign indicate the importance of the feature for the prediction. Positive weights
contribute to the class prediction probability. Negative weights detract from it. The chart indicates that the Panic Disorder Severity Scale (PDSS) score
(pdss), and the fear questionnaire total score (fq_total) have the most influence on the prediction of the panic class, while the use of euphoric drugs or
pills (UseOfDrugs) has the strongest negative influence.

Figure 6. Weights of the softmax social phobia class node (top 6 positive and negative). The chart shows the top 6 positive and negative weights of
the softmax output layer with respect to the social phobia class. The relative magnitude and sign indicate the importance of the feature for the prediction.
Positive weights contribute to the class prediction probability. Negative weights detract from it. The chart indicates that the SIAS score (sias) and the
Fear Questionnaire Global Phobia rating (fq_global) have the most influence on the prediction of the social phobia class. Having been previously
diagnosed with depression (DAD_1.0) has the strongest negative influence.
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Figure 7. Weights of the softmax specific phobia class node (top 6 positive and negative). The chart shows the top 6 positive and negative weights of
the softmax output layer with respect to the specific phobia class. The relative magnitude and sign indicate the importance of the feature for the prediction.
Positive weights contribute to the class prediction probability. Negative weights detract from it. The chart indicates that the Fear Questionnaire has the
most influence on the prediction of the panic class. The main Phobia Level of Avoidance score (fq_main), and Global Phobia rating (fq_global) are the
top 2 positive weights. Having applied for both anxiety and depression treatment, (APP_3.0) has the strongest negative influence.

Model Level (Global) Explainability of Score Totals
As explained, standardized coefficients obtained by multiplying
the original coefficients by the SD of the corresponding feature
in the dataset provide a scale-free measure of influence, allowing
the comparison of the relative importance of different features.
The standardized coefficients are shown in Figures 8-12.
Examining the PHQ-9 standardized coefficients (Figure 8),
questions 1 and 2, the main cognitive factors of the questionnaire
[53] are the most important, with all the 5 cognitive factors
being represented. The importance of the GAD-7 (Figure 9) is
almost exclusively represented by questions 4 (“Trouble
relaxing”) and 2 (“Not being able to stop or control worrying”).

The most important SIAS questions (Figure 10) were 6 and 1.
Question 3, (“How often do you feel anxious about the
possibility of having a panic attack?”) was the most important
in the PDSS (Figure 11). In the Fear Questionnaire anxiety or
depression subscale (Figure 12), question 23, “Feeling you or
your surroundings are strange or unreal,” was the most
important. The Total Phobia Score from the Fear Questionnaire
was defined as the sum of the subscale scores for agoraphobias,
blood injury phobia, and social phobia. In this case, only the
learned agoraphobia subscore was weighted at nonzero (Figure
13). Question 5 was the most relevant question in the Fear
Questionnaire agoraphobia subscale (Figure 14).

Figure 8. Patient Health Questionnaire-9 (PHQ-9) question standardized coefficients. This chart illustrates the relative importance of the PHQ-9
questions with respect to the pseudosum score for the PHQ-9 (phq) after model training.
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Figure 9. Generalized Anxiety Disorder Questionnaire-7 (GAD-7) question standardized coefficients. This chart illustrates the relative importance of
the GAD-7 questions with respect to the pseudosum score for the GAD-7 (gad) after model training. GAD question 4 “Trouble relaxing” and GAD
question 2 “Not being able to stop or control worrying,” are the main nonzero standardized coefficient after L1 regularization pushes unimportant
weights to zero.

Figure 10. Social Interaction Anxiety Scale (SIAS) question standardized coefficients. This chart illustrates the relative importance of the SIAS questions
with respect to the pseudosum score for the SIAS (sias) after model training. Reverse scored features have an R suffix, for example, Sias5R.

Figure 11. PDSS question standardised coefficients. This chart illustrates the relative importance of the PDSS questions with respect to the pseudo-sum
score for the PDSS (pdss) after model training.
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Figure 12. Fear Questionnaire (FQ) anxiety depression subscale question standardized coefficients. This chart illustrates the relative importance of the
Fear Questionnaire Total Phobia Score questions with respect to the pseudosum score (fq) after model training. Question 23, “Feeling you or your
surroundings are strange or unreal.” is the largest standardized coefficient after L1 regularization pushes unimportant weights to 0.

Figure 13. Fear Questionnaire (FQ) total score weighting of the FQ subscales. This chart illustrates how the Fear Questionnaire subscales are weighted
in relation to the fear questionnaire total score fq_total. Only the agoraphobia subscale (fq_ago) was learned as being relevant. This is likely to be due
to L1 regularization of correlated factors.

Figure 14. Fear Questionnaire (FQ) agoraphobia subscale question standardized coefficients. This chart illustrates the relative importance of the FQ
agoraphobia subscore questions.

