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Abstract
Background: The Observational Medical Outcome Partners-Common Data Model (OMOP-CDM) is an international standard
for harmonizing electronic medical record (EMR) data. However, since it does not standardize unstructured data, such as
medical imaging, using this data in multi-institutional collaborative research becomes challenging. To overcome this limitation,
extensions such as the Radiology Common Data Model (R-CDM) have emerged to include and standardize these data types.
Objective: This work aims to demonstrate that by standardizing optical coherence tomography (OCT) data into an R-CDM
format, multi-institutional collaborative studies analyzing changes in retinal thickness in patients with long-standing chronic
diseases can be performed efficiently.
Methods: We standardized OCT images collected from two tertiary hospitals for research purposes using the R-CDM. As
a proof of concept, we conducted a comparative analysis of retinal thickness between patients who have chronic diseases
and those who have not. Patients diagnosed or treated for retinal and choroidal diseases, which could affect retinal thickness,
were excluded from the analysis. Using the existing OMOP-CDM at each institution, we extracted cohorts of patients with
chronic diseases and control groups, performing large-scale 1:2 propensity score matching (PSM). Subsequently, we linked the
OMOP-CDM and R-CDM to extract the OCT image data of these cohorts and analyzed central macular thickness (CMT) and
retinal nerve fiber layer (RNFL) thickness using a linear mixed model.
Results: OCT data of 261,874 images from Ajou University Medical Center (AUMC) and 475,626 images from Seoul
National University Bundang Hospital (SNUBH) were standardized in the R-CDM format. The R-CDM databases established
at each institution were linked with the OMOP-CDM database. Following 1:2 PSM, the type 2 diabetes mellitus (T2DM)
cohort included 957 patients, and the control cohort had 1603 patients. During the follow-up period, significant reductions in
CMT were observed in the T2DM cohorts at AUMC (P=.04) and SNUBH (P=.007), without significant changes in RNFL
thickness (AUMC: P=.56; SNUBH: P=.39). Notably, a significant reduction in CMT during the follow-up was observed
only at AUMC in the hypertension cohort, compared to the control group (P=.04); no other significant differences in retinal
thickness were found in the remaining analyses.
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Conclusions: The significance of our study lies in demonstrating the efficiency of multi-institutional collaborative research
that simultaneously uses clinical data and medical imaging data by leveraging the OMOP-CDM for standardizing EMR data
and the R-CDM for standardizing medical imaging data.
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Introduction
The Observational Medical Outcomes Partnership-Common
Data Model (OMOP-CDM) is an internationally standardized
model designed to harmonize medical data across various
health care institutions [1]. Its primary goal is to facil-
itate efficient, large-scale, multi-institutional collaborative
research. Currently, a federated database developed collabo-
ratively by researchers from over 80 countries contains data
from 12% of the global population [2].

The OMOP-CDM is a model that standardizes structured
clinical data such as diagnoses, prescriptions, and proce-
dures. However, unstructured data, such as genomic and
imaging data, often fall outside the standardization scope
of the current OMOP-CDM, presenting challenges for use
in multi-institutional collaborative research. To address this
limitation, extended models based on the OMOP-CDM are
being actively developed [3,4]. One such model used in
this study, known as the Radiology Common Data Model
(R-CDM), standardizes imaging data, enabling the efficient
integration of multi-institutional imaging and clinical data to
enhance research capabilities [5].

Optical coherence tomography (OCT) captures detailed
images of the eye’s internal structure, including parameters
such as retinal thickness. Studies using OCT data have
explored relationships between retinal thickness and various
factors including age, hypertension, type 2 diabetes melli-
tus (T2DM), and vitamin D deficiency [6-8]. However,
these investigations have generally been limited by their
confinement to single medical institutions with small patient
cohorts, due to the simultaneous requirement for clinical
and imaging data. To address these constraints, this study
aims to standardize multi-institutional OCT data using the
R-CDM, thereby facilitating research that integrates clinical
and imaging data across multiple institutions.

