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Abstract

Background: Congestive heart failure (CHF) is a common cause of hospital admissions. Medical records contain valuable
information about CHF, but manual chart review is time-consuming. Claims databases (using International Classification of
Diseases [ICD] codes) provide a scalable alternative but are less accurate. Automated analysis of medical records through natural
language processing (NLP) enables more efficient adjudication but has not yet been validated across multiple sites.

Objective: We seek to accurately classify the diagnosis of CHF based on structured and unstructured data from each patient,
including medications, ICD codes, and information extracted through NLP of notes left by providers, by comparing the effectiveness
of several machine learning models.

Methods: We developed an NLP model to identify CHF from medical records using electronic health records (EHRs) from
two hospitals (Mass General Hospital and Beth Israel Deaconess Medical Center; from 2010 to 2023), with 2800 clinical visit
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notes from 1821 patients. We trained and compared the performance of logistic regression, random forests, and RoBERTa models.
We measured model performance using area under the receiver operating characteristic curve (AUROC) and area under the
precision-recall curve (AUPRC). These models were also externally validated by training the data on one hospital sample and
testing on the other, and an overall estimated error was calculated using a completely random sample from both hospitals.

Results: The average age of the patients was 66.7 (SD 17.2) years; 978 (54.3%) out of 1821 patients were female. The logistic
regression model achieved the best performance using a combination of ICD codes, medications, and notes, with an AUROC of
0.968 (95% CI 0.940-0.982) and an AUPRC of 0.921 (95% CI 0.835-0.969). The models that only used ICD codes or medications
had lower performance. The estimated overall error rate in a random EHR sample was 1.6%. The model also showed high external
validity from training on Mass General Hospital data and testing on Beth Israel Deaconess Medical Center data (AUROC 0.927,
95% CI 0.908-0.944) and vice versa (AUROC 0.968, 95% CI 0.957-0.976).

Conclusions: The proposed EHR-based phenotyping model for CHF achieved excellent performance, external validity, and
generalization across two institutions. The model enables multiple downstream uses, paving the way for large-scale studies of
CHF treatment effectiveness, comorbidities, outcomes, and mechanisms.

(JMIR Med Inform 2025;13:e64113) doi: 10.2196/64113
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Introduction

Congestive heart failure (CHF) and all types of heart disease
are the primary causes of hospital admissions and the leading
cause of death in the United States [1-3]. The prevalence of
CHF in the United States is estimated to be 7% for men and
4.2% for women [4]. As a result, it is important to diagnose
CHF early and accurately, which is difficult given the diversity
of CHF and the lack of definitive, universally applicable
diagnostic tests [5]. This underscores the need for research on
improving diagnosis and predicting patient outcomes. The
heterogeneity of CHF makes it hard to design clinical trials that
can accurately and uniformly diagnose CHF [6]. In this context,
accurate classification is crucial for the reliability of
epidemiological and outcomes research. Traditionally, the
identification of CHF is a labor-intensive process. Local sites
identify potential cases and forward medical records to a Central
Clinical Events Committee, comprised of physician experts,
who manually review each case against established standards
[7-9]. While this method is considered the gold standard, it is
impractical for large observational studies, where International
Classification of Diseases (ICD) codes are typically used.
However, sole reliance on ICD codes is problematic due to their
imprecision; it is estimated that approximately 40% of
hospitalizations labeled with primary ICD codes for CHF do
not hold up upon detailed medical record review [9].
Consequently, there is a growing interest in automated methods
for adjudicating CHF hospitalizations from medical records that
could streamline the process; reduce reliance on physician-based
Central Clinical Events Committee reviews; foster the
development of large, cost-effective clinical trials; and help
gather more accurate data for research [9].

In this context, electronic health records (EHRs) have become
invaluable. Encompassing millions of patient profiles, these
records are stored across various hospitals and institutions as
structured and unstructured data. Much of the data exists as
unstructured natural language in physicians’notes, documenting

symptoms, conditions, and diagnoses. Natural language
processing (NLP) approaches present an opportunity to harness
this rich source of data, enabling high-throughput identification
and phenotyping of patients directly from hospital databases
[10-13]. Some applications of these models in inpatient fall
detection [14], emergency triage notes [15], and inpatient fall
risk assessment [16] have already achieved a high level of
effectiveness using a variety of modeling methods, including
large language models such as Bidirectional Encoder
Representations from Transformers, showing the need for further
development in other medical applications.