Patient Level (Local) Explainability
The relevant questionnaire total score summaries of a test patient
(patient 1) are provided here. The PHQ-9 (15) score indicated
moderately severe depression [42]. The PDSS score (13)
indicated “moderately ill” panic disorder [54]. The GAD-7 score
(17) indicated severe anxiety [55]. The SIAS score (22) was
lower than the threshold for an indication of social phobia [56].
The clinical assessment (ground truth) of an appropriate
treatment was panic. Other scores included Fear Questionnaire
total score (6), global score (0), and main score (0).

Examining a local explanation at the individual patient level
for patient 1 (Figure 15), the predicted probability distribution
of panic (the prescribed treatment), overlapped with depression.
The importance was determined from the weighted inputs to
the softmax layer, combining both the patient record and the
learned weights. Examining the importance associated with the
prediction in the softmax layer for the panic class shows the top
6 positive factors (Figure 16), and the top 6 negative factors
(Figure 17). Positive values make the class more probable, while
negative values make the class less probable. It should be noted
that the positive and negative y-values for each class are derived
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from the same weight layer and, therefore, are suitable for
comparative analysis. In the patient 1 example, the PDSS
questionnaire score explained most of the probability for the
panic class, while the SIAS questionnaire detracted from the
probability of the panic class, but to a lesser degree.

The model can also be used to explain any of the class
probabilities. It is not limited to explaining the highest
probability prediction. Hence, the class prediction for depression
can be examined in the same way. This showed the PHQ-9 score
as the most important (Figure 18), followed by APP_3 (the
patient applied for both anxiety and depression treatment). The
PDSS score showed a negative influence on this class (Figure

19), which was important but lower than the positive importance
of PHQ-9. It is interesting to note that the negative importances
for the depression class (Figure 19) were larger than the negative
importances for panic, the highest probability class (Figure 17).
This goes some way to explain why panic was predicted to be
more probable than depression.

The hierarchical model also allowed a closer examination of
the individual questions. For example, an examination of the
PHQ-9 questions that contributed to the probability of the
depression class (Figure 20), showed PHQ-9 questions 1 and 2
as having the most influence on the model prediction for this
class, for this patient.

Figure 15. Prediction for patient 1. A violin plot showing the probability distribution of the 4 treatment classes for the data of patient 1. Although panic
has the highest probability, the overlap of the probabilities (x-axis) indicates low model confidence in the prediction of panic compared to depression.
The high dispersion in the predictions indicate high uncertainty. Overall, this plot indicates to a clinical user that both panic and depression are credible
treatments according to the model.

Figure 16. Patient 1 explainability for panic prediction (positive weightings). The product of the weights and the pseudosum score data or demographic
data explains the importance of those features in determining the local prediction from a patient record. These positive values contribute to the class
probability. The Panic Disorder Severity Scale (PDSS) score (pdss) is the most significant contributor to the probability of the panic class for patient
1.
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Figure 17. Patient 1 explainability for panic (class 2) prediction (negative weightings). The product of the weights and the pseudosum score data or
demographic data explains the importance of those features in determining the local prediction from a patient record. These negative values detract
from the class probability. The Social Interaction Anxiety Scale (SIAS) score (sias) is the most significant detractor from the probability of the panic
class for patient 1, but at approximately −0.5, it has less contribution than the comparative positive scores.

Figure 18. Patient 1 explainability for depression prediction (positive weightings). The product of the weights and the pseudosum score data or
demographic data explains the importance of those features in determining the local prediction from a patient record. These positive values contribute
to the class probability. The Patient Health Questionnaire-9 (PHQ-9) score (phq) is the most significant contributor to the probability of the depression
class for patient 1.
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Figure 19. Patient 1 explainability for depression prediction (negative weightings). The product of the weights and the pseudosum score data or
demographic data explains the importance of those features in determining the local prediction from a patient record. These negative values detract
from the class probability. The Panic Disorder Severity Scale (PDSS) score (pdss) is the most significant detractor from the probability of the depression
class for patient 1.

Figure 20. Patient 1 explainability for the Patient Health Questionnaire-9 (PHQ-9) questions in the depression prediction. The product of the weights
and the question data explains the importance of the questions in determining the local prediction from a patient record. The PHQ-9 questions 1 and 2
score are the most significant contributors to the phq pseudosum score of depression class for patient.

Discussion

Overview
Uncertainty and lack of confidence in diagnosing
psychopathological conditions can present a considerable
challenge due to comorbidities and overlapping symptoms [6].
The diagnosis of social anxiety disorder, for example, must be
differentiated from major depression, panic disorder,
agoraphobia, and generalized anxiety disorder [7,57].
Furthermore, maintaining human involvement in patient
assessments involving AI is critical [58]. Therefore, explaining
predictions and enabling clinicians to explore the clinical factors
associated with the predictions, has been a central aspect of this
work.

Principal Findings
We have demonstrated the design and quantitative evaluation
of a hierarchical model that aims to aid diagnosis and meet the
requirements of providing explainable predictions that are
context-based and easy for clinicians to use in
questionnaire-based assessments [4]. Issues of confidence and

robustness that are important for ML models aimed at medical
DSSs [25] have been addressed.

