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Abstract
Background: Anemia is a global public health issue causing symptoms such as fatigue, weakness, and cognitive decline.
Furthermore, anemia is associated with various diseases and increases the risk of postoperative complications and mortality.
Frequent invasive blood tests for diagnosis also pose additional discomfort and risks to patients.
Objective: This study aims to assess the facial spectral characteristics of patients with anemia and to develop a predictive
model for anemia risk using machine learning approaches.
Methods: Between August 2022 and September 2023, we collected facial image data from 78 anemic patients who met the
inclusion criteria from the Hematology Department of Shanghai Hospital of Traditional Chinese Medicine. Between March
2023 and September 2023, we collected data from 78 healthy adult participants from Shanghai Jiading Community Health
Center and Shanghai Gaohang Community Health Center. A comprehensive statistical analysis was performed to evaluate
differences in spectral characteristics between the anemic patients and healthy controls. Then, we used 10 different machine
learning algorithms to create a predictive model for anemia. The least absolute shrinkage and selection operator was used
to analyze the predictors. We integrated multiple machine learning classification models to identify the optimal model and
developed Shapley additive explanations (SHAP) for personalized risk assessment.
Results: The study identified significant differences in facial spectral features between anemic patients and healthy controls.
The support vector machine classifier outperformed other classification models, achieving an accuracy of 0.875 (95% CI
0.825-0.925) for distinguishing between the anemia and healthy control groups. In the SHAP interpretation of the model,
forehead-570 nm, right cheek-520 nm, right zygomatic-570 nm, jaw-570 nm, and left cheek-610 nm were the features with the
highest contributions.
Conclusions: Facial spectral data demonstrated clinical significance in anemia diagnosis, and the early warning model for
anemia risk constructed based on spectral information demonstrated a high accuracy rate.
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Introduction
Background
Anemia is a condition characterized by a decrease in red
blood cell count or hemoglobin concentration below a
certain threshold, thereby reducing the blood’s oxygen-car-
rying capacity throughout the body. It serves as an indi-
cator of poor nutritional and health status [1]. A study
conducted from 1990 to 2019 reported that more than 1.7
billion people worldwide were anemic [2]. Typical symptoms
include fatigue, drowsiness, weakness, tachycardia, shortness
of breath, increased heart rate, decreased appetite, hypoten-
sion, and dizziness [3]. According to the results of China’s
fourth nutritional survey, the prevalence of anemia among
Chinese residents is 20.1%, and the global prevalence of
anemia in all ages is 22.8% in 2019 [4], indicating it
has become an important public health issue. In a survey
of 13,175 Chinese adults aged >50 years, the prevalence
of anemia is 31%, indicating that anemia is particularly
prevalent in China’s middle-aged and older adult popula-
tion [5]. Especially among older adults, anemia has been
identified as one of the independent risk factors for poor
patient outcomes [6]. Studies have found that older adults
with anemia were more than twice as likely to suffer from
frailty [7], and the survival rate of older adult patients with
anemia was significantly lower than that of the nonanemic
older adult population [8]. Hemoglobin (Hb) concentration is
a reliable indicator for diagnosing anemia [9]. Specifically,
a low hemoglobin concentration is strongly correlated with
disability, poor physical performance, and declining cognitive
ability and strength in aging individuals [10,11], especially
so for the oldest individuals [12]. Anemia is associated with
a variety of diseases for which there is a negative impact
on the patient’s prognosis [13]. Additionally, preoperative
anemia has been identified as an independent correlation
factor of increased postoperative complications and mortality
rates [14]. Anemia is often diagnosed by an invasive blood
specimen collection method that patients may find uncom-
fortable, especially for those who are sensitive and fearful
of invasive blood tests. Bateman et al [15] conducted a
prospective, multicenter, epidemiological, and observational
study with 977 children enrolled and found that blood draws
accounted for 73% of daily blood loss, and that 96.5% of the
children lost blood as a result of blood draws. In fact, frequent
drawing of blood can lead to medical anemia.
Current Research on Noninvasive
Hemoglobin Detection
Current noninvasive testing methods being explored include
photoelectric volumetric pulse wave, spectroscopy, and
hyperspectral techniques. For diagnosis via photoelectric
volumetric pulse wave, Acharya et al [16] developed a
multimodel stacking regressor and estimate the total Hb using
noninvasively acquired photoplethysmogram. Spectroscopic
techniques explore material properties through the interac-
tion between matter and electromagnetic waves of different
frequencies [17]. Hyperspectral imaging techniques provide
a more detailed segmentation in spectral dimensions and