Here, we address these gaps by introducing a comprehensive
approach to EHR-based phenotyping of CHF within a large
multihospital cohort, based on clinical notes, ICD codes, and
medications, contributing to the growing body of knowledge
in automated medical record review and phenotyping of patients
with CHF, as well as ensuring reproducible and reliable clinical
use [17,18].

Methods

Cohort
We retrospectively obtained EHR data from two sites: Beth
Israel Deaconess Medical Center (BIDMC) and Massachusetts
General Hospital (MGH), from 2010 to 2023. The EHR data
contain clinical notes written by the clinician, ICD diagnosis
codes (ICD-9 and ICD-10) assigned during encounters, and
prescribed medications. To enable initial cohort selection and
maximize the chance of including patients with CHF from this
large pool of inpatient and outpatient encounters, we divided
patients into groups based on the presence of prespecified ICD
codes (“ICD+” or “ICD–”) related to CHF and prespecified
medications (“MED+” or “MED–”), creating four groups:
“ICD+/MED+,” “ICD–/MED+,” “ICD+/MED–,” and
“ICD–/MED–.” We then randomly sampled a total of 1400
notes with keywords (such as heart, CHF, etc) from the four
groups at each site to undergo manual annotation (described
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below) to provide labels for model training. This sample size
was selected to enable appropriate training and to not overwhelm
the available computing power.

Ethical Considerations
The retrospective data were obtained under Beth Israel
Deaconess Medical Center's institutional review board that
waived the need for informed consent (BIDMC IRB#
2022P000481).

CHF-Related Keywords, ICD Codes, and Medications
for Initial Cohort Selection
ICD codes and medications related to CHF were specified as a
part of the model input. ICD codes included 428 (ICD-9) for
“Congestive Heart Failure, unspecified” and I50 (ICD-10) for
“Heart Failure.” The medications are shown in Table 1. We also
specified CHF-related keywords to be highlighted during manual
note review, to facilitate the annotation of ground-truth CHF
status and to include them as classifying features (see below).

The keywords were determined using two approaches. The first
was the knowledge-driven approach: we obtained as many
keywords as possible from medical doctors and by manually
reviewing published papers. This was done by simply reading
papers and selecting words that appeared frequently and were
related to CHF and then presenting them to physicians to check
for accuracy (see references for links to papers). The second
was the data-driven approach: we listed all unique words
(1-gram), consecutive two-word sequences (2-gram), and
consecutive three-word sequences (3-gram) in all notes. Then,
using the associated, CHF-related ICD codes as a rough
approximation of ground-truth CHF status, for each n-gram,
we conducted a Mann-Whitney U test to compare the median
number of occurrences in the groups with and without CHF.
Words that occurred with significantly different frequencies
between groups were included in the keyword list. We further
expanded the set of potentially classifying features by
augmenting keywords and phrases with their negations.

Table 1. Medications related to congestive heart failure.

Medication descriptionMedication generic name

Angiotensin-converting enzyme inhibitorLisinopril

DiureticFurosemide

DiureticBumetanide

Beta-blockerPropranolol

Calcium channel blockerAmlodipine

DiureticHydrochlorothiazide

Proton pump inhibitorOmeprazole

VasodilatorIsosorbide mononitrate

Angiotensin-converting enzyme inhibitorEnalapril

Annotation of the Ground-Truth CHF Status
Ground-truth CHF status was based on having human annotators
read through clinical notes and make a yes-or-no decision for
each note as to whether the note author affirmed a diagnosis of
CHF in the note. To ease annotation, we displayed each clinical
note with keywords highlighted so that the annotator could more
quickly determine CHF status by reading the note. Notes were
randomly assigned to 5 independent annotators. We followed
a standard operating procedure to ensure consistency between
raters. Notes were randomly split between 5 annotators without
overlap. Patients who were said to have CHF or a “history of
CHF” were labeled as “positive” cases. All others were labeled
as “negative” cases. This included patients noted as being
“unlikely [to have] CHF,” patients with a family history but no
personal diagnosis of CHF, and patients with no indication of
CHF given in the note.