Methods
Data Sources
This study used clinical and imaging data from two of
the leading tertiary hospitals in South Korea: Ajou Univer-
sity Medical Center (AUMC) and Seoul National University
Bundang Hospital (SNUBH). For clinical data, standardized
OMOP-CDM databases were used. The AUMC OMOP-CDM
database included standardized electronic medical record
(EMR) data spanning from 1994 to February 2023, with
records from 2,752,765 patients. The SNUBH OMOP-CDM
database contained standardized EMR data from April 2003
to 2021, covering 2,017,421 patients. For imaging data, we

had authorization to use selected OCT data collected with
specific medical devices. OCT data were typically stored on
the OCT device itself and were not automatically integrated
into the EMR or picture archiving communication systems.
To use these data for research purposes, the stored images had
to be manually collected and converted into a usable format.
Due to these limitations, OCT data were collected from
all devices available at the participating institutions. Rather
than selectively choosing specific devices or time periods, an
inclusive approach was adopted to address potential selection
bias. As a result, AUMC provided access to OCT data
captured with Zeiss medical devices from 2013 to April
2022, while SNUBH granted access to OCT data obtained
with Heidelberg medical devices from July 2006 to August
2019, for research purposes. This study was conducted per
the Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) guidelines to ensure transparency
[9].

Ethical Considerations
We obtained ethical approval from the Institutional Review
Board of AUMC (approval number: AJOUIRB-DB-2024‐
341) and SNUBH (approval number: SNUBH-EX-2024‐123).
This study was conducted with an exemption for informed
consent, as there were no direct benefits or risks to partici-
pants arising from their involvement in the study. All data
were anonymized to ensure participant confidentiality and
privacy. No identifying information was retained during the
data analysis process.
Constructing an R-CDM–Standardized
OCT Database
Although the clinical data in this study had been standardized
according to the OMOP-CDM and were ready for immediate
application in multi-institutional research, the OCT imaging
data still needed to be standardized to the R-CDM for-
mat to be efficiently used in research. The R-CDM standar-
dized medical data through two distinct tables: the radiology
occurrence table and the radiology image table. The radiology
occurrence table cataloged each imaging event, detailing
which patient used which company’s equipment, the type of
imaging performed, and the date on which it was performed.
The radiology image table organized information about each
image, including the type, file path, and resolution. These
tables were interconnected through a “study_id” that served
as the primary key, allowing researchers to uniformly extract
specific types of image data from imaging events.

Consequently, a process was necessary to extract metadata
within the OCT data using optical character recognition
(OCR) techniques and load it into the R-CDM format. For
OCT data captured using Zeiss medical devices at AUMC,
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the sections of OCT images documenting retinal thickness
were cropped, and data extraction was performed using the
Python Tesseract package. OCT data from SNUBH, taken
with Heidelberg medical devices, were processed using a

proprietary OCR machine learning model [10]. Only high-
quality OCT scans (signal strength ≥7) were used in this
study. Figure 1 illustrates the process of standardizing OCT
imaging data into the R-CDM format.

Figure 1. Standardizing OCT imaging data in the format of Radiology Common Data Model. OCT: optical coherence tomography.

Study Design With the OMOP-CDM
In this study, we performed retinal thickness comparisons
between cohorts of adult patients (aged ≥18 years) with
and without chronic diseases, all of whom had undergone
OCT. Among the chronic diseases, we focused on T2DM
and hypertension. To ensure the comprehensive inclusion
of all patients with these conditions, we used the highest-
level SNOMED (Systematized Nomenclature of Medicine)
hierarchy codes for enrollment. First, a T2DM cohort
composed of patients diagnosed with T2DM and a con-
trol cohort of patients who were neither diagnosed with
nor treated for T2DM were established. Eligibility for the
T2DM cohort required a T2DM diagnosis and the adminis-
tration of T2DM medications within 3 months of diagnosis,
with the diagnosis date set as the index date. Patients who
discontinued T2DM medications for more than 90 days were

considered lost to follow-up. The control cohort included
adult patients who were neither diagnosed with nor treated
for T2DM, and the OCT imaging date was the index date in
this cohort. Patients who had not been observed in the 90 days
that preceded their respective index dates were excluded from
the study. Additionally, patients with any recorded diagnosis
or treatment for retinal or choroidal diseases that could affect
the retinal thickness were also excluded (Figure 2). Second,
an additional cohort of patients diagnosed with hypertension
and a control group of patients who were neither diagnosed
with nor treated for hypertension, who also had records of
undergoing OCT imaging, were established in Figure E1 in
Multimedia Appendix 1. Patients who discontinued hyperten-
sion medications for more than 90 days were considered lost
to follow-up.
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Figure 2. Cohort definitions for T2DM and control groups. (A) Patients with T2DM, excluding those diagnosed or treated for choroidal or retinal
disorders, who have undergone OCT imaging. (B) Patients without T2DM or any choroidal or retinal disorders, who have undergone OCT imaging.
OCT: optical coherence tomography. T2DM: type 2 diabetes mellitus.