contain much more information than red, green, and blue
[18]. Color measurement in Chinese medicine color diagno-
sis by visible reflectance spectroscopy is similar to clinical
color diagnosis, reflecting the accuracy, authenticity, and
reliability of color diagnosis results [19]. Raman spectroscopy
can be used to analyze the distribution of metabolite, lipid,
protein, water, and blood content in tissues by detecting the
skin[20]. Hyperspectral imaging can estimate Hb concentra-
tion and blood oxygen saturation by diffuse reflection of
tissues [21]. Spectral imaging of sublingual microcirculation
was proven to be able to detect anemia [22]. Research on
noninvasive Hb measurement using spectroscopy predomi-
nantly focuses on areas such as the palm, fingernails, and
conjunctiva. Kesarwani et al [23] proposed a noninvasive
palm pallor–based anemia detection system, which utilizes
a smartphone app to estimate Hb levels by monitoring
changes in palm pallor. The system achieved a sensitivity
of 0.93, mean squared error of 0.701, and root mean squared
error of 0.698. Liu et al [24] used a fingertip measurement
method, constructed partial least squares and back propa-
gation artificial neural network models, and developed a
portable prototype for their noninvasive Hb detection system.
Mannino et al [25] used the color of patients’ nail beds from
smartphone photos to estimate Hb levels, defining anemia
as 11.0 g dL<threshold. The model for the study had a
sensitivity and specificity of 0.92 and 0.76 in the classifi-
cation of anemia versus healthy individuals. Bevilacqua et
al [26] proposed an alternative method for noninvasive Hb
estimation based on image analysis of specific regions of the
conjunctiva; in total, 77 patients with anemia and healthy
individuals were studied and modeled using a binary support
vector machine (SVM) classifier with a resulting accuracy of
0.844, specificity of 0.824, and sensitivity of 1.000. Kalan-
tri et al [27] conducted a blind, independent comparison
of the presence and absence of pallor in physical features
(including conjunctiva, tongue, palms, and nail beds) and
a reference standard (Hb estimated by an electronic cell
counter). Diagnostic accuracy was measured by calculating
likelihood ratios, 95% confidence intervals for different Hb
thresholds, and the area under the characteristic curve of the
subjects. The area under the characteristic curve was 0.84
and 0.71 for Hb of 7 g/dL and 9 g/dL as cutoffs. Wang
et al [28] developed HemaApp, which uses a smartphone
camera and different light sources to noninvasively monitor
Hb concentration based on photoelectric volumetric pulse
wave techniques. HemaApp was evaluated on 31 patients,
with a light source passing through the patient’s finger for
chromatic analysis to estimate the Hb concentration by blood
color. Regression analysis of Hb concentration was performed
in the paper for different light sources: when white +970
nm LEDs were used, R=0.69; when white +970 nm LEDs +
incandescent were used, R=0.74; when white + 880 nm and
970 nm LEDs + incandescent were used, R=0.82.

Facial diagnosis is an important and intuitive method of
traditional Chinese medicine (TCM). The facial features of
patients with anemia always differ from those of healthy
persons, usually showing a pale complexion [27]. Pallor
of the conjunctiva, palms, nail beds, or any part of the
body is associated with significantly lower Hb concentrations
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[29]. The continuous development of intelligent diagnostic
methods has provided classification models for recogniz-
ing facial complexions, which to some extent avoids the
subjective limitations of the traditional facial diagnosis that
are qualitative and experience-based [30]. An increasing
number of experts are integrating color optical theories and
modern instrumentation into the modern research field of
TCM diagnosis, making the research more scientific and
objective, and avoiding biases caused by human factors [31].
However, there is currently a lack of formal studies focusing
on noninvasive, spectral Hb monitoring of the facial region
[32].
Goals
Based on this, we collected data from patients with anemia
and healthy controls, analyzed the spectral reflectance and
image features of their faces, and built an anemia classi-
fication model based on machine learning (ML) methods.
The results showed that patients with anemia generally have
a paler complexion, with the most noticeable differences
located in the nose, right cheek, right zygomatic, and jaw.

