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Abstract

Background: Long-term ventilator-dependent patients often face problems such as decreased quality of life, increased mortality,
and increased medical costs. Respiratory therapists must perform complex and time-consuming ventilator weaning assessments,
which typically take 48-72 hours. Traditional disengagement methods rely on manual evaluation and are susceptible to subjectivity,
human errors, and low efficiency.

Objective: This study aims to develop an artificial intelligence–based prediction model to predict whether a patient can
successfully pass a spontaneous breathing trial (SBT) using the patient’s clinical data collected before SBT initiation. Instead of
comparing different SBT strategies or analyzing their impact on extubation success, this study focused on establishing a data-driven
approach under a fixed SBT strategy to provide an objective and efficient assessment tool. Through this model, we aim to enhance
the accuracy and efficiency of ventilator weaning assessments, reduce unnecessary SBT attempts, optimize intensive care unit
resource usage, and ultimately improve the quality of care for ventilator-dependent patients.

Methods: This study used a retrospective cohort study and developed a novel deep learning architecture, hybrid CNN-MLP
(convolutional neural network–multilayer perceptron), for analysis. Unlike the traditional CNN-MLP classification method,
hybrid CNN-MLP performs feature learning and fusion by interleaving CNN and MLP layers so that data features can be extracted
and integrated at different levels, thereby improving the flexibility and prediction accuracy of the model. The study participants
were patients aged 20 years or older hospitalized in the intensive care unit of a medical center in central Taiwan between January
1, 2016, and December 31, 2022. A total of 3686 patients were included in the study, and 6536 pre-SBT clinical records were
collected before each SBT of these patients, of which 3268 passed the SBT and 3268 failed.

Results: The model performed well in predicting SBT outcomes. The training dataset’s precision is 99.3% (2443/2460 records),
recall is 93.5% (2443/2614 records), specificity is 99.3% (2597/2614 records), and F1-score is 0.963. In the test dataset, the model
maintains accuracy with a precision of 89.2% (561/629 records), a recall of 85.8% (561/654 records), a specificity of 89.6%
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(586/654 records), and an F1-score of 0.875. These results confirm the reliability of the model and its potential for clinical
application.

Conclusions: This study successfully developed a deep learning–based SBT prediction model that can be used as an objective
and efficient ventilator weaning assessment tool. The model's performance shows that it can be integrated into clinical workflow,
improve the quality of patient care, and reduce ventilator dependence, which is an important step in improving the effectiveness
of respiratory therapy.

(JMIR Med Inform 2025;13:e64592) doi: 10.2196/64592
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Introduction

According to statistics from the National Health Insurance
Administration, Taiwan saw an increase of 175,148 patients
dependent on ventilators in 2017, with 70% of intensive care
unit (ICU) patients requiring ventilator support. This significant
trend in ventilator usage persists in Taiwan, irrespective of its
impact on ongoing health crises. The current medical practice
requirements involving ventilator use include initiating ventilator
support, conducting spontaneous breathing tests, and assessing
readiness for ventilator weaning. In practical terms, respiratory
therapists must perform a ventilator weaning assessment before
a spontaneous breathing trial (SBT). This process is complex,
meticulous, time-consuming, and spans a period of 48-72 hours.
In other words, successful weaning from a ventilator for patients
depends on passing an SBT.

In retrospective studies [1,2], confirming whether all patients
receive the same SBT strategy is essential based on the specific
study design. SBT strategies typically include fixed pressure
support (PS) and positive end-expiratory pressure (PEEP). In
this paper, the study's SBT strategy was set at a PS of 10 cm
H2O and a PEEP of 5 cm H2O, lasting 2 hours. A successful
SBT is generally defined as the patient's ability to maintain a
stable respiratory state during the trial without mechanical
ventilation support and be safely extubated at the end of the
trial. An unsuccessful SBT is defined as a patient experiencing
respiratory distress, hypoxemia, hypercapnia, or other conditions
requiring the reinitiation of mechanical ventilation during the
trial.

Conventional weaning criteria often involve manual selection,
with therapists assessing patients based on their responses to a
ventilator weaning assessment form to determine if they are
eligible for an SBT. However, previous studies have explored
the use of information systems to automate ventilator weaning
assessments, revealing that this approach can reduce ventilator
usage time and enhance the efficiency of respiratory therapists
[3]. Research also suggests that automated weaning protocols
may decrease the weaning period, theoretically surpassing the
need for manual weaning [4,5]. Studies have investigated
consciousness status, oxygenation, ventilation modes, and
airway protection strategies [6]. Reducing ventilator usage time,
weaning time, and ICU stay has been discussed [7]. At the same
time, certain elements that cannot be automated in the weaning

process have been pointed out [8]. Daily screening methods
have effectively decreased dependence on ventilators [9].

Recently, numerous studies have investigated the impact of
SBT, including assessing the relationship between
end-expiratory lung volumes during SBT and successful
ventilator weaning [10]. Some studies have suggested
considering respiratory rate (RR) and ventilation time in patients
intubated in the ICU for more than 72 hours before extubation
after passing an SBT [11]. In different populations, research
has cautioned against using an SBT to assess the appropriate
timing of extubation for premature infants [12]. Additionally,
studies have proposed methods for evaluating extubation in
neonates through minimal pressure SBTs [13], by measuring
diaphragmatic electrical activity in premature infants to predict
extubation success [14], and investigating optimal duration and
reasons for failure in pediatric SBTs, noting that a 30-minute
SBT may be too brief for pediatric acute respiratory distress
syndrome patients in the recovery phase [15]. The impact of
SBT on extubation success and prognosis in patients diagnosed
with acute exacerbation of chronic obstructive pulmonary
disease has been evaluated [16]. On another note, some studies
have used oxygen saturation as a crucial indicator for predicting
SBT success or failure [17].