Feature Matrix Construction
Features constructed to train the NLP model included three
subsets: features based on keywords and/or phrases in the notes;
features based on ICD codes; and features based on medications.
To construct features based on notes, we applied stemming and
lemmatization. The number of occurrences for each keyword

or phrase in the note was then defined as the feature value.
Features based on ICD codes and medications were identified
as the number of occurrences in the medical record dated within
18 months before or after the note’s date.

Model Development: Logistic Regression, Random
Forests, and RoBERTa
We developed models based on different subsets of information
and with different model architectures. The first model was a
logistic regression model. The training was done using nested,
5-fold cross-validation with an elastic-net penalty, using
Bayesian optimization to fine-tune the hyperparameters (penalty
strength and L1 ratio) to achieve the maximum average area
under the receiver operating characteristic curve (AUROC)
across all inner validation sets. For each outer fold, a model
was fitted with the best hyperparameters, and a receiver
operating characteristic curve was obtained using the outer
testing set. Using the Youden index, we determined a probability
cutoff value for binary classification in each outer fold. The
final performance metric was calculated as the average of the
5 AUROCs from the outer folds. We also trained a random
forests classifier using the same approach with nested, 5-fold
cross-validation, using Bayesian optimization to fine-tune the
hyperparameters (minimum leaves per sample, number of
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estimators, maximum depth, and cost-complexity pruning
coefficient) to incorporate ensemble methods because of their
robustness to reduce bias [19]. We finally trained a deep learning
model based on RoBERTa followed by logistic regression. We
used the embeddings from RoBERTa as our feature matrix with
no additional pretraining, as previous studies have shown that
RoBERTa has already been optimized [20]. We did this in three
different ways. First, we split the note into sections of up to 512
tokens with each section having a one-sentence overlap. We
then took the vector representations of these segments and took
the elementwise average to get a feature matrix. Second, we
took 250 tokens forward and backward from the keywords
“CHF” or “congestive heart failure” and found the embeddings
from these sections. Third, if multiple keywords were found,
then the elementwise average was taken. If no keywords were
found, then all columns were set to zero.

For model type, we tested logistic regression, random forests,
and RoBERTa, spanning linear and nonlinear models, as well

as simple statistical and deep learning models. While large
language models are powerful tools, they are not always
necessary, nor are they always the best approach. Simpler
approaches often demonstrate that excellent results can be
achieved without the additional complexity.

Feature Importance
All models used to derive feature importance were trained using
median hyperparameters across the 5 outer cross-validation
folds and trained on the entire dataset. For logistic regression,
feature importance was given by model coefficients. For random
forests, feature importance was measured by the total reduction
of the Gini impurity associated with that feature, normalized to
sum up to 1 across all features. We did not investigate feature
importance from RoBERTa since it did not achieve better
performance than logistic regression or random forests (see the
Results section). Figure 1 summaries the methods into a visual
aid.

Figure 1. Flowchart demonstrating the data collection, methods of feature matrix construction, and model usage. AUROC: area under the receiver
operating characteristic curve; BIDMC: Beth Israel Deaconess Medical Center; ICD: International Classification of Diseases; MED: medications; MGH:
Mass General Hospital.
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Statistical Analysis
Statistical significance was set at P<.05. Further, 95% CIs were
determined using 10,000 rounds of bootstrapping. All analyses
were performed using Python (version 3.10.13; Python Software
Foundation).

Results

Cohort Characteristics
The final cohort included 1821 patients with 2800 notes (Table
2). The average age was 66.7 (SD 17.2) years; 978 (54.3%) out

of 1821 patients were female. The racial and ethnic composition
of the sample was 3.8% (69/1821) Black or African American,
6.3% (115/1821) Hispanic, 1.9% (35/1821) Asian, and 80.7%
(1471/1821) White. The three most common medications used
were omeprazole, furosemide, and lisinopril. The most common
ICD code stem was I50. In terms of institutions, of the 2800
notes, 1440 (50%) came from BIDMC and 1400 (50%) came
from MGH. CHF prevalence in our cohort was 425 (15.9%)
out of 1400 notes in the BIDMC dataset and 445 (15.2%) out
of 1400 notes in the MGH dataset. Note length varied from
1907 to 60,870 characters.