Methods
General Description of Participants
To control for variables such as age, locale, and gender,
we implemented rigorous matching criteria. Between March
2023 and September 2023, we collected data on people who
underwent routine physical examinations at the Shanghai
Jiading and Gaohang Community Health Centers, from which
we randomly selected 78 healthy individuals, consisting of
38 males (49%) and 40 females (51%), aged 45 to 85 years,
with a mean age of 68 years. Additionally, from August 2022
to September 2023, we gathered data from patients admitted
to the hematology ward at the Shanghai Hospital of Tradi-
tional Chinese Medicine, ultimately analyzing 78 patients
with anemia consisting of 38 males (49%) and 40 females
(51%) aged 45 to 85 years, with a mean age of 67 years. This
anemia group contained 26 mild (33%), 26 moderate (33%),
and 26 severe cases (33%) of anemia.

Diagnostic Criteria
According to the diagnostic criteria established by Chinese
hematologists [33], in China, anemia can be diagnosed in
adult males with a Hb level ≤120 g/L and in adult females
(nonpregnant) with Hb ≤110 g/L. Within this range, Hb
≥90 g/L is considered mild anemia, 60 g/L≤ Hb ≤89 g/L
is considered moderate anemia, and 30 g/L≤Hb ≤59 g/L is
considered severe anemia.
Inclusion and Exclusion Criteria
The inclusion criteria for the healthy control group is as
follows: (1) the absence of any acute or chronic diseases
according to clinical diagnostic criteria (no diagnosis of any
acute disease within 3 months, and no diagnosis of any
chronic disease within 6 months), (2) no current medication
use or other irregularity found in the blood, and (3) regular
urine, liver, and kidney functions.

The inclusion criteria for the anemia group is as follows:
(1) the patient’s Hb value must meet the diagnostic criteria
for anemia [33]; (2) the patient exhibits symptoms of anemia,
such as pale complexion, lips, or nails, fatigue, weakness,
shortness of breath, and resting tachycardia [3,34]; and (3)
the patient’s age is between 45 and 85 years. Both male and
female patients were included.

The exclusion criteria for the anemia group is as follows:
(1) the patient requests to withdraw informed consent; (2) the
patient is unable to meet the inclusion criteria; (3) presence
of severe cardiovascular, cerebrovascular, endocrine, motor,
autoimmune, or infectious diseases; (4) presence of mental
illnesses or disorders of consciousness and communication;
(5) patients undergoing blood transfusion; and (6) pregnant
and breastfeeding women, or those preparing for pregnancy.
Observation Methods
Facial spectroscopic data of the healthy controls and patients
with anemia were collected using a CS-600CG spectrophoto-
metric colorimeter (Figure 1).

Figure 1. CS-600CG Spectrophotometer
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To obtain more comprehensive facial information, we
selected 8 points on the subjects’ faces: the forehead,
glabellum, nose, jaw, right zygomatic, left zygomatic, right
cheek, and left cheek. It should be noted that subjects were
required to be free of cosmetics and maintain a natural facial
complexion during data collection. The following specific
steps were taken: (1) calibrate the spectrometer and adjust
the parameters to standard values; (2) instruct subjects to
keep their faces clean; (3) sterilize the instrument with 75%
medical alcohol; (4) position the collection port against the
subject’s skin and collect data at the following locations
in the order specified: forehead, glabellum, nose, jaw, right
zygomatic, left zygomatic, right cheek, and left cheek; and
(5) verify the consistency of the collected data and minimize
excessive variability between each facial area.
Statistical Analysis
We used SPSS (version 25.0; IBM Corp) for statistical
analysis. Data satisfying normality were expressed as mean
(SD), whereas data not satisfying normality were expressed
as median (IQR). The significance level was set at α=.05.
To compare the 2 groups, independent samples t tests were
used for data that were normally distributed and demonstra-
ted homogeneity of variance; otherwise, Mann-Whitney U
tests were applied. All tests were 2-tailed, and a P<.05 was
considered to indicate statistical significance. To compare
the 4 groups, 1-way ANOVAs were used for data that were
normally distributed and exhibited homogeneity of variance;
Kruskal-Wallis tests were applied for data that were not
normally distributed or exhibited inhomogeneity of variance.
All tests were 2-tailed, and a P<.05 was considered to
indicate statistical significance.
Model Selection
After selecting feature factors from all independent variables,
we divided patients with anemia and healthy controls into
training and test sets. Multiple ML classification models were
then applied for a comprehensive analysis to compare the
discriminative performance of different models. Additionally,
we evaluated and validated the results using the optimized
model. A SHAP demonstration model was also developed.
The specific steps are as follows:

1. Feature selection: Initially, we conducted the least
absolute shrinkage and selection operator (LASSO) regres-
sion analysis in R to adjust variable selection and complexity.
Subsequently, the results from the LASSO regression analysis
were utilized as feature variables for machine learning.

2. Data division: To prevent randomness in modeling
results, we classified patients with mild, moderate, and severe
anemia according to the diagnostic criteria established by
Chinese hematologists. Using average random sampling, we
divided the data proportionally for training and validating the
classification model: 108 cases (70%) for the training set and
48 cases (30%) for the test set.

3. Comprehensive analysis of multiple classification
models: We utilized an open-source version of Python 3.7
for our analysis. Subsequently, we used various functions
from the scikit-learn library via Python 3.7, applying LASSO

regression to extract different spectral bands as feature
bands. We constructed a risk warning model for anemia
using 10 ML algorithms: logistic regression, decision tree,
SVM, random forest, k-nearest neighbor (KNN), artificial
neural network (ANN), Bayesian classifier, extreme gradient
boosting (XGBoost), adaptive boosting (AdaBoost), and light
gradient boosting machine (LightGBM).

Logistic regression is used for binary and multiclass
classification, using maximum likelihood for parameter
estimation [35]. Decision tree uses tree diagrams for decision-
making, handling classification and regression without data
standardization [36]. SVMs find optimal hyperplanes for
classification, using kernel tricks for complex issues [37].
Random forest uses multiple trees for better stability and
accuracy, ideal for high-dimensional datasets [38]. KNN
predicts by nearest categories, which is best for simple,
small-scale datasets [39]. ANNs learn complex data relation-
ships through neural connections, great for nonlinear and
large datasets [40]. Bayesian classifiers use Bayes’ theorem
for probabilistic outputs, suitable for medical diagnostics
[41]. XGBoost optimizes boosting trees for performance and
efficiency, excelling in large or feature-rich datasets [42].
AdaBoost improves classification by adjusting for misclassi-
fied samples, using multiple weak classifiers [43]. LightGBM
focuses on efficient learning with high precision and speed,
and it is optimized for distributed environments [44]. We
then trained and tested the above parameterized models,
analyzed the importance of the training set and testing
set indicators in different models, and selected the optimal
one. Python 3.7 was used to construct the area under the
receiver operating characteristic curve (AUROC), which is
often used to describe tools for diagnostic testing or the
identification accuracy of predictive models [45]. Python 3.7
was used to plot precision-recall (PR) curves, which were
widely used to evaluate the performance of models. PR and
the area under the PR (average precision [AP]) curve can
provide a valuable complement to existing model evalua-
tion methods [46]. Python 3.7 was used to plot the deci-
sion curve analysis (DCA), essentially the decision analysis.
Thus, with these evaluations, it was possible to determine
the viability of a given model, as well as which of several
models was optimal, with significant advantages in assess-
ing the clinical applicability of the model [47]. Also, we
evaluated the performance of the classification models using
a range of metrics, including accuracy, sensitivity, specific-
ity, F1-score, AUROC, positive predictive value (PPV), and
negative predictive value (NPV). The formulas for accuracy,
sensitivity, specificity, precision, F1-score, PPV, and NPV are
as follows:

(1)Accuracy = TP + TNTP + TN + FP + FN
(2)Sensitivity = TPTP + FN
(3)Specificity = TNTP + FP
(4)Precision = TPTP + FP
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(5)F1 = 2 × Precision × SensitivityPrecision + Sensitivity
(6)PPV = TPTP + FP
(7)NPV = TNTN + FN

4. We used SHAP library via Python 3.7 to plot the SHAP
interpretation of importance and contribution to the model
and interpreted the model results by calculating the contribu-
tion of each feature to the prediction results.
Ethical Considerations
The studies involving human participants were reviewed
and approved by the Ethics Committee of Shanghai Munic-
ipal Hospital of Traditional Chinese Medicine affiliated
to Shanghai University of Traditional Chinese Medicine

(registration number 2021SHL-KY-03-01) and the insti-
tutional review board of Shuguang Hospital affiliated
with Shanghai University of Traditional Chinese Medicine
(registration number 2018-626-55-03). Informed consent was
obtained from all subjects involved in the study. The privacy
and confidentiality of patients' personal information were
strictly protected throughout the research process. All patient
data were anonymized and stored securely.