However, the factors affecting SBTs and ventilator weaning are
diverse and include age [18-20], weaning prediction parameters,
sputum volume, cough strength, and consciousness status
[21-23], as well as ventilator usage time, disease severity (acute
physiology and chronic health evaluation II), and patient
nutritional status. Patients experiencing difficult or delayed
weaning are often presented with a combination of factors, thus
requiring careful assessment by health care professionals. Due
to the complexity of patient weaning from ventilators, numerous
studies have explored various aspects. For instance, the impact
of adding different doses of sedatives (ketamine) on spontaneous
breathing patients [24], the correlation between microcirculation
during SBTs and successful extubation [25], and for patients
passing an SBT, a spontaneous awakening trial could serve as
a predictive factor for extubation on the same day. It has also
been noted that a higher Richmond Agitation Sedation Scale,
no sedative administration on the previous day, no infections,
and the absence of neurological diseases or hemodynamic
instability increase the chances of extubation on the same day
[26].
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Using varied SBT strategies can affect outcomes in different
studies [27,28]. These differences primarily manifest in several
aspects, such as the level of PS, PEEP settings, continuous
positive airway pressure (CPAP) use, and the T-piece trial. The
level of PS directly impacts the patient's ability to breathe
spontaneously. Higher PS, such as 10 cm H2O, reduces the
patient's breathing effort, potentially leading to a higher SBT
success rate. However, this may not fully reflect the patient's
breathing capacity at lower support levels. The setting of PEEP
affects alveolar stability and airway pressure. Different PEEP
settings, such as 5 cm H2O, can have varying impacts on a
patient's oxygenation and respiratory dynamics, thereby altering
the outcomes of the SBT. CPAP provides continuous positive
PS, helping to reduce the work of breathing. Conducting an
SBT with CPAP at 5 cm H2O may make it easier for patients
to pass the trial. However, compared to PS strategies, this might
offer a different assessment of the patient's respiratory muscle
function. The T-piece trial provides no PS, relying entirely on
the patient's spontaneous breathing ability. This strategy more
accurately reflects the patient's autonomous breathing capacity
but may result in a lower SBT success rate due to higher
demands on the patient.

Given these differences, it is crucial to recognize how varying
SBT strategies can influence the interpretation and comparison
of study outcomes. The choice of SBT strategy can significantly
affect clinical decisions and patient management. Therefore,
understanding the potential impacts of different strategies is
essential for improving patient care and optimizing treatment
protocols.

Different SBT strategies will lead to varying SBT success rates.
Higher PS or the use of CPAP might result in higher success
rates, while the T-piece trial might lead to lower success rates.
Variations in SBT strategy might also affect postextubation
outcomes. If an SBT strategy makes it easier for patients to pass
the trial, it could increase the risk of postextubation respiratory
distress or the need for reintubation. Due to the different SBT
strategies used in various studies, caution is needed when
directly comparing study results. The potential impacts of
strategy differences on outcomes should be considered.

Artificial intelligence (AI) integrated with health care aims to
predict disease diagnosis or prevention through medical alerts.
In the current trend of AI applications, incorporating physician
expertise into the training of predictive models can provide
appropriate treatment for high-risk patients [29]. AI applications
in health care include medical robots, AI intelligent diagnosis
and image recognition, intelligent drug development, and
intelligent health management. Intelligent health management
applies AI technology to daily health management, focusing on
risk identification, virtual nurses, mental health, web-based
consultations, and precision medicine-based health management.
Certain studies have used deep learning combined with random
forest for risk prediction. One study constructed and validated
machine learning models to predict unplanned extubation in
ICU patients using electronic health record (EHR) data [30].

Another study developed machine learning algorithms to predict
the likelihood of successful weaning from mechanical ventilation
using clinical and laboratory data obtained before or shortly
after intubation [31]. Recent developments have also explored
using reinforcement learning to optimize ventilator management.
Using real-world ICU data, a reinforcement learning–based
model, EZ-Vent, was proposed to dynamically adjust ventilator
settings such as PEEP, FiO2 (fraction of inspired oxygen), and
tidal volume [32]. A broader review further emphasized the
potential of reinforcement learning as a clinical decision support
tool in the ICU, highlighting its application in optimizing
mechanical ventilation and predicting outcomes related to SBTs
[33]. By way of explanation, the introduction of AI can process
more significant amounts of data faster, achieve higher accuracy,
and assist in decision-making without medical staff experiencing
fatigue, thereby implementing intelligent health care models.

The main objective of this study was to develop an AI-based
prediction model to predict the outcome of an SBT under a
specific SBT strategy using a pre-SBT clinical record gathered
just before a patient's SBT. The proposed model is trained and
validated based on pre-SBT clinical records to ensure that the
model can predict whether an SBT will succeed under a fixed
SBT strategy. The proposed model can provide clinicians with
an objective and reliable decision-making aid to reduce the
subjectivity and errors of traditional manual judgment. The
ultimate goal is to facilitate timely and effective clinical
decision-making, optimize the weaning process from the
ventilator, and improve ICU management efficiency.

Methods

Data Source
The respiratory information system database of Taichung
Veterans General Hospital served as the data source for this
study. We covered the research period from January 1, 2016,
to December 31, 2022. We conducted a retrospective case
review, including patients aged 20 and older admitted to the
ICU during this period. The data were accessed on April 7,
2023, for research purposes. The clinical data were collected
from 3686 patients, comprising 6536 pre-SBT clinical records
gathered just before each SBT of patients. Among these records,
3268 passed the SBT, while the other 3268 did not pass. Each
clinical record includes 2 demographic variables, 7 respiratory
parameters, and 5 vital signs, as detailed below (Textbox 1).