Statistical Analysis 1: Large-Scale
Propensity Score Matching for
Characteristics Between Chronic Disease
Cohort and Control Cohort
The propensity score matching (PSM) method was used to
adjust for potential biases arising from confounding variables
between the cohorts of patients with chronic diseases and the
control cohorts. Propensity scores were estimated through a
logistic regression model, and matching was performed using
a nearest-neighbor approach within a 0.2-SD caliper on the
logit scale, as recommended by Austin [11]. The balance of
covariates was assessed using the absolute standardized mean
difference (aSMD), with covariates including age categorized
into 5-year bands, sex, and all condition diagnoses recorded
in the year preceding the index date. Various matching ratios
(1:1, 1:2, and 1:4) were explored for the sensitivity analysis.
Interworking of the R-CDM and OMOP-
CDM
During the standardization of OCT imaging data to
the R-CDM, patient numbers used in the hospital were

pseudonymized and replaced with research patient IDs for
use in the OMOP-CDM database. This transformation not
only eliminated the risk of personal information leakage
when conducting research with imaging data but also ensured
seamless integration between the OMOP-CDM and R-CDM.
Following these processes, R-CDM-based OCT databases
were established in both institutions.

By linking the OMOP-CDM and R-CDM, an environ-
ment was established that enabled the extraction of spe-
cific medical imaging data from designated patient cohorts.
The hypertensive, diabetic, and control cohorts were easily
constructed using ATLAS, an open-source software provided
by the Observational Health Data Sciences and Informatics
(OHDSI) group, which manages OMOP-CDM development
[12]. Once these cohorts were established, the OCT imaging
data collected from each cohort were uniformly extracted
using the R-CDM (Figure 3). In this study, all OCT data
taken after the index date of each patient cohort were used for
analyses.
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Figure 3. Schematic illustration of the integration between the OMOP-CDM and Radiology-CDM for extracting optical coherence tomography
data from chronic disease and control cohorts. CDM: Common Data Model; OMOP-CDM: Observational Medical Outcome Partners-Common Data
Model.

Extracting Retinal Thickness Values From
OCT Data Using OCR Techniques
While the R-CDM database included information that was
useful for describing and categorizing images, it lacked the
pixel data from each image. Therefore, to extract recorded
retinal thickness values from OCT data via the R-CDM, an
additional OCR technology was required. The same OCR
techniques previously used to extract metadata from OCT
images for the R-CDM transformation were used. However,
retinal thickness data within the OCT imaging data captured
using Zeiss equipment at AUMC were recorded at inconsis-
tent locations and centered on backgrounds of various colors,
significantly reducing OCR accuracy. Initially, the process
involved cropping the segments containing information and
performing OCR using the Tesseract package (Python),
consistent with the existing methods. Thereafter, all extracted
data were manually reviewed by a single researcher. Through
this method, retinal nerve fiber layer (RNFL) thickness and
central macular thickness (CMT) were successfully extrac-
ted from OCT imaging data of chronic disease cohorts and
control cohorts from the two institutions.
Statistical Analysis 2: Retinal Thickness
Analysis Using Mixed-Effects Regression
Analysis
We used the mixed-effects regression analysis to examine
the CMT and RNFL thickness across the chronic disease

and control cohorts. This analysis was crucial for determin-
ing if the differences in retinal thickness between the two
groups were statistically significant at multiple time points
and whether the changes in retinal thickness over time were
significant. Furthermore, the model was specifically designed
to adjust for confounding factors that could influence the
retinal thickness, allowing for the independent analysis of the
effects of the treatment duration on the former. Additionally,
the model accommodated data from repeated measurements
taken from the same individuals. The model we designed
for this study was adjusted for age and sex and incorporated
patient study ID as a random effect for repeated measures.