Table 2. Cohort characteristics.

Site and group classificationCharacteristics

Beth Israel Deaconess Medical CenterMass General Hospital

TotalICD+
/MED–

ICD+
/MED+

ICD+
/MED–

ICD+
/MED+

TotalICD–
/MED–

ICD–
/MED+

ICD+
/MED–

ICDa+

/MEDb+

4281672200411398350348348347Patients, n

1400350700—c3501400350350350350Notes, n

—118
(33.7)

192
(27.4)

—135 (38.6)—46 (13.1)44 (12.6)184 (52.6)151 (43.1)Positive cases based
on manual annotation,

n (%)d

65.0
(13.8)

65.0
(14.1)

63.8
(13.1)

—71.2 (11.9)67.7 (18.0)57.3 (23.4)65.4 (15.2)74.5 (13.1)73.8 (12.3)Age (years), mean
(SD)

Sex, n (%)e

215
(50.2)

85 (50.9)110 (50)—20 (48.8)763 (54.8)214 (61.1)196 (56.3)178 (51.1)175 (50.4)Female

213
(49.8)

82 (49.1)110 (50)—21 (51.2)630 (45.2)136 (38.9)152 (43.7)170 (48.9)172 (49.6)Male

Race and ethnicity, n (%)d

0 (0)0 (0)0 (0)—0 (0)69 (4.9)15 (4.3)17 (4.9)15 (4.3)22 (6.3)Black or African
American

35 (8.2)13 (7.8)20 (9.1)—2 (4.9)80 (5.7)19 (5.4)25 (7.2)22 (6.3)14 (4.0)Hispanic

13 (3)5 (3)8 (3.6)—0 (0)22 (1.6)7 (2)4 (1.1)4 (1.1)7 (2)Asian

286
(66.8)

116
(69.5)

141
(64.1)

—29 (70.7)1185 (85.1)296 (84.6)289 (83)305 (87.6)295 (85)White

aICD: International Classification of Diseases.
bMED: medications.
cNot applicable.
dPercentages are based on the number of notes as the denominators.
ePercentages are based on the number of patients as the denominators.

Model Performance
Table 3 shows performances from all three models and four
input modalities (9 models in total). Models that used ICD
codes, medications, and notes from both hospitals combined
performed the best, followed by models that used notes only.

Models that used ICD codes or medications only performed
substantially worse. Meanwhile, logistic regression models
performed the best, followed by random forests models, and
then RoBERTa models. The receiver operating characteristic
and precision-recall curves for the best-performing model and
input modalities are shown in Figure 2.
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Table 3. AUROCa and AUPRCb on the combined MGHc and BIDMCd test data for the logistic regression, random forests, and RoBERTa embeddings

models, using different types of model input (ICDe codes, medications, and notes). The best performances are italicized.

RoBERTaRandom forestsLogistic regressionInput

AUPRC (95% CI)AUROC (95% CI)AUPRC (95% CI)AUROC (95% CI)AUPRC (95% CI)AUROC (95% CI)

0.766 (0.632-
0.853)

0.866 (0.821-
0.904)

0.894 (0.720-
0.985)

0.962 (0.719-
0.991)

0.921 (0.835-
0.969)

0.968 (0.940-
0.982)

ICD codes, medica-
tions, and notes

——f0.899 (0.659-
0.968)

0.963 (0.916-
0.976)

0.901 (0.805-
0.956)

0.964 (0.942-
0.975)

Notes only

——0.557 (0.492-
0.720)

0.646 (0.595-
0.835)

0.557 (0.486-
0.716)

0.646 (0.580-
0.826)

ICD codes only

——0.459 (0.320-
0.779)

0.644 (0.326-
0.936)

0.428 (0.235-
0.651)

0.639 (0.338-
0.875)

Medications only

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cMGH: Mass General Hospital.
dBIDMC: Beth Israel Deaconess Medical Center.
eICD: International Classification of Diseases.
fNot applicable.