The pre-SBT clinical records serve as input features for model
training and prediction. These input features comprehensively
represent the patient's respiratory and physiological status,
providing critical information for the model to assess SBT
outcomes effectively. In total, 80% (5228/6536 records) were
allocated for training, while the remaining 20% (1308/6536
records) were reserved for testing. In addition, the division
process of the training and test datasets follows a random split
strategy to ensure that the proportions of different categories
(those who passed and failed SBT) remain balanced to avoid
bias in the model.
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Textbox 1. Details of clinical record.

• Age—Patient’s age

• Gender—Patient’s gender

• FiO2 (%)—Fraction of inspired oxygen, indicating the percentage of oxygen the patient is inhaling

• PaO2 (mm Hg)—Partial pressure of oxygen in arterial blood

• VTe (exhaled VT) (mL)—Exhaled tidal volume per breath

• Measured respiratory rate (bpm)—Measured respiratory rate, defined as breaths per minute

• Paw (cm H2O)—Peak airway pressure, the highest pressure reached during inhalation

• MAP (cm H2O)—Mean airway pressure, representing the average pressure in the airways over the respiratory cycle

• MVe (exhaled MV)—Minute ventilation, the total volume of air exhaled per minute

• Heart rate (bpm)—Number of heart beats per minute

• Systolic blood pressure (mm Hg)—Blood pressure during heart contraction

• Diastolic blood pressure (mm Hg)—Blood pressure during heart relaxation

• SpO2 (%)—Oxygen saturation, indicating the percentage of oxygenated hemoglobin in the blood

• Body temperature (°C)—Core body temperature of the patient

Ethical Considerations
This study was reviewed and approved by the institutional
review board (IRB) of Taichung Veterans General Hospital
(IRB number: CE23123A), in accordance with institutional and
national ethical standards for human subjects research.

The study involved a retrospective analysis of clinical data. All
patient data were fully anonymized prior to access and analysis
to ensure privacy and confidentiality.

Given the study’s retrospective nature and the anonymization
of all data, the IRB waived the requirement for informed
consent.

No compensation was provided, as no direct contact with
participants occurred, and no new data were collected.

Spontaneous Breathing Test and Ventilator Weaning
Assessment
The successful determination of an SBT was defined as a patient
undergoing a spontaneous breathing test for 2 hours with the
ventilator mode PS level set at 10 cm H2O and PEEP set at 5
cm H2O. Additionally, the patient had to meet the Wean Score
criteria to be considered a successful SBT. Therefore, this study
included model analysis based on the following inclusion criteria
(Textbox 2).

Textbox 2. Inclusion and exclusion criteria.

Inclusion criteria

• Pressure support (PS) level set at 10 cm H2O and positive end-expiratory pressure (PEEP) set at 5 cm H2O.

Exclusion criteria

• PS level greater or PS level less than 10 cm H2O, and PEEP greater or less than 5 cm H2O.

Model Design
Given the constant advancements in technology, machine
learning has now become widely used, primarily due to the
effectiveness of information products. As a subset of data
science, machine learning is now being further extended through
the branch of deep learning. Therefore, we can generate models
from extensive data through machine learning and develop
predictions for various outcomes using existing data.

Deep learning is an algorithm centered within machine learning
that focuses on representation learning from data. Several deep
learning architectures exist, including deep belief networks,
recurrent neural networks, and convolutional neural networks
(CNNs). CNNs, a highly representative data-driven architecture,

require large, high-quality datasets for effective model training.
Data augmentation, transfer learning from pretrained models,
and semi-automatic annotation are often used to address this
issue. In the training phase of this study, multiple training
datasets were prepared, each including the status feature inputs
and corresponding outputs from various investigations of the
study cases. CNNs succeed in image recognition and object
detection because they can automatically extract spatial
hierarchical features from images. Although this study does not
include direct visual data, the characteristics of CNNs make it
suitable for processing structured nonvisual data [34]. For
instance, the convolutional layers of CNNs excel at capturing
local patterns and correlations within the data, irrespective of
whether these patterns come from spatial features in images,
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structural features in time-series data, or multidimensional
matrices. We used a deep CNN to learn the features of older
adults’ mental health before storing them in the network.
Challenges in this process include preparing training data and
designing learning algorithms. Subsequently, we tailor a learning
algorithm suitable for the characteristics of the training data
[35,36].

At the initial stage, the neural network is assigned random
weight values, with its output differing significantly from the
standard answer. After multiple learning iterations, the weights
gradually adjust in the correct direction, resulting in a better or
more accurate prediction. Given the multitude of feature factors
influencing the prediction results of ventilator weaning, finding
appropriate or correct features amongst the numerous
characteristics is highly challenging.

Using the learning characteristics of deep learning, the model
can autonomously deduce the characteristics of feature factors
from the training data, thereby establishing a highly accurate

prediction model. Figure 1 illustrates the architectural layout
of the traditional CNN-MLP (convolutional neural
network–multilayer perceptron) model. The model design begins
with the input layer having the same number of neurons as the
dimensions of the dataset. Subsequently, it connects to multiple
convolutional layers, with pooling layers interspersed between
them. Their primary function is to extract key features from the
training data autonomously. Finally, the network concludes
with a fully connected multilayer perceptron (MLP),
transforming these features into 2 outputs. Selecting appropriate
model initialization parameters is crucial for both the stability
and convergence of training.

The optimization of the CNN model's ideal architecture is
influenced by the task's complexity and the dataset's features.
Since deep learning is primarily based on empirical learning
methods, the efficiency of CNN models often stems from
practical testing and iterative adjustments. The results of
preliminary models can also serve as reference points for
measuring performance improvements.