Results
Composition of R-CDM–Standardized
OCT Data
In this study, we used CDM databases from two medi-
cal institutions along with an R-CDM–standardized OCT
database. The OCT data from AUMC and SNUBH, standar-
dized in the R-CDM format, consisted of data from 261,874
and 475,626 patients, respectively. The specific composition
of the data is presented in Figure 4. For our analysis, a total
of 292,917 OCT images of the macular thickness and 141,314
OCT images of the RNFL thickness were used.
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Figure 4. Clinical and medical imaging databases of Ajou University Medical Center and Seoul National University Bundang Hospital used in this
study. EMR: electronic medical record; OCT: optical coherence tomography; OMOP-CDM: Observational Medical Outcome Partners-Common Data
Model; RNFL: retinal nerve fiber layer.

Study Population
Figure 5 illustrates the patient selection process across two
tertiary hospitals in South Korea, using the AUMC and
SNUBH databases. Within the T2DM cohort, from a total
of 53,413 patients with diabetes and 1391 individuals who
had undergone OCT imaging and were not diagnosed with or
treated for any retinal diseases were selected. In the control
cohort, out of 116,637 patients who underwent OCT imaging,
25,442 with no history of diabetes or retinal disorders were
chosen. Following 1:2 PSM, 957 patients from the T2DM
cohort and 1,603 from the control cohort were matched.
After PSM, the median age group for the T2DM and control
cohorts was 60‐64 years. Additionally, females accounted for
44.6% (427/957) and 43.9% (703/1603) of patients in the
T2DM and control cohorts, respectively.

Table 1 presents the baseline characteristics, including
patient demographics and comorbidities, along with aSMDs
before and after PSM at AUMC. Before PSM, higher
prevalences of chronic conditions such as chronic liver
disease, hyperlipidemia, and obesity, as well as cardiovascu-
lar diseases including coronary arteriosclerosis and periph-
eral vascular disease were observed in the T2DM group
(all aSMDs>0.1). After matching, age, sex, and comorbid-
ities were well-matched (all aSMDs<0.1). This trend was
consistent with findings at SNUBH, as detailed in Multimedia
Appendix 1. Additionally, the baseline characteristics before
and after 1:1 and 1:4 PSM for the T2DM and control cohorts
and the results for the hypertension versus control cohort are
outlined in Tables E1 and E2 in Multimedia Appendix 1.

JMIR MEDICAL INFORMATICS Park et al

https://medinform.jmir.org/2025/1/e64422 JMIR Med Inform 2025 | vol. 13 | e64422 | p. 6
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e64422


Figure 5. Flowchart of the study population in the comparison of T2DM and control cohorts. AUMC: Ajou University Medical Center; OCT: optical
coherence tomography; SNUBH: Seoul National University Bundang Hospital; T2DM: type 2 diabetes mellitus.

Table 1. Comparative analysis of baseline characteristics and comorbidity profiles between the T2DM and control cohorts before and after the 1:2
PSM at Ajou University Medical Center.
Characteristics Before PSMa matching After PSM matching

T2DMb (n=967) Control (n=11,896) aSMDc T2DM (n=633) Control (n=1045) aSMD
Age (years), n (%)
  15‐19 4 (0.4) 190 (1.6) 0.12 4 (0.6) 7 (0.7) 0.01
  20‐24 3 (0.3) 428 (3.6) 0.24 3 (0.5) 10 (1) 0.04
  25‐29 10 (1) 393 (3.3) 0.15 8 (1.3) 20 (1.9) 0.04
  30‐34 17 (1.8) 571 (4.8) 0.17 11 (1.7) 26 (2.5) 0.04
  35‐39 38 (3.9) 904 (7.6) 0.16 25 (3.9) 33 (3.2) 0.05
  40‐44 56 (5.8) 1083 (9.1) 0.12 40 (6.3) 72 (6.9) 0.00
  45‐49 84 (8.7) 1190 (10) 0.05 60 (9.5) 96 (9.2) 0.02
  50‐54 136 (14.1) 1249 (10.5) 0.11 91 (14.4) 177 (16.9) 0.06
  55‐59 132 (13.7) 1332 (11.2) 0.08 90 (14.2) 140 (13.4) 0.02
  60‐64 149 (15.4) 1249 (10.5) 0.15 92 (14.5) 143 (13.7) 0.01
  65‐69 113 (11.7) 1130 (9.5) 0.07 65 (10.3) 112 (10.7) 0.03
  70‐74 111 (11.5) 904 (7.6) 0.13 72 (11.4) 98 (9.4) 0.05
  75‐79 81 (8.4) 690 (5.8) 0.10 49 (7.7) 66 (6.3) 0.04
  80‐84 27 (2.8) 393 (3.3) 0.03 20 (3.2) 28 (2.7) 0.02
  85‐89 6 (0.6) 167 (1.4) 0.08 3 (0.5) 11 (1.1) 0.07
Sex, n (%)
  Female 461 (47.7) 6186 (52) 0.09 301 (47.6) 481 (46) 0.05
  Male 506 (52.3) 5710 (48) 0.03 332 (52.4) 564 (54) 0.03
Medical history (general), n (%)
  Acute respiratory disease 19 (2) 83 (0.7) 0.11 7 (1.1) 11 (1.1) 0.00
  Chronic liver disease 29 (3) 48 (0.4) 0.20 14 (2.2) 17 (1.6) 0.02
  Chronic obstructive lung disease 9 (0.9) 59 (0.5) 0.05 4 (0.6) 11 (1.1) 0.07
  Dementia 9 (0.9) 71 (0.6) 0.04 7 (1.1) 10 (1) 0.02
  Depressive disorder 20 (2.1) 131 (1.1) 0.08 9 (1.4) 25 (2.4) 0.06
  Gastroesophageal reflux disease 35 (3.6) 333 (2.8) 0.04 22 (3.5) 41 (3.9) 0.04
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Characteristics Before PSMa matching After PSM matching