Figure 2. Model performance using the combined MGH and BIDMC test data. (A) Receiver operating characteristic (ROC) curve using logistic
regression with notes, ICD codes, and medications as input. The area under the ROC curve (AUROC) was 0.968 (95% CI 0.940-0.982). The optimal
cutoff (according to the Youden index) achieved a false positive rate of 11.9% (230/1903; ie, specificity at 88.1%) and a true positive rate of 97.7%
(852/870; ie, sensitivity at 97.7%). (B) Precision-recall (PR) curve using logistic regression with notes, ICD codes, and medications as input. The area
under the PR curve (AUPRC) was 0.921 (95% CI 0.835-0.969). The optimal cutoff achieved a recall of 96.78% (842/870; ie, sensitivity at 96.78%)
and a precision of 80.88% (842/1081). BIDMC: Beth Israel Deaconess Medical Center; ICD: International Classification of Diseases; MGH: Mass
General Hospital.

External Validity
To investigate how the model generalizes, we also obtained the
performance when training on data from one site and testing on
data from the other site (Figure 3 and Table 4). Training on
BIDMC data and testing on MGH data showed significantly
higher performance than training on MGH data and testing on

BIDMC data. The performance of training on BIDMC data and
testing on MGH data was similar to the cross-validated
performance shown in Figure 2.

The results in Figure 3 show high external validity of the model
due to its ability to perform well with training on one hospital
dataset and subsequent testing on the other hospital dataset.
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Figure 3. Model performance of training exclusively on one hospital’s data and testing on the other’s data. (A) and (B) Performance of training on
MGH data and testing on BIDMC data. (C) and (D) Performance of training on BIDMC data and testing on MGH data. AUPRC: area under the
precision-recall curve; AUROC: area under the receiver operating characteristic curve; BIDMC: Beth Israel Deaconess Medical Center; MGH: Mass
General Hospital; PR: precision-recall; ROC: receiver operating characteristic.
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Table 4. Logistic regression coefficients from using the model trained with notes, ICDa codes, and medications. Unexpected results are discussed in
the Error Analysis section. Small coefficients for some input variables were expected and removed at the time of model deployment.

Logistic regression coefficientsFeatures

2.39CHFb

1.89Congestive heart failure

1.34With CHF

–1.15CHF father

0.94Histori congestive heart failure

–0.80CHF mother

–0.72No CHF

0.68I50

0.64Dxc CHF

0.61Exacerb CHF

–0.60With congestive heart failure

–0.54[] CHF

0.54Ascites

0.52() Congestive heart failure

0.49Diagnosis congestive heart failure

aICD: International Classification of Diseases.
bCHF: congestive heart failure.
cDx: diagnosis.

Feature Importance
Feature importance for the best-performing model (logistic
regression) is shown in Table 4. The top-3 positive predictors
were the words and phrases “CHF,” “congestive heart failure,”
and “with CHF.” The top-3 negative predictors were “CHF
father,” “CHF mother,” and “no CHF.”

In Table 4, the negative weights of “CHF father” and “CHF
mother” came from clinicians’ discussion of family history in
the note. Brackets such as those in “[] CHF” or “() CHF” were
purposely left in each note as they were often part of a medical
questionnaire to obtain the medical history for new patients.
Coefficients of “with CHF” and “with congestive heart failure”
were given negative and positive weights, respectively, possibly
due to the high collinearity between them.

Error Analysis
We investigated reasons for misclassification in cases where
the model output disagreed with manual labels. For false
positives, reasons included patients with symptoms typical for
CHF who had not been given a formal diagnosis of CHF,
patients with a family medical history of CHF, cases where
negation was expressed unusually (eg, “I do not feel like this
is consistent with congestive heart failure”), and notes that had
templated preoperative instructions or medication descriptions
(eg, “tell your doctor if you have CHF”). For false negatives,
reasons included notes explaining a noncardiac medical visit

but mentioning a history of CHF, and patients with a diagnosis
of CHF no longer experiencing symptoms.