As the model achieved a balanced accuracy score of 0.79 and
AUC >0.90, it is expected that it will be clinically useful in both
screening a new patient and informing a clinical interview. In
patient screening, for example, the graphical interpretation of
the class probabilities, their spread, and their overlap can inform
the clinician of competing treatment possibilities for the patient.
Even in the case where the treatment prediction is unambiguous
and agrees with the clinician’s assessment, the model may serve
as a confirmatory second opinion. At the clinical interview
stage, the specific questions that are deemed important for the
class prediction may inform the clinician of which areas to probe
further in the clinical interview.

Limitations
ML models extract knowledge from data, limiting their
applicability to use in scenarios that are statistically similar to
the training scenario. The models reported in this study were
trained on data obtained from the Internetpsykiatrien web-based
treatment with nationwide coverage in Denmark [41]. Hence,
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while similar performance for individuals presenting to this
service in Denmark can be expected, performance in a different
country or otherwise different setting cannot be guaranteed.
This can be seen as a limitation of ML models, but also as a
strength; retraining the model described in this study is cheap.
Hence, it is relatively straightforward for any regional mental
health service to train this model on local data and obtain
predictions that are sensitive to regional sociodemographics
and patient characteristics. Moreover, patient characteristics
may well change over time, and such temporal changes can be
addressed by retraining the model periodically.

The ground truth is based on clinical judgment and is, therefore,
influenced by the subjectivity of the clinicians, interrater
variability, and possibly by group dynamics in decision-making
clinical conferences. Clinicians have access to free-text provided
by the patient, which the model does not have. A future direction
may involve the development of a hybrid model that makes use
of all the relevant questionnaire and demographic and free-text
data for each patient. An additional limitation of the ground
truth is that the assessment relies on structured questionnaires
and the Mini Neuropsychiatric Interview, which may not capture
all relevant patient characteristics, leading to potential gaps in
the ground truth.

During training, L1 regularization adjusts the standardized
coefficients and model weights toward 0 for features deemed
unimportant or redundant, for example, due to having a high
correlation with another feature. Consequently, features that
clinicians consider relevant may be excluded by the model and
thus do not appear in the explanations of predictions. However,
it is common for clinicians to prioritize the importance of certain
features over others in a diagnostic context [59]. It is anticipated
that clinicians will find the specificity of the explanations at the
question level to be clarifying and informative, complementing
their own clinical judgment. Moreover, L1 regularization may
result in model instability in the sense that small changes in the
training set may result in a different selection of nonzero
coefficients (and thus important features). Hence, a retrained
model may yield different explanations to the original model
for similar individuals, and this could be confusing to clinicians.
However, it should be emphasized that the feature weights that
explain the predictions are the same feature weights that the
model uses to make the predictions, due to the model’s
transparency. However, using L1 regularization is not a
prerequisite for the use of the proposed approach. L2
regularization, which attempts to achieve good generalization
by keeping model weights small (rather than forcing a subset
to 0 such as in L1 regularization) can also be used. The result

would be that the model contains mostly nonzero weights, and
thus, the explainability of model decisions becomes more
complex. However, clinicians could choose to focus on the most
important features (ie, those with the highest influence on the
model). Visualizations, such as those in Figures 16-19, could
be constrained to the N most important features with N chosen
by the clinician.

The clinical use of the ML model would require the development
of a DSS so that clinicians can view and explore the model
predictions and explanations when provided with patient records.
The lack of such a DSS may be seen as a limitation in
demonstrating the clinical effectiveness of the model. While
this study does not empirically demonstrate that the aims of
clinical interpretability have been met, further work is planned
to develop the DSS and study the clinical usefulness of the
system incorporating the model.

Overall, the results highlight the key challenges in differentiating
social phobia from other anxiety disorders and suggests that
future improvements could focus on enhancing feature
differentiation for overlapping categories, particularly social
phobia and panic disorder.

Future Work
The incorporation of this model into a DSS for mental health
treatment prediction will be an important future step for this
work. Once developed, assessing its use in a clinical setting will
help to validate it for future clinical use. The model itself could
be extended to use more input features, especially those that
have a potential to enhance feature differentiation for
overlapping categories (particularly social phobia and panic
disorder). Additional hybrid features may include free-text data
input for each patient. Output enhancements can also be foreseen
to further build on the model’s explainability. For example, a
text output of the model’s prediction, competing predictions,
and explanations in written form could form an important input
to clinical notes and provide material for clinical conferences.

Conclusions
This paper presents the design of a model aimed at a DSS for
psychopathological mental health treatment. Its basis in standard
screening questionnaires will allow seamless adoption in a
clinical setting in the future. The AI model incorporated in the
system is based on a novel hierarchical structure that aims to
meet the needs of clinical interpretability while accounting for
decision confidence and uncertainty that are lacking in previous
work.
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