Figure 1. Architecture diagram of traditional CNN-MLP model. CNN: convolutional neural network.

In this study, we proposed a novel deep learning architecture,
hybrid CNN-MLP, to predict the outcome of an SBT. Figure 2
depicts the proposed hybrid CNN-MLP model architecture in
this study. Unlike the traditional CNN-MLP classification
method, hybrid CNN-MLP performs feature learning and fusion
by interleaving CNN and MLP layers so that data features can
be extracted and integrated at different levels, thereby improving
the flexibility and prediction accuracy of the model.

This study begins with a simple framework for the hybrid
CNN-MLP design, gradually increasing its complexity by
adjusting the number of layers and neurons. Starting with a
straightforward structure accelerates training and evaluation,
streamlining the continuous refinement of the hybrid CNN-MLP
model. The hybrid CNN-MLP model architecture is explained
as follows (Textbox 3).
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Figure 2. Architecture diagram of the hybrid CNN-MLP model. CNN: convolutional neural network.

Textbox 3. Hybrid CNN-MLP (convolutional neural network–multilayer perceptron) model architecture.

The first CNN module

• Convolutional layer (14×64): the input channels are 14, the output channels are 64, and convolutional feature extraction is performed.

• Maximum pooling layer (kernel_size=2, stride=2): dimensionality reduction to retain the main features and reduce the amount of computation.

MLP (fully connected layer)

• Flatten layer: flatten the features extracted by CNN so that they can be input into the fully connected layer.

• Linear layer (64×128): fully connected layer with output dimensions of 128.

• Batch normalization layer (128): Stabilizes the training process.

• Dropout layer (P=.50): randomly inactivate 50% of neurons to prevent overfitting.

• Linear layer (128×128): fully connected, keeping the same dimension.

The second CNN module

• Convolutional layer (128×64): performs the convolution operation again.

• Maximum pooling layer (kernel_size=2, stride=2): reduces the dimension again to improve the generalization ability of the model.

The second phase of MLP

• Flatten layer: flatten into a vector for feeding into the MLP layer.

• Linear layer (64×256): fully connected layer with output dimensions of 256.

• Batch normalization layer (256): batch normalization to improve training stability.

• Dropout layer (P=.50): prevent overfitting.

• Linear layer (256×64): fully connected layer, reducing the dimension to 64.

• Batch normalization layer (64): batch normalization.

• Dropout layer (P=.30): reduce overfitting by inactivating 30% of neurons.

• Linear layer (64×2): output layer, the final output is 2-dimensional (probably representing a binary classification problem).

In the network used in this study, the Xavier Glorot initialization
method [1] was used to assign weights. This method mitigates
potential issues, particularly gradient vanishing or exploding
problems in deep networks, by adjusting weights based on the
quantity of input and output units. This ensures a smoother and
more effective training process.

To avoid overfitting, we adopt multiple strategies to ensure the
stability and generalization ability of the model. First, we use
L2 regularization (weight decay) to discourage overly complex
models from memorizing too much training data. Second, during
the model training process, we applied the dropout technology
to randomly deactivate some neurons to reduce the
overadaptation (coadaptation) between neurons and improve
the model's generalization ability. We also adopt the early
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stopping strategy to monitor the loss changes of the validation
set during training. When the validation loss fails to decrease
within several consecutive training cycles, training is stopped
to prevent the model from overfitting to the training data. In
addition, to ensure that the model is not too complex, we control
the number of layers and neurons in the neural network to
balance learning and generalization abilities.

Regarding hyperparameter tuning, we conducted multiple
experiments to optimize the model performance. First, in terms
of learning rate adjustment, we initially set it to 0.001 and used
learning rate decay to gradually reduce the learning rate during
training to improve convergence stability. For batch size, we
tested different values, such as 32, 64, and 128, and finally chose
64 to balance training efficiency and model stability. Regarding
the activation function, the hidden layer uses Rectified Linear
Unit to solve the gradient disappearance problem, and the output
layer uses Softmax for classification. For the optimizer, we
tested Adam and Stochastic Gradient Descent and finally chose
Adam because it performed best regarding convergence speed
and stability. Finally, in terms of network architecture, we tested
different numbers of layers and neuron configurations to ensure
that the model can effectively learn data features while avoiding
overfitting problems caused by excessive complexity.

During the training of the deep learning network model, this
study inputs labeled data into the network, uses backpropagation
and the Adam optimization algorithm, and adjusts the network
weights based on the loss calculated using the binary
cross-entropy function. On the other hand, the batch size used
in this study is 64, with the model undergoing training for 6000
iterations. Of the dataset, 80% (5228/6536 records) is used as
the training dataset, while the remaining 20% (1308/6536
records) is designated as the testing dataset to evaluate the
model's performance on previously unseen data. Regular
checkpoints and an early stopping mechanism ensure that the
model used in this study does not overfit and retains its optimal
performance architecture.

This study aims to develop a neural network model suitable for
predicting respiratory outcomes. It aims to serve as an
assessment standard and prediction tool for respiratory care,
thus helping health care professionals provide higher quality
health care. In establishing this study's intelligent respiratory
care model, the prediction variable is based on the success or
failure of the SBT, with relevant respiratory information
incorporated into the model training.

Evaluation Indexes
This study aims to develop an AI-based model to predict
whether patients can successfully pass an SBT. Since SBT is a
key test for whether mechanically ventilated patients can breathe
spontaneously, and its prediction results directly affect clinical
decision-making, it is crucial to evaluate the model's accuracy.
This study adopted a variety of evaluation indicators to ensure
the reliability and stability of the model in clinical applications.