Performance in Unselected or Random EHR Samples
The sample used for training and testing was, by construction,
enriched for “positive” cases; that is, there were more
“ICD+/MED+,” “ICD–/MED+,” and “ICD+/MED–“ cases and
fewer “ICD–/MED–” cases than would be present in a random
sample. To estimate the expected performance in a general
hospital population, we randomly sampled an additional 500
patients from BIDMC and 500 patients from MGH. Using our
final fitted model from logistic regression methods (explained
in detail above), we classified these 1000 patients as per Table
5. Using the prevalence values (p+/+, p+/–, p–/+, and p–/–)
along with the corresponding overall model error rate (Pe+/+,
Pe+/–, Pe–/+, and Pe–/–), the estimated performance within the
overall hospital population was calculated as follows:

P(E) = (Pe+/+ × p+/+) + (Pe+/– × p+/–) + (Pe–/+ ×
p–/+) + (Pe–/– × p–/–)

= (0.074 × 0.1) + (0.074 × 0.098) + (0.079 × 0.0088)
+ (0.094 × 0.0021)

= 0.016

= 1.6%

Thus, the overall error rate in the general hospital population
was estimated to be 1.6%.
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Table 5. The statistics used to derive the overall error rate in the general hospital population, stratified by the four groups.

Group classificationStatistics

ICD–/MED–ICD–/MED+ICD+/MED–ICDa+/MEDb+

66/700 (9.4)83/1050 (7.9)26/350 (7.4)52/700 (7.4)Error rate in the original samples for model training and testing (Pe), n/N (%)

1/477 (0.21)3/342 (0.9)4/41 (9.8)14/140 (10)Prevalence in additional random samples (p), n/N (%)

aICD: International Classification of Diseases.
bMED: medications.

Discussion

Principal Findings
In this work, we present a highly accurate machine learning
model that uses NLP to identify patients diagnosed with CHF
in EHRs. The simple modeling technique demonstrated excellent
discrimination for the presence or absence of CHF. Testing
across two hospitals demonstrated the generalization of our
model. This model provides a strong foundation for automated,
scalable phenotyping of CHF at singular hospitals with big data
and enable large-scale, EHR-based, epidemiological outcomes
research. This work also provides the groundwork for future
clinical applications, with the potential for improving clinical
decision-making and patient outcomes by providing
classification for diseases overlooked by clinicians. Such models
could be incorporated into the current clinical workflow by
inputting structured and unstructured data from visit notes by
providers and comparing inconsistencies between providers’
interpretation of patients’problems and what the model predicts
could be an issue. This would ensure greater patient care and
better use of technological advancements. The best-performing
model was also simplistic, ensuring greater interpretability,
computational efficiency, scalability, and cost-effectiveness of
implementation of these methods.

In a previous study, EHR-based phenotyping of CHF was
performed by comparing a deep learning model’s predictions
against ICD code–based diagnoses using a large cohort from a
single hospital [10]. This work, however, did not address the
common issues of ICD codes being an inaccurate representation
of the true diagnosis and the generalizability of the model. Other
studies have used inductive logic programming to create helpful
rules for phenotyping patients with several diagnoses [8]. These
studies, however, did not address how such approaches can be
scaled to larger and noisier data as found in clinical databases.

Differences in generalizability between the two hospital cohorts
need future research. When comparing training on a single
hospital cohort and testing on the other, training on BIDMC
data and subsequent testing on MGH data had a slight
improvement compared to the reverse. This could be due to
different hospitals or clinicians classifying CHF in different
ways (such as heart failure with preserved ejection fraction,
heart failure with reduced ejection fraction, etc), as well as
inconsistencies of information provided in unstructured text
(history of present illness, family history, etc) between hospitals.

The performance of the notes-only models was not significantly
different from models using notes, ICD codes, and medications,
suggesting future avenues of research comparing the necessity
of obtaining such information for model improvement. Much
of the information presented by medication lists and ICD codes
is already found within clinical notes and could be redundant
information.

Our work has important limitations. First, data used for training
and testing were collected exclusively from two large hospitals
in Boston, Massachusetts. Generalizability to other hospital and
health care systems needs to be explored, understanding that
these results are biased toward the Massachusetts population
and use data from primarily top academic institutions. Second,
echocardiography reports were not used. Future models that
incorporate echocardiography records may have even better
performance for CHF [17]. Third, the lack of racial and ethnic
diversity in the saturated sample with CHF may inhibit
generalizability.

Conclusion
We developed and validated a highly accurate NLP model for
identifying patients with CHF from EHRs. This provides a
foundation for large-scale, automated phenotyping of patients
with CHF, enabling more efficient and scalable epidemiologic
and outcomes research compared to manual chart review.
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