Results
Participant Characteristics
The baseline characteristics of the first 2 healthy and patient
groups are shown in Table 1 and the baseline characteristics
of the latter healthy and patient groups classified by severity
group are shown in Table 2.

Table 1. Baseline comparison of 2 groups (n=156).
Characteristics Healthy controls (n=78) Patients with anemia (n=78) P value
Gender, n (%)
  Male 38 (49) 38 (49) 1.00
  Female 40 (51) 40 (51)
Age (years), mean (SD) 67.03 (10.62) 68.24 (4.68) .94

Table 2. Baseline comparison of 4 groups (n=104).
Characteristics Healthy controls (n=26) Anemia patients (n=78) P value

Mild (n=26) Moderate (n=26) Severe (n=26)
Gender, n (%)
  Male 13 (50) 12 (46) 14 (54) 12 (46) .94
  Female 13 (50) 14 (54) 12 (46) 14 (54)
Age (years), mean (SD) 67.03 (10.62) 70.35 (11.03) 65.19 (11.14) 65.54 (9.19) .11

The results indicate that there were no statistically significant
differences in gender and age distribution among the 2 or 4
groups (χ2 test for gender, Kruskal-Wallis test for age).

Statistical Analysis of Facial Spectral
Data
The results (Multimedia Appendix 1) showed statistically
significant differences in spectral reflectance at specific
wavelength ranges between the 2 groups (P<.05), including
the forehead (400‐600 nm), glabellum (400‐700 nm), nose
(400‐700 nm), jaw (400‐610 nm), right zygomatic (400‐700
nm), left zygomatic (400‐470 nm and 500‐610 nm), and
right cheek (400‐700 nm). Additionally, significant differ-
ences were noted at the forehead (400‐420 nm, 520‐590
nm, 690‐700 nm), glabellum (400‐700 nm), nose (400‐700
nm), jaw (470‐500 nm), right zygomatic (400‐700 nm), left

zygomatic (440‐700 nm), right cheek (400‐700 nm), and
left cheek (400‐600 nm, 650‐700 nm) between the 4 groups
(P<.05).

To directly observe and understand the differences in
facial spectral images between the anemia group and the
healthy group, we plotted the average spectra at 8 locations
for both the anemic and healthy groups, as depicted in Figure
2. The red line represents the average spectral reflectance
of the anemic group, while the green line represents that of
the healthy control group. It is evident that at the glabellum,
nose, right zygomatic, and right cheek locations, the spectral
reflectance of the anemic group is significantly higher than
that of the healthy control group. Similarly, at the forehead,
jaw, left zygomatic, and left cheek locations, the spectral
reflectance of the anemic group remained significantly higher,
particularly in the 480‐630 nm range.
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Figure 2. Comparison between 2 groups of spectral lines for 8 positions: (A) the spectral reflectance of the forehead, (B) the spectral reflectance of
the glabellum, (C) the spectral reflectance of the nose, (D) the spectral reflectance of the jaw, (E) the spectral reflectance of the right zygomatic, (F)
the spectral reflectance of the left zygomatic, (G) the spectral reflectance of the right cheek, and (H) the spectral reflectance of the left cheek.
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Furthermore, to directly observe and understand the differen-
ces in facial spectral images between the anemia group and
the healthy control group, we plotted the average spectra
of the healthy control group and the mild, moderate, and
severe anemia groups across a total of 4 groups at 8 positions,
as shown in Figure 3. The red line represents the average
spectral reflectance of the moderate anemia group, the yellow
line represents that of the severe anemia group, the blue line
represents the spectral reflectance of the mild anemia group,
and the green line represents the average spectral reflectance
of the healthy control group.