T2DMb (n=967) Control (n=11,896) aSMDc T2DM (n=633) Control (n=1045) aSMD
  Gastrointestinal hemorrhage 10 (1) 48 (0.4) 0.07 8 (1.3) 15 (1.4) 0.01
  HIV infection 2 (0.2) 12 (0.1) 0.02 1 (0.2) 3 (0.3) 0.02
  Hyperlipidemia 96 (9.9) 333 (2.8) 0.29 40 (6.3) 60 (5.7) 0.00
  Lesion of liver 39 (4) 131 (1.1) 0.19 21 (3.3) 31 (3) 0.01
  Obesity 17 (1.8) 48 (0.4) 0.13 11 (1.7) 10 (1) 0.06
  Osteoarthritis 18 (1.9) 131 (1.1) 0.07 11 (1.7) 15 (1.4) 0.03
  Urinary tract infectious disease 15 (1.6) 36 (0.3) 0.13 10 (1.6) 9 (0.9) 0.06
  Viral hepatitis C 5 (0.5) 12 (0.1) 0.08 1 (0.2) 3 (0.3) 0.03
Medical history (cardiovascular disease)
  Cerebrovascular disease 31 (3.2) 202 (1.7) 0.10 18 (2.8) 39 (3.7) 0.07
  Coronary arteriosclerosis 120 (12.4) 202 (1.7) 0.43 54 (8.5) 85 (8.1) 0.07
  Heart disease 201 (20.8) 535 (4.5) 0.51 99 (15.6) 150 (14.4) 0.06
  Peripheral vascular disease 37 (3.8) 36 (0.3) 0.25 7 (1.1) 13 (1.2) 0.03
  Pulmonary embolism 3 (0.3) 12 (0.1) 0.04 3 (0.5) 6 (0.6) 0.04
Medical history (neoplasm), n (%)
  Hematologic neoplasm 24 (2.5) 107 (0.9) 0.12 14 (2.2) 29 (2.8) 0.07
  Malignant neoplastic disease 92 (9.5) 630 (5.3) 0.16 54 (8.5) 103 (9.9) 0.09
  Malignant tumor of breast 8 (0.8) 95 (0.8) 0.00 4 (0.6) 11 (1.1) 0.05
  Malignant tumor of colon 4 (0.4) 36 (0.3) 0.01 2 (0.3) 5 (0.5) 0.04
  Malignant tumor of lung 4 (0.4) 59 (0.5) 0.01 4 (0.6) 10 (1) 0.05
  Primary malignant neoplasm of

prostate
5 (0.5) 48 (0.4) 0.02 5 (0.8) 11 (1.1) 0.07

aPSM: propensity score matching.
bT2DM: type 2 diabetes mellitus.
caSMD: absolute standardized mean difference.