When we try to predict whether a patient will successfully pass
the SBT, accuracy alone may not be sufficient to evaluate the
model's performance fully. Accuracy represents the proportion
of all participants correctly predicted and is applicable when

the proportion of SBT passes and fails is equal. However, if the
data's ratio of successes to failures is unbalanced, focusing only
on accuracy may lead to falsely optimistic estimates. For
example, if most patients can successfully pass the SBT, and
the model only predicts that “all patients will succeed,” although
the accuracy may be high, it cannot effectively assist clinical
decision-making. Therefore, we use precision and recall to
evaluate the model's effectiveness.

Precision measures the proportion of patients predicted by the
model to pass the SBT who did. This is crucial to avoid
unnecessary SBTs. If the model's precision is too low, it means
that among the successful cases it predicts, many patients
actually cannot pass the SBT, which may lead to initiating SBT
too early, resulting in respiratory muscle fatigue, hypoxemia,
and even acute respiratory failure in patients. Therefore, a higher
precision ensures that the model has a higher credibility when
recommending the initiation of SBT.

Recall (also known as sensitivity) measures how many of the
patients who successfully passed the SBT were correctly
identified by the model. This has a critical impact on avoiding
erroneous prolongation of mechanical ventilation. If the recall
rate is too low, it means that many patients who should be able
to be successfully weaned are incorrectly predicted to be unable
to pass the SBT, causing them to continue to be maintained on
mechanical ventilation, which may increase the risk of lung
infection or muscle atrophy. Therefore, the higher recall ensures
that no patients who can pass the SBT are missed.

In addition to precision and recall, this study also calculates the
F1-score, which is a comprehensive indicator used to balance
the trade-off between precision and recall. In clinical
decision-making, we hope to ensure that the SBT is successfully
passed (high precision) while not missing patients who should
be able to pass the SBT (high recall), so the F1-score can be
used as a measure of the overall effectiveness of the model.

Specificity is also an important evaluation indicator, measuring
whether the model can correctly identify patients who cannot
pass SBT. High specificity indicates that the model is effective
in avoiding erroneous attempts to start SBTs in patients who
cannot pass SBT. Finally, we also considered the false positive
rate (FPR) and false negative rate (FNR) to analyze the model's
error prediction pattern further and help clinicians understand
the model's performance in different scenarios.

Based on the predictive results of the proposed model, we can
obtain the following parameters: true positive, false positive,
false negative, and true negative. Details of the evaluation metric
formulas are available in Multimedia Appendix 1. The receiver
operating characteristic (ROC) curve is an important tool for
evaluating the classification ability of a model. It describes the
changes in the true positive rate (TPR; recall rate) and FPR of
the model at different decision thresholds. When the threshold
is lower, the model is more likely to predict positive cases; TPR
will increase, but FPR may also increase. When the threshold
is higher, the model becomes more conservative, and FPR
decreases, but some true positive cases may be missed. The
closer the ROC curve is to the upper left corner, the better the
classification ability of the model, while the ROC curve on the
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diagonal indicates that the classification effect of the model is
no different from random guessing.

Area under the curve (AUC) is the area under the ROC curve,
with a value range of 0-1, representing the overall classification
ability of the model. The closer the AUC is to 1, the more stable
the model is at different thresholds and the more effective it is
in distinguishing different categories. In the SBT prediction
model, a high AUC value means that the model can more
accurately distinguish which patients can successfully pass the
SBT and which patients still need mechanical ventilation
support.

Results

Table 1 presents the study cases’ demographic variables,
respiratory parameters, and vital signs. Among the cases, the
average age of patients is around 67.5 (SD 16.3) years. In the
successful SBT group, the average age is 68.5 (SD 15.3) years,
while in the failure group, it is 66.5 (SD 17.2) years. Regarding
gender distribution, 4091 out of 6536 (62.6%) patients are male.
Among them, 1178 of 3268 (36%) patients were in the
successful SBT group, while 2913 of 3268 (89.1%) patients
were in the failure group.

Table 1. Characteristics of intubated patients in the intensive care unit.

Case group

Total (N=6536)Failure of SBT (n=3268)Successful SBTa (n=3268)

Demographic

67.5 (16.3)66.5 (17.2)68.5 (15.3)Age (years), mean (SD)

Gender, n (%)

4091 (62.6)2913 (89.1)1178 (36.0)Male

2445 (37.4)355 (10.9)2090 (64.0)Female

Mechanical ventilator settings and respiratory function, mean (SD)

35.2 (9.7)37.5 (11.8)32.9 (6.2)FiO2
b (%)

108.5 (24.4)109.6 (27.9)107.4 (20.2)PaO2
c (mm Hg)

0.8 (2.4)0.9 (2.9)0.6 (1.7)VTed (exhaled VT; mL)

20 (9)21 (10)19 (8)Measured RRe (bpm)

19.4 (5.0)22.5 (5.2)16.3 (1.9)Pawf (cm H2O)

9.8 (2.8)11.3 (3.2)8.3 (1.2)MAPg (cm H2O)

7.9 (2.7)7.9 (2.4)8.0 (3.0)MVeh (exhaled MV; Lpm)

Vital signs, mean (SD)

86.2 (17.9)87.6 (18.9)84.9 (16.7)Heart rate (bpm)

124.6 (21.5)122.7 (22.5)126.5 (20.2)Systolic blood pressure (mm Hg)

69.9 (15.0)68.1 (15.4)71.7 (14.4)Diastolic blood pressure (mm Hg)

98 (2)98 (3)99 (2)SpO2
i (%)

36.5 (0.5)36.5 (0.6)36.5 (0.5)Body temperature (°C)

aSBT: spontaneous breathing trial.
bFiO2: fraction of inspired oxygen.
cPaO2: partial pressure of oxygen.
dVTe: exhaled tidal volume.
eRR: respiratory rate.
fPaw: peak airway pressure.
gMAP: mean airway pressure.
hMVe: minute ventilation.
iSpO2: oxygen saturation.