We observed that the spectral reflectance of both the
healthy control group and the severe anemia group is
significantly different from that of the other groups at
all 8 positions. Moreover, a gradual decrease in spectral
reflectance is noted from the severe anemia group to the
moderate anemia group, then to the mild anemia group,
and finally to healthy individuals across the 400‐630 nm
wavelength interval. This gradient of decrease was particu-
larly pronounced at the nose.
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Figure 3. Comparison between 4 groups of spectral lines for 8 positions: (A) the spectral reflectance of the forehead, (B) the spectral reflectance
of the glabellum, (C) the spectral reflectance of the nose, (D) the spectral reflectance of the jaw, (E) the spectral reflectance of the right zygomatic,
(F) the spectral reflectance of the left zygomatic, (G) the spectral reflectance of the right cheek, and (H) the spectral reflectance of the left cheek.
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Screening of Characteristic Factors for
Risk of Patients With Anemia
Using the presence or absence of anemia as the depend-
ent variable, we performed LASSO regression analysis on
217 independent variables exhibiting statistical differences
(Figure 4). LASSO can compress variable coefficients to
prevent overfitting and address severe collinearity issues [48].
The results showed that (lambda with minimum mean square

error=0.009) 217 independent variables were reduced to 20
(20/217, 9%). The selected variables included glabellum-570
nm, right cheek-520 nm, right zygomatic-570 nm, jaw-570
nm, left cheek-610 nm, left cheek-700 nm, nose-700 nm,
jaw-490 nm, nose-490 nm, left zygomatic-500 nm, jaw-610
nm, left cheek-420 nm, forehead-420 nm, nose-400 nm, right
cheek-640 nm, right zygomatic-670 nm, glabellum-660 nm,
glabellum-670 nm, jaw-420 nm, and glabellum-420 nm.

Figure 4. LASSO regression analysis was used to select characteristic factors. (A) The use of 10-fold cross-validation to draw vertical lines at
selected values, where the optimal lambda produces 20 nonzero coefficients. (B) In the LASSO model, the coefficient profiles of 217 features were
drawn from the log (λ) sequence. Vertical dotted lines are drawn at the minimum mean square error (λ=0.009) and the standard error of the minimum
distance (λ=0.020). LASSO: least absolute shrinkage and selection operator.
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Comprehensive Analysis of Classified
Multimodel
We included locations and bands that exhibited statistically
significant differences as identified in our statistical analyses
and used these to construct various models. Specifically, we
used logistic regression, decision tree, SVM, random forest,
KNN, ANN, Bayesian classifier, XGBoost, AdaBoost, and
LightGBM algorithms.

By using both the anemia group and the healthy control
group as evaluation test sets, we evaluated the performance of
the 10 ML methods, with the results summarized in Table 3.

To ensure that we considered both the precision and clinical
applicability of our predictive models, we plotted the receiver
operating characteristic (ROC) curve (Figure 5A and B), the
PR curve (Figure 5C and D), and the DCA curve (Figure
5E). A comprehensive comparison indicated that the SVM
prediction model demonstrated superior performance, with
an accuracy of 0.875 (95% CI 0.825-0.925), an AUC of
0.974 (95% CI 0.925-1.000), and an AP of 0.964 (95% CI
0.916-1.000).
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Figure 5. Comprehensive analysis of 10 machine learning models. (A) Training set ROC curve and (AUC), (B) test set ROC and AUC, (C) training
set PR curves and AP, (D) test set PR curves and AP. The y-axis is the precision axis and the x-axis is the recall axis. If the PR curve of one model
is completely covered by the PR curve of another model, the latter can be considered superior to the former; the higher the AP value, the better the
model performance. (E) Test set DCA, where the black dashed line represents the hypothesis that all subjects are anemic, and the red dashed and
thin black lines represent the hypothesis that all subjects are healthy. The remaining solid lines represent different models. The different colors in the
pictures represent the corresponding models and the values are expressed as mean and 95% CI. AP: average precision; AUC: area under the curve;
DCA: decision curve analysis; PR: precision-recall; ROC: receiver operating characteristic.
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The SHAP to the Test Model
Interpretation
Since the SVM classification produced the best results, to
intuitively interpret the selected variables, we used SHAP to
illustrate how these variables contribute to the diagnosis of
anemia within the SVM algorithm [49]. Figure 6A displays
the 20 features extracted by LASSO regression. The vertical
axis orders the features according to the sum of SHAP
values for all samples, and the horizontal axis represents the
SHAP values (the distribution of the feature’s impact on the
model’s output); each point represents a sample, with the
sample size stacked vertically. In each feature importance
line, the corresponding results for all subjects are plotted with