Clinical Outcomes
The median follow-up period was 807 (IQR 215-2523) days
(4105 person-years) in the T2DM cohort and 966 (IQR
265-2946) days (4641 person-years) in the control cohort.
In a longitudinal study using a mixed-effects regression,
we investigated differences in retinal thickness between
the T2DM and control cohorts (Figure 6). Throughout the
follow-up period at both AUMC and SNUBH, the CMT
significantly decreased in the T2DM cohort compared with
the control cohort (P=.04 and P=.007, respectively; detailed
in Tables E3-4 and E4-4 in Multimedia Appendix 1). Initially,
there were no significant differences in CMT between the
T2DM and control cohorts. However, significant reductions
in CMT in the T2DM cohort, compared with the control
group, began from the 15th year of follow-up at AUMC
and the 5th year at SNUBH (Tables E3-5 and E4-5 in
Multimedia Appendix 1). Conversely, the RNFL thickness
analysis revealed no significant changes in the T2DM and
control cohorts during the follow-up period, and there were
no significant differences between them at any time point.
These findings were consistent across both institutions.

For retinal thickness comparisons between the hyperten-
sion and control cohorts during the follow-up period, a
decreasing trend in CMT in the hypertension cohort com-
pared with the control cohort was observed only at AUMC
(P=.04), while no such trend was noted at SNUBH (P=.56),
as detailed in Tables E3-4 and E4-4 in Multimedia Appendix
1. Additionally, the analysis of RNFL thickness showed no
significant differences between the cohorts.

For the sensitivity analysis, chronic disease and control
cohorts were matched in 1:1 and 1:4 ratios to analyze the
CMT and RNFL thickness, with results detailed in Tables E3
and E4 and Figures E4 and E5 in Multimedia Appendix 1.
The analysis of CMT between the T2DM and control cohorts
revealed that, except for one outcome (1:1 at SNUBH;
P=.24), all other results were consistent with the main
findings, showing a significant decrease in CMT in the T2DM
cohort throughout the follow-up duration. Additionally, while
results at AUMC indicated a marginally significant decrease
in CMT in the hypertension cohort compared with the control
cohort during the follow-up period (all P<0.1), no significant
differences were observed at SNUBH.
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Figure 6. Longitudinal analysis of laboratory values using a linear mixed effects model after 1:2 propensity score matching of T2DM and control
cohorts. (A) Central macular thickness at Ajou University Medical Center. (B) Central macular thickness at Seoul National University Bundang
Hospital. (C) RNFL thickness at Ajou University Medical Center. (D) RNFL thickness at Seoul National University Bundang Hospital. RNFL: retinal
nerve fiber layer; T2DM: type 2 diabetes mellitus.

Discussion
Principal Results
In this study, OCT imaging data collected from two tertiary
hospitals for research purposes were standardized into the
R-CDM format. We developed an environment that integrates
this standardized OCT database with the previously estab-
lished OMOP-CDM database at each medical institution,
allowing for the systematic extraction of specific imaging
data types captured by patient cohorts built with the OMOP-
CDM. As a proof of concept, we assessed the changes in
retinal thickness in patients with chronic diseases over an
extended period. Notably, we observed a significant reduction
in the CMT among patients who had been receiving long-
term treatment for T2DM at both institutions. This research
is believed to be the first global study to simultaneously use
OCT data and clinical data, demonstrating that the application
of the R-CDM can significantly enhance the efficiency of
multicenter collaborative research that integrates clinical and
imaging data.

The R-CDM used in this study for OCT data standardiza-
tion represents the first model to standardize medical imaging

data based on the OMOP-CDM. It is available as an open-
source software program on the official OHDSI GitHub site
and was published in a 2022 paper [5] that elaborates on
the structural design and terminology system of the R-CDM,
and as a proof of concept, it standardizes 90 million sets
of medical imaging data collected for research purposes
from AUMC. Both domestically and internationally, there
have been instances in which the R-CDM has been used to
standardize imaging data and facilitate research with these
standardized datasets. For instance, Wonkwang University
Hospital established an R-CDM database of standardized
abdominal computed tomography (CT) data for 123 patients
with cirrhosis and 123 control patients, using these data
to develop a predictive model for cirrhosis [13]. Addition-
ally, the paper introduced a web-based management system
enabling researchers to search for and download standar-
dized R-CDM datasets, enhancing the accessibility and utility
of the R-CDM. Furthermore, a study by Lee et al [14]
used clinical data, magnetic resonance imaging (MRI) data,
and clinical notes simultaneously to develop a multimodal
deep learning model predicting treatment-resistant depres-
sion, using AUMC’s R-CDM database to extract MRI data
that was suitable for study conditions. Additionally, within
the European Health Data & Evidence Network project,
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the R-CDM was used to standardize brain CT and MRI
data. This standardization successfully integrated quantitative
data extracted from brain imaging studies by Icobrain’s AI
model [15]. Therefore, the R-CDM supports global research-
ers in efficiently leveraging their medical imaging data for
advanced studies.