For respiratory parameters, the average FiO2 is 35.2%, with the
successful group at 32.9% and the failure group at 37.5%. The
partial pressure of oxygen levels are similar across all groups,

with slight variations. The failure group has a higher exhaled
tidal volume and measured RR. The peak airway pressure and
mean airway pressure are also higher in the failure group than
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in the successful group. Minute ventilation shows minimal
difference between the groups.

Vital signs indicate that the heart rate is slightly higher in the
failure group (87.6 bpm) compared to the successful group (84.9
bpm). Systolic and diastolic blood pressure are lower in the
failure group. Oxygen saturation remains high across all groups,
with minimal variation. Body temperature is consistent,
averaging around 36.5 °C across all groups.

The PyTorch framework in Python is used to construct the
proposed model.

In order to present the prediction results of the model more
intuitively, this study uses the confusion matrix to show the
classification of the model on the training and test datasets. The
confusion matrix of the model’s prediction results is shown in
Figures 3 and 4. The results show that the model performs well
on the training data, and the classification ability on the test
data remains stable. Although the number of misclassifications
increases slightly, it is still within an acceptable range.

Table 2 illustrates the performance metrics of a model for
predicting successful and failed SBT across both training and
testing datasets.

Figure 3. Confusion matrices for training data.

Figure 4. Confusion matrices for testing data.
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Table 2. Performance metrics of the spontaneous breathing trial prediction model.

Testing valueTraining valueMetric

87.7% (1147/1308)96.4% (5040/5228)Accuracy

89.2% (561/629)99.3% (2443/2460)Precision

85.8% (561/654)93.5% (2443/2614)Recall (sensitivity)

89.6% (586/654)99.3% (2597/2614)Specificity

10.4% (68/654)0.7% (17/2614)FPRa

14.2% (93/654)6.5% (171/2614)FNRb

0.8750.963F1-score

aFPR: false positive rate.
bFNR: false negative rate.

Overall, the model’s accuracy is 96.4% (5040/5228 records) in
the training data and 87.7% (1147/1308 records) in the test data.
Although the test results are slightly lower than the training
results, they can still maintain a high accuracy, indicating that
the model has good generalization ability and no overfitting
problem.

Further analysis of the model's performance showed that the
precision was 99.3% (2443/2460 records) in the training data
and 89.2% (561/629 records) in the test data, indicating that the
model had a slightly higher FPR on the test data but was still
able to identify patients who could successfully pass an SBT
effectively. In other words, in clinical applications, when the
model predicts that a patient can pass the SBT, the likelihood
of their actual success is still quite high, reducing the risk of
unnecessary weaning failure.

However, in terms of recall (sensitivity), the recall rate in the
training data was 93.5% (2443/2614 records), while it dropped
to 85.8% (561/654 records) in the test data, indicating that some
patients who should have passed the SBT in the test data were
still not correctly identified. This may result in some patients
being wrongly judged as unable to pass the SBT and continuing

to receive unnecessary mechanical ventilation, thereby
increasing the risk of lung infection or other complications.

In addition, the specificity was 99.3% (2597/2614 records) in
the training data and 89.6% (586/654 records) in the test data,
indicating that the model can still maintain good recognition
ability for patients who cannot pass the SBT without significant
deviation. This means that when the model predicts that a patient
will not be able to pass the SBT, its judgment is correct in most
cases, reducing the risk of the patient failing the SBT.

The F1-score, which is a comprehensive measure of precision
and recall, is 0.963 in the training data and 0.875 in the test data,
indicating that the model has achieved a certain balance between
precision and recall and is suitable as a clinical decision-making
aid.

Figures 5 and 6 display the ROC curve of the SBT prediction
model for both training and test data, with the AUC used to
assess the model’s classification ability. Figure 5 is the ROC
curve of the training data, and Figure 6 is the ROC curve of the
test data. Both are used to measure the changes in the TPR and
FPR of the model at different decision thresholds, and the AUC
value is used to quantify the overall effectiveness of the model
in distinguishing between successful and failed patients.
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Figure 5. ROC curves for training data. AUC: area under the ROC curve.

Figure 6. ROC curves for testing data. AUC: area under the ROC curve.

The results showed that the AUC for the training data was 0.99,
indicating that the model could almost perfectly distinguish
between successful and failed SBT patients during training,
showing extremely high predictive ability. However, when the
model was applied to the test data, the AUC dropped to 0.94,
which is slightly lower than the training data but still within the
excellent range, indicating that the model still has a good
discrimination ability for unseen data. This means that although
the model has a certain degree of generalization ability decline
on the test data, it can still effectively distinguish which patients
can successfully pass the SBT and which still need mechanical
ventilation support.

This study successfully developed an AI-based SBT prediction
model that can effectively assist clinicians in determining
whether patients can successfully pass the SBT. Through

evaluation metric analysis, including accuracy, precision, recall,
specificity, F1-score, FPR, FNR, ROC curve, and AUC, we
verified the robust performance of the model on both training
and test data. Overall, the accuracy and reliability of the model
in clinical applications have reached a high level and can provide
strong support for clinical decision-making.

Discussion

Overview
This study demonstrates the potential of deep learning
technology in evaluating SBT, which can effectively improve
the accuracy and efficiency of managing mechanically ventilated
patients. Traditional SBT assessment methods rely on simple
threshold settings, which cannot fully reflect the patient's
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complex physiological state. The deep learning model developed
in this study can integrate multidimensional clinical data to
provide more precise prediction results that conform to actual
physiological conditions.