points of different colors, where red points denote high-risk
values and blue points denote low-risk values. The results
indicate that glabellum-570 nm, right cheek-520 nm, right
zygomatic-570 nm, jaw-570 nm, left cheek-700 nm, nose-490
nm, nose-400 nm, glabellum-670 nm, and glabellum-420
nm positively impacted the diagnosis of anemia, while left
cheek-610 nm, nose-700 nm, jaw-490 nm, left zygomatic-500
nm, jaw-610 nm, left cheek-420 nm, forehead-420 nm,
right zygomatic-670 nm, right cheek-640 nm, glabellum-660
nm, and jaw-420 nm negatively impacted the diagnosis of
anemia. Figure 6B shows the ranking of the 20 risk factors
assessed by the average absolute SHAP values, with the
x-axis representing SHAP values that indicate the importance
of the predictive model.

Figure 6. SHAP interprets the model. (A) Attributes of characteristics in SHAP. Each line represents a feature, and the abscissa is the SHAP value.
Red dots represent higher eigenvalues and blue dots represent lower eigenvalues. (B) Feature importance ranking as indicated by SHAP. The matrix
diagram describes the importance of each covariate in the development of the final prediction model. SHAP: Shapley additive explanations.

Discussion
Principal Results
The findings of this study revealed that the spectral reflec-
tance at most characteristic facial sites and bands was
significantly higher in the anemia group than in the healthy
control group, with particularly notable increases at some
specific sites and bands. Incorporating facial spectral data into
the modeling dataset facilitates the creation of an improved
classification model, building upon previous studies.

As depicted in Figure 2, reflectance at forehead 410‐600
nm is higher in patients with anemia than in healthy controls.
For the glabellum, nose, right zygomatic, right cheek, and
left cheek, the spectral reflectance of patients with anemia

from 400‐700 nm is higher than that of healthy controls.
Reflectance at jaw 430‐610 nm, left zygomatic 400‐540 nm,
and 510‐600 nm are higher than that of healthy controls.
This study reveals a statistically significant increase in facial
spectral reflectance among individuals with anemia compared
to healthy controls. Several physiological mechanisms may
contribute to the observed increase in reflectance.

First, changes in Hb concentration are a critical factor [50].
Hemoglobin, a light-absorbing component of blood, has a
decrease in concentration with anemia, potentially enhanc-
ing light reflectance through tissues at specific wavelengths.
This is particularly noticeable in the nose region. Second,
alterations in blood oxygen saturation could play a role [51].
Reduced oxygen binding to Hb in anemic conditions could
diminish the light absorption capacity, thereby increasing
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reflectance at certain wavelengths. It is feasible to use
spectroscopy to detect skin oxygen saturation [52]. Addition-
ally, anemia may induce changes in tissue moisture content,
which in turn can modulate the optical behavior of tissues
and influence light reflectance. The intensity of the absorption
spectrum is proportional to the moisture content of the skin
[53].

We used LASSO regression analysis to identify the 217
independent variables that showed statistically significant
differences. This approach allowed us to compress varia-
ble coefficients and address collinearity issues, ultimately
reducing the number of independent variables to 20. The
selected variables, such as glabellum-570 nm, right cheek-520
nm, and left cheek-700 nm, highlight specific facial regions
and wavelength bands that are associated with anemia risk.
These findings suggest that certain spectral characteristics of
the face may serve as indicators of anemia, warranting further
investigation into the underlying physiological mechanisms.

To comprehensively analyze the classifiers in a multi-
model comparison, we used 10 different ML algorithms,
including logistic regression, decision tree, SVM, random
forest, KNN, ANN, Bayesian classifier, XGBoost, adaptive
boosting, and LightGBM. The performance of these models
was evaluated using 2 distinct test sets, and the results
indicated that the SVM prediction model demonstrated the
best overall performance.