In addition to the R-CDM used in this study, various other
efforts exist to standardize medical imaging data. Rubin et
al [16] proposed common data elements, which standardize
radiologic reports using a uniform terminology and struc-
ture. Although common data elements effectively standard-
ize data produced in radiology, they encounter difficulties
when integrating with standardized clinical databases like
the OMOP-CDM. Furthermore, there are two additional
efforts to standardize medical imaging data based on the
OMOP-CDM. The first is the medical imaging common data
model (MI-CDM) developed by the Foundation of Research
and Technology Hellas [17], and the second is the MI-
CDM codeveloped by Yonsei University and Johns Hopkins
University [18]. Both MI-CDM models not only facilitate
the extraction of necessary data by standardizing medical
imaging data, but they also design tables to accommodate
features from images, thereby enhancing the efficiency of the
use of these features in research. While the structures of the
models differ slightly from each other, the majority of their
architectures are considerably similar, and their standardiza-
tion methods and principles are consistent. Researchers can
select the model that best suits their immediate needs and
later convert it to another model format with simple modifi-
cations to the database if needed. The multiple cases of the
R-CDM and the development of enhanced models demon-
strate the demand among researchers to use medical imaging
data more efficiently.

In this study, we observed a significant reduction in
CMT in patients receiving long-term treatment for T2DM
compared to the control group, with an annual decrease of
−0.69 μm (95% CI −1.34 to −0.03; P=.04) at AUMC and
−7.78 μm (95% CI −11.84 to −3.71; P<.007) at SNUBH.
In contrast, RNFL thickness showed no significant differ-
ence in annual changes between the two groups (AUMC:
−0.13 μm, 95% CI −0.55 to 0.30, P=.56; SNUBH: 0.10
μm, 95% CI −0.13 to 0.32, P=.39). This finding highlights
the subtle but measurable structural changes that occur in
the macula as a result of prolonged exposure to diabetes.
However, there was no significant difference in the rate of
RNFL changes over time between the two groups. These
results are consistent with findings reported by Oshitari et
al [19], where the CMT in patients with diabetes without
diabetic retinopathy was significantly thinner compared to
the control group (mean 210.7, SD 28.6 μm vs mean 195.6,
SD 23.3 μm; P=.02). Similarly, while RNFL thickness in
the group without diabetic retinopathy was thinner than the
control group (mean 104.4, SD 10.9 μm vs mean 100.4,
SD 13.7 μm) the difference was not statistically significant.
A study conducted at the Jamaica Plain Veteran’s Affairs
Medical Center further supports these findings, reporting a
significant decrease in macular thickness associated with a
longer duration of diabetes in the group without diabetic

retinopathy. They observed a significant negative correla-
tion between retinal thickness and diabetes duration (central
foveal thickness: r=−0.30, P=.003; total foveal thickness:
r=−0.26, P=.012; total macular thickness: r=−0.26, P=.013)
[20]. The observed reduction in macular thickness, which
was significantly correlated with the duration of diabetes, is
likely attributed to retinal neurodegeneration, an early event
in the pathogenesis of diabetic retinopathy that precedes and
contributes to diabetic microangiopathy [21].

Retinal thickness comparisons between the hypertension
group and the control group revealed that only at AUMC did
patients with long-term hypertension exhibit a reduction in
CMT (−0.81 μm/y, 95% CI −1.57 to −0.06; P=.04). These
findings align with prior studies conducted at Izmir Military
Hospital and Samsung Medical Center, which also reported
decreased macular thickness in patients with hypertension
compared to control patients [22,23]. The Izmir Military
Hospital reported a significantly thinner mean macular
thickness in the hypertension group compared to the control
group (mean 254.97, SD 21.81 μm vs mean 262.11, SD
21.05 μm; P=.037). Similarly, a study from Samsung Medical
Center reported a significant reduction in percent thickness
in patients with hypertension compared to control patients,
with changes of –1.6% (95% CI −2.59% to −0.6%; P=.02) in
the composite inner macula and −2.26% (95% CI: −3.32% to
−1.19%; P<.01) in the composite outer macula.