A major innovation of this study is the design of the hybrid
CNN-MLP architecture. Compared with the traditional deep
learning model that only relies on CNN for feature extraction
and MLP for classification, this study uses CNN and MLP layers
alternately to form a novel feature learning and fusion method.
This design helps capture features at different levels, making
the model more flexible and efficient when processing data with
complex feature structures. The research results show that the
model achieves high accuracy in the training phase and
maintains stable performance in the testing phase. The final
F1-score on the test dataset is about 0.875, which proves its
feasibility and reliability in predicting SBT results. These
findings are consistent with previous studies [37,38], showing
that AI technology can improve clinical decision-making
accuracy and patient outcomes in critically ill patient care.

This study aimed to establish a model to predict whether a
patient can successfully pass an SBT. The data division does
not necessarily lead to data leakage in our research setting
because our model learns the relationship between pre-SBT
clinical parameters and SBT outcomes. That means the model
does not track a patient's historical SBT trials but makes
independent predictions based on the patient's current state
before each SBT trial. We treat each SBT trial as an independent
sample rather than linking multiple records from the same
patient. Even if a patient has undergone multiple SBTs at
different time points, each trial is considered a separate instance
for training and prediction. Therefore, within-patient clustering
does not significantly impact the model's learning process, and
even if records of the same patient at different time points appear
in the training and test sets, the model still learns the pattern
that determines a patient's likelihood of passing the SBT, rather
than focusing on individual patient characteristics.

Regarding patients who have undergone multiple SBT attempts
with varying outcomes, the model learns to predict each SBT
outcome independently based on pre-SBT clinical records of
that specific attempt rather than being influenced by previous
trials. Therefore, it does not distinguish between patients who
succeeded on their first attempt and those who required multiple
attempts; instead, it evaluates each instance based on its pre-SBT
clinical record.

This study did not specifically adjust the time variables since
the time factor has a limited impact on the model based on the
following considerations. The SBT implementation standards
of the research institutions were consistent with the clinical
operation procedures throughout the study period. Therefore,
data from different years can be regarded as homogeneous and
will not significantly impact the model training and prediction
results. In addition, during the data partitioning process, we
used random sampling to ensure that the data distribution
between the training and test sets was balanced to reduce the
possible impact of time variability.

Strengths and Limitations
The innovation of this study is to develop an AI-based prediction
model to evaluate the outcome of an SBT under a specific SBT
strategy using clinical parameters collected before an SBT
begins. Traditionally, clinicians must comprehensively assess
multiple physiological parameters to determine whether a patient
is suitable for SBT. However, this process is highly subjective,
experience-dependent, and has a high risk of misjudgment. This
study uses AI technology to develop an objective and efficient
prediction model to reduce the error of traditional manual
evaluation and improve the accuracy of predicting whether an
SBT will be successful.

The model in this study is built on pre-SBT clinical data to
identify the relationship between these variables and SBT
outcomes and to make predictions under a fixed SBT strategy.
Unlike traditional approaches, this study does not compare
different SBT strategies or analyze their impact on extubation
success rates. Instead, it focuses on developing a data-driven
method within a specific SBT strategy's framework to accurately
predict whether patients can successfully pass SBT, providing
clinicians with an objective and reliable decision-making aid.

Furthermore, the AI prediction model in this study focuses on
predicting SBT success and highlights the clinical value of
identifying patients who may fail SBT in advance. In current
clinical practice, the SBT evaluation process typically takes
48-72 hours, and initiating SBT too early can result in
respiratory muscle fatigue, hypoxemia, and even acute
respiratory failure in patients. The proposed model can predict
whether an SBT will be successful in advance and assist
clinicians in identifying patients who may not be ready yet,
which would prevent unnecessary testing, reduce the
physiological burden on patients, and enhance the efficiency of
ICU resource management.

The main advantage of this study lies in its innovative
CNN-MLP hybrid architecture, which enables the model to
effectively learn and fuse feature information at different levels
and improve the prediction ability of SBT results. Compared
with traditional deep learning models, the method of this study
can not only extract features from image and time series data
through CNN but also further enhance the understanding of
high-dimensional features through MLP, thereby improving the
accuracy and applicability of the model. In addition, by
integrating multidimensional physiological data, the model of
this study can more comprehensively assess the patient's clinical
condition and provide more accurate and personalized extubation
decision support compared with traditional threshold-based
indicators.

The final F1-score on the test dataset is about 0.875, which
proves its feasibility and reliability in predicting SBT results.
The AUC for the test data was 0.94, indicating that the model
has a good discrimination ability for unseen data. The study
showed that the model maintained stable predictive performance
during the testing phase and exhibited an excellent F1-score,
confirming its potential in clinical applications.

The contributions of this study are summarized as follows:

JMIR Med Inform 2025 | vol. 13 | e64592 | p. 12https://medinform.jmir.org/2025/1/e64592
(page number not for citation purposes)

Yang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


1. Enhancing clinical decision support and prediction
accuracy: Traditionally, clinicians assess whether patients
are suitable for SBT by comprehensively analyzing multiple
physiological parameters. This process relies heavily on
experience and is subjective, which can easily lead to errors
in judgment. This study uses AI technology to develop a
prediction model based on pre-SBT clinical data, providing
more accurate prediction results, reducing manual
evaluation errors, and enhancing SBT prediction accuracy.

2. Identifying patients who may fail in advance: In current
clinical practice, SBT evaluation typically takes 48-72
hours. If SBT is conducted too early, it may lead to
respiratory muscle fatigue, hypoxemia, and even acute
respiratory failure in patients. The AI prediction model
introduced in this study can identify patients who may not
successfully pass the SBT beforehand, preventing
unnecessary trials, reducing the physiological burden on
patients, and effectively managing ICU resources to enhance
overall medical efficiency.