Within the SVM algorithm, we used the SHAP method to
further explain the selected variables and their contribution to
the diagnosis of anemia. The SHAP values provided intuitive
insights into the impact of each feature on the model’s
output. For instance, glabellum-420 nm, 570 nm, and 670 nm;
nose-400 nm and 490 nm; jaw-570 nm; right cheek-520 nm;
right zygomatic-570 nm; and left cheek-700 nm positively
impacted the diagnosis of anemia, while glabellum-660nm;
forehead-420nm; jaw-420, 490, and 610 nm; nose-700
nm; right zygomatic-670 nm; left zygomatic-500nm; right
cheek-640 nm; and left cheek-420 and 610 nm negatively
impacted the diagnosis. These findings suggested that specific
spectral characteristics may play a crucial role in distinguish-
ing between anemic and healthy individuals.

Application and Advantages of
Noninvasive Spectral Techniques in
Anemia Diagnosis
According to the final model of this study, anemia was found
to be strongly correlated with facial spectral reflectance at
specific locations and bands. Therefore, incorporating facial
spectral information into the modeling dataset can create a
better classification model based on previous studies.

A plethora of studies have integrated advanced ML
algorithms with spectral data, resulting in the development
of predictive models that not only diagnose anemia but
also predict the risk of disease onset in vulnerable popula-
tions. Noninvasive Hb measurement techniques have been
developed to assess various sites on the human body,
including fingers, palpebral conjunctiva, nail beds, bulbar
conjunctiva, and other localized skin [32]. The ability to

monitor Hb levels without the need for invasive procedures
or complex equipment is expected to greatly enhance health
care delivery in various settings, thereby contributing to the
global effort to reduce the burden of anemia.

The face is not only the most exposed and conveniently
assessable part of the human body but also holds significant
importance in TCM diagnostics, where facial diagnosis plays
a crucial role.

This study has unique advantages when targeting specific
populations and environments. For particular groups, such as
patients with anemia with low Hb levels, frequent invasive
testing methods can lead to additional blood loss, therefore,
using noninvasive spectroscopic detection technology can
reduce the risk of blood loss. In specific environmental
conditions, such as health check-ups for older individuals
in the community, noninvasive spectral detection methods
demonstrate their convenience and speed, with lower skill
requirements for operators. Furthermore, in environments
with a high incidence of infectious diseases, the implementa-
tion of noninvasive testing methods can significantly reduce
the risk of group infections compared to traditional invasive
testing techniques.

Based on the model of this study, strong correlations exist
for facial spectral reflectance at specific locations and bands.
Consequently, incorporating facial spectral information into
the modeling dataset, building upon previous research, allows
for the creation of an improved classification model. Given
that pallor is often a common symptom of anemia [29,54-56],
and the face is the most directly exposed part of the body,
it serves as an important diagnostic tool. It is an important
and intuitive diagnostic method. Therefore, it is necessary
to establish a predictive model for anemia risk based on
facial visible light reflection spectra. Future research will
explore transitioning from contact spectroscopy to noncontact
hyperspectral devices.
Limitations
This study possesses several limitations. First, the sample size
is small, necessitating future studies to use larger, multicenter
cohorts. Second, the study’s focus on the middle-aged and
older adult population suggests a need for future research
to broaden the age range to enhance generalizability. Last,
while facial coloration is influenced by various factors, this
study controlled for common medical research variables.
For the anemia group, additional physiological and biochem-
ical markers that could affect facial coloration have not
been considered. Future studies should aim to exclude the
influence of such markers, including bilirubin, to provide a
more comprehensive understanding of anemia-related facial
spectral reflectance.
Conclusion
Facial spectral data of patients with anemia showed dis-
tinctive features and correlations. These indicators were of
greater significance for the differential diagnosis of anemia,
including specific bands such as the glabellum at 570 nm,
the nose at 400 nm, the right zygomatic at 400 nm, the right
cheek at 530 nm, the left zygomatic at 400 nm, and the left
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cheek at 700 nm. They emphasized the subtle differences
in light absorption and reflection associated with different
degrees of anemia. In conclusion, this study constructed a
predictive model based on the ML model, and the SVM
model demonstrated superior performance in this study. In
addition, we provided a personalized risk assessment for the

development of patients with anemia explained by SHAP.
This effective computer-aided approach can help first-line
clinicians and patients identify and intervene early in the
case of anemia. It holds promise for future applications in
noninvasive diagnosis and population screening for anemia-
related conditions.
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