Conversely, other studies have reported significantly
thinner CMT and RNFL in patients with hypertension,
highlighting the association between systemic hypertension
and retinal microvascular abnormalities, such as retinal
arteriolar narrowing and ischemic retinal disorders. These
findings underscore the importance of prompt and effective
management of systemic hypertension [7,24-27]. Notably, our
study excluded all patients diagnosed with retinal or choroidal
disorders by leveraging SNOMED codes and used large-scale
PSM with thousands of covariates to control for baseline
differences between groups. While these methodological
approaches may account for some discrepancies with earlier
studies, further large-scale research is needed to provide more
conclusive evidence.

Large-scale PSM methodology, which was actively used
and validated by the OHDSI community, meticulously
matched baseline characteristics between the patient and
control groups. This approach incorporated more covariates
than reported in previous studies [28]. Additionally, while
the existing literature indicates that the macular thickness
is significantly higher in males than in females [29,30]
and decreases with age [6,31], our study used a linear
mixed model to comprehensively adjust for variables that
significantly affect this parameter. Moreover, to generate
more robust evidence, we conducted analyses with the
same settings across multiple institutions. However, to date,
most studies exploring the association between chronic
diseases and retinal thickness using OCT data have been
conducted at single institutions. This is primarily due to
the diverse data storage formats across medical facilities,
making cross-institutional research exceedingly labor-inten-
sive. Furthermore, as our study requires both clinical and
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imaging data, the workload for data preprocessing increa-
ses exponentially. By leveraging the OMOP-CDM and the
associated R-CDM system, we demonstrated a significant
reduction in inefficiency. We anticipate that future research
will achieve greater scalability and generate more generalized
and impactful findings through multi-institutional analyses
using the R-CDM.
Limitations
Nevertheless, this study has the following limitations. First,
while the R-CDM significantly enhances the use of medical
imaging data, we encountered persistent inefficiencies due
to stringent governance requirements for research appro-
val. Although we had unrestricted access to OMOP-CDM
standardized EMR databases from two institutions, the
acquisition of imaging data for research purposes remained
time-consuming and labor-intensive. This underscores the
necessity for a more comprehensive R-CDM that standard-
izes all medical imaging data across multiple institutions,
which is our ultimate objective. We anticipate that as the
R-CDM gains widespread acceptance comparable to the
OMOP-CDM, more health care institutions will adopt it
for standardizing all of their medical imaging data, thereby
facilitating more efficient multicenter studies incorporating
imaging data. Second, due to the inherent characteristics of
OCT medical devices that do not automatically integrate with
the EMR or the picture archiving communication system, this
study was limited to using data from OCT devices specif-
ically approved for research purposes at each institution.
Nevertheless, by securing all OCT data from specific periods

and specific equipment, we minimized potential biases in data
acquisition. In future investigations, we aim to incorporate
all available OCT data from both institutions to enhance
the robustness and generalizability of our findings. Third,
despite using data from two major tertiary hospitals in Korea,
the final cohort for retinal thickness analysis comprised
fewer than 2000 patients. While our cohort definition and
large-scale PSM technique ensured balanced comparisons, it
resulted in the exclusion of a substantial number of patients.
To address these limitations, we propose conducting large-
scale collaborative studies involving multiple medical centers,
which would ensure a sufficiently large sample size for more
conclusive research.
Conclusion
OCT imaging data were standardized into the R-CDM format
from two tertiary hospitals in South Korea, and changes
in the retinal thickness in patients with chronic diseases
were analyzed as a proof of concept. To maximize the use
of available data, mixed-effects regression analyses were
conducted, revealing that patients with long-standing T2DM
exhibited a significant reduction in CMT over time compared
with those without the condition. The construction of R-CDM
databases across multiple institutions and its integration with
the OMOP-CDM has established a robust foundation for
conducting efficient multi-institutional collaborative research
using both clinical and imaging data, marking a significant
step forward in the domain of multidisciplinary research
collaborations.
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