3. Innovative hybrid CNN-MLP model design: This study's
methodological innovation proposes a hybrid deep learning
architecture called hybrid CNN-MLP. This architecture
differs from the traditional CNN-MLP classification method
since it uses a unique approach to feature learning and
fusion through the interlaced combination of CNN and MLP
layers, where the data features can be extracted and
integrated at various levels, making the model more flexible
and efficient in processing complex data structures and
enhancing the accuracy and applicability of SBT
predictions.

However, this study still has some limitations. First, the data in
this study came from a single medical institution, which may
affect the model's generalization ability and limit its applicability
in different clinical settings. Therefore, its robustness needs to
be verified through multicenter data in the future. Second,
although the model shows high accuracy at the technical level,
in practical application, it is still necessary to consider how to
integrate it with the clinical workflow to ensure that medical
staff can adopt the technology smoothly. In addition, in the test
dataset, the model’s performance decreased slightly compared
to the training stage, indicating that there is still room for further
optimization. These challenges can be overcome in the future
through multicenter data expansion, improved model training
strategies, and enhanced AI interpretation capabilities.

Future Perspectives
In order to enhance the influence and application value of this
study, the data scope should be further expanded in the future,
and model training and verification should be carried out with
multicenter data to ensure its applicability in different medical
institutions and diverse patient groups. By introducing data from
different medical environments, not only can the model's
generalization ability be increased, but its adaptability to patients
from different groups can also be improved. In addition,
prospective clinical trials should be conducted to evaluate the
impact of this model in actual clinical decision-making, such
as whether it can effectively reduce the duration of mechanical
ventilation, improve the success rate of extubation, and further
analyze its impact on the clinical prognosis of patients.

In addition to increasing the breadth of data and validating
real-world applications, the model in this study can be further
optimized to improve its performance and interpretability.
Although the deep learning model used in this study has strong
predictive capabilities, it is a “black box model” with low
interpretability. Hence, to ensure that the model applies to
different health care systems, we pay special attention to the
availability and variability of the input features. The
characteristics used in this study are key indicators in clinical
diagnosis and monitoring. These variables were selected
primarily based on clinical relevance and availability. However,
there may be variations in equipment and data collection
methods between different medical systems. For example, the
type of ventilator or blood oxygen monitor used in different
wards may affect the measurement of certain values. Therefore,
when the model is applied to different medical institutions in
the future, it is recommended to first conduct a feature
distribution analysis to evaluate the input data's adaptability and
reduce heterogeneity's impact on model performance through
transfer learning or regularization techniques.

By improving the model's training strategy, such as applying
transfer learning or reinforcement learning, the model can be
helped to learn feature patterns from different environments
more effectively, thereby improving its adaptability. In addition,
the interpretability of the model is also an important direction
for future development. By designing a more transparent AI
model architecture, medical staff can understand the
decision-making logic of the model, which will help enhance
clinical users' trust in AI-assisted decision-making systems and
further promote their application in the medical field.

Finally, future attention should be paid to the model's actual
deployment and clinical integration and the possibility of
embedding it into the EHR system. Through seamless integration
with existing medical information systems, the model can be
ensured to be immediately available in clinical decision-making
and enhance its auxiliary value to medical staff. In addition,
when designing the user interface, the user-centered design
principles should be considered so that medical staff can operate
and understand the system more intuitively, ensuring that it can
truly become an effective tool in the clinical decision-making.
Through these efforts, deep learning–based SBT assessment
technology will be able to be more widely used in clinical fields,
improve the efficiency of mechanical ventilation management,
and ultimately improve patients' treatment and rehabilitation
outcomes.

Conclusions
This study demonstrates the potential of deep learning
technology to predict whether a patient can successfully pass
an SBT, improving the accuracy and efficiency of mechanically
ventilated patient management. Traditional SBT evaluation
methods rely on simple threshold settings and are difficult to
fully reflect the patient's complex physiological state. This
study's AI prediction model integrates multidimensional clinical
data to provide more accurate prediction results that meet actual
clinical needs.

The main innovation of this study is the proposed hybrid
CNN-MLP architecture, which uses CNN and MLP layers
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alternately for feature learning and fusion. Compared with
traditional deep learning models, this method can more flexibly
capture features at different levels and improve the model's
ability to handle complex data structures. The results showed
that the model achieved an F1-score of 0.875 on the test dataset,
confirming its feasibility and reliability in predicting the success
of SBT, which is consistent with previous research results on
the application of AI technology in critical care.

In addition, this study highlights the value of AI prediction
models in clinical decision support, especially in identifying
patients who may not pass the SBT in advance, thereby reducing
unnecessary trials, reducing the physiological burden on patients,
and improving the management efficiency of ICU resources.
However, the study's limitations are that the research data came
from a single medical institution and, as a consequence, may
affect the generalization ability of the model. In the future, it
should be verified through multicenter data. In addition,
integrating this technology seamlessly into clinical workflow

and increasing the acceptance of medical staff are challenges
that need to be addressed in the future.

In the future, this study recommends further expanding the data
scope and evaluating the model's applicability in different
medical institutions and patient groups through multicenter
clinical trials. In addition, the model can be optimized through
transfer learning or reinforcement learning to make it more
adaptable to data patterns in different environments. Besides,
the model's interpretability will be improved to enhance the
trust of medical staff, and its integration into the EHR system
will be explored to ensure that it can provide real-time support
for clinical decision-making.

In summary, the hybrid CNN-MLP proposed in this study can
improve the accuracy and efficiency of SBT assessment and
provide a more reliable auxiliary tool for clinical
decision-making. The ultimate goal is to optimize the
mechanical ventilation weaning process, improve patient
prognosis, and enhance the quality of ICU care.
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