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Abstract
Background: Clinical natural language processing (cNLP) techniques are commonly developed and used to extract informa-
tion from clinical notes to facilitate clinical decision-making and research. However, they are less established for rare diseases
such as lymphoid malignancies due to the lack of annotated data as well as the heterogeneity and complexity of how clinical
information is documented. In addition, there is increasing evidence that cNLP techniques may be prone to biases embedded
in clinical documentation or model development. These biases can result in disparities in performance when extracting clinical
information or predicting patient outcomes.
Objective: This study aims to report the development and validation of a cNLP pipeline that extracts clinical information
such as performance status, staging, and diagnosis, as well as less common information such as substance use and military
environmental exposures, from the clinical notes of veterans with lymphoid malignancies.
Methods: We developed a rule-based cNLP pipeline that integrates domain expertise. We tested and compared the perform-
ance of the cNLP pipeline on notes from 2 veteran patient cohorts: one from non-Hispanic White veterans and the other from
non-Hispanic Black veterans.
Results: Overall, our pipeline achieved promising performance on our study data, especially for extracting entities that have
standard clinical documentation, such as performance status. We also found that while the pipeline has robust performance
across the two patient groups, the false-positive and false-negative rates were significantly associated with race for detecting
the primary diagnosis (P=.001 for both); the false-negative rate was significantly associated with race for identifying substance
use (P=.02).
Conclusions: The system exhibits satisfying and comparable performance for most clinical entities of interest except for (1)
the primary diagnosis and (2) substance use. Future work will address the challenges encountered in developing and deploying
the cNLP pipeline on the Department of Veterans Affairs data for rare cancers and enhance the performance of cNLP systems
to avoid biases.
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Introduction
Clinical notes contain rich information about patients’
conditions and disease trajectories. As it is often tedious
and time-consuming for clinicians to perform a manual
chart review to retrieve such information, clinical natural
language processing (cNLP) has served as a crucial tool to
automate the process of extracting clinical elements from
unstructured notes [1]. While cNLP is an established field
with mature software such as the clinical Text Analysis
and Knowledge Extraction System and Clinical Language
Annotation, Modeling, and Processing, there is a lack of
cNLP resources for extracting information from clinical notes
of patients with rare cancers [2], which may be due to the
difficulty of obtaining high-quality annotation data from rare
disease experts.

Lymphoid malignancies (LMs) are rare cancers with only
around 145,000 patients diagnosed in the United States per
year [3-7]. Among US veterans who were deployed overseas,
exposure to environmental toxicants and chemical agents is a
risk factor associated with LMs [8]. There is a need to capture
past environmental exposures of veterans to better care for
them. For example, the Promise to Address Comprehensive
Toxics (PACT) Act, which passed in 2022, expands health
care benefits and assists clinical research for veterans who
have been exposed to environmental toxicants [9]. While the
need for identifying and caring for veterans with environmen-
tal exposures increases, such information is often not well
captured in structured electronic health records (EHRs). In
fact, most of the clinical information that is vital to clini-
cians’ decision-making is embedded in free-text, unstructured
clinical notes [10]. Therefore, there is a need to develop
cNLP tools that are specifically tailored to and validated on
clinical notes for rare cancers so that they can capture unique
clinical information. To the best of our knowledge, there is no
existing cNLP pipeline or model that has been developed for
and validated on clinical notes of LMs.

In this study, we developed and validated a rule-based
cNLP pipeline to extract diagnoses, staging, performance
status, substance use, and environmental exposures from
clinical notes of veterans with LMs. We further assessed
whether the cNLP pipeline may be prone to biases by
comparing its performance on non-Hispanic White and Black
patients. Finally, we discuss the opportunities and challenges
of developing cNLP pipelines for extracting information from
clinical notes of patients with LMs and implications for
clinical documentation.

Methods
Data Source and Creating the
Development Set
We extracted records of veterans diagnosed with LMs—as
defined by the International Classification of Diseases for
Oncology, Third Edition—from the Department of Veter-
ans Affairs (VA) Corporate Data Warehouse (CDW) [11]
(summarized in Multimedia Appendix 1). The VA CDW

includes patient records from 173 medical centers within the
VA system across the United States as well as clinics in
Puerto Rico, Guam, and the Philippines, capturing different
practice and documentation patterns [12]. In total, 80,245
patients were identified using the International Classification
of Diseases for Oncology, Third edition. The development
set included a random sample of 287 deidentified hematol-
ogy and oncology clinic notes from veterans with LMs in
the VA system after removing 13 duplicates from the initial
300 notes. The hematology and oncology notes contained
the most relevant clinical information and were intended to
reduce annotators’ burdens.
Clinical Entities of Interest
We annotated and extracted the following clinical entities that
were known to be prognostic in the care of patients with
LMs but were often inconsistently documented in a structured
format using a standardized dictionary:

1. Diagnosis: primary diagnosis related to LMs
2. Substance use: alcohol, drug, and tobacco use
3. Environmental exposure: Agent Orange, Vietnam,

shipyards, and Marine Corps Base Camp Lejeune
according to the PACT Act

4. Staging: stage, chronic lymphocytic leukemia Rai
staging and Binet staging, the multiple myeloma
International Staging System, and lymphoma Ann
Arbor staging

5. Performance status: performance status, Karnofsky
performance status (KPS), and Eastern Cooperative
Oncology Group (ECOG) performance status

Annotation and Scoring
Clinicians annotated according to an annotation guideline,
provided in Multimedia Appendix 2. The annotation guideline
was continuously improved during the annotation process
and aimed to capture common and recurring documenta-
tion patterns rather than a comprehensive list of documenta-
tion. Two independent medical experts annotated a random
sample of 100 notes from the development set to calibrate.
The interrater agreement ratio was calculated, and disagree-
ments were discussed and resolved to finalize the annotation
protocol. The annotation task was formulated as selecting
a text span that indicates a clinical entity of interest and
selecting the entity label (eg, stage and performance status).
Therefore, each annotated entity can be represented as having
the following: (1) a label L and (2) a text span with starting
and ending indices (i, j). Two annotated entities M and N are
considered a match if Label (M) = Label (N) ^ relaxed_match
(span (M), span (N)).

We calculated the span-based F1-score for measuring
the level of agreement between the two annotators, follow-
ing previous studies [13-15]. The span-based F1-score is
preferable in this case because it is not affected by the
number of true negatives, which are prevalent in span-based
annotations [16]. We calculated the metrics for span-relaxed
matches, where 2 text spans need to overlap for at least
two-thirds of the length of the shortest span. The microaver-
aged F1-score is 0.85; the detailed statistics across different
entity types are presented in Table 1.
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Table 1. Interrater agreement of 100 annotated notes in the development set.
Precision Recall F1-score

Primary diagnosis 0.89 0.79 0.84
Performance status 0.90 0.87 0.88
Staging 0.90 0.98 0.94
Substance use 0.66 0.90 0.76
Environmental exposure 0.64 0.70 0.67

The clinician annotators met regularly to discuss and resolve
disagreements and adjust the annotation guidelines accord-
ingly. After reaching consensus, they proceeded to annotate
the remainder of the development set, test set 1, and test
set 2. The annotation task was formulated as named entity
extraction, where annotators selected a text span and labeled
it with a clinical entity such as diagnosis. For each note, there
were multiple text spans with start and end indices and their
associated clinical entity labels.
Confirmatory Test Sets
To develop and test the cNLP pipeline, we randomly selected
1000 patients from the patient cohort.

We included all the hematology and oncology notes of
these patients, and these comprised notes from nurses, social
workers, and pharmacists who document a wide range of
information. This aimed to ensure that the cNLP pipeline we
developed would not be tuned to work only on specific note
types or from specific provider types. When constructing the
test sets, we used 2 steps to compile the notes. First, from
the patient cohort, we randomly selected 100 notes with at
least 300 characters to ensure that they are long enough to
contain useful information. After annotating a few notes, we

noticed that for some clinical entities, especially performance
status and environmental exposures, few notes mentioned
them. Therefore, besides the 100 randomly selected notes, we
also included notes that contained predefined keywords (eg,
“ECOG” and “Agent Orange”) so that medical experts did not
need to read notes without any clinical entities of interest. In
this process, the random selection of notes helped to ensure
the representativeness of the notes, and the use of keyword
filtering helped to increase the recall and lower the annotator
burden. This method of using keywords to prefilter notes had
been used in previous work to extract infrequently documen-
ted information, such as housing eviction status, from clinical
notes [17].

The first test set (test set 1) included 200 notes from all
races and ethnicities, resulting in a sample of 89 notes with
clinically relevant data from randomly selected non-Hispanic
White patients. Given potential differences in documentation,
we added a second group enriched for non-Hispanic Black
patients. The second test set (test set 2) included a sample
of 200 notes from randomly selected non-Hispanic Black
patients, resulting in 106 notes containing clinically relevant
data. The data selection and processing procedures are shown
in Figure 1.
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Figure 1. Procedure for constructing datasets for clinical natural language processing development and validation. ICD-O-3: International
Classification of Diseases for Oncology, Third Edition; VA: Veterans Affairs.
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Development of the cNLP Pipeline
The goal of the study was to develop a cNLP pipeline that
can accurately extract clinical entities of interest without
extensive annotations. Therefore, we did not perform a
comprehensive evaluation of pretrained language models, as
most were not developed on notes from patients with LMs
and fine-tuning them will require more annotated data.

We tested 2 zero-shot large language models (LLMs),
FLAN-T5 by Google and Llama2 by Meta, with carefully
curated prompts to extract the clinical entities of interest. We
did not test OpenAI’s GPT models due to the sensitive nature
of our data and the requirements of sending the input data
to the commercial servers of OpenAI. The zero-shot LLMs
also did not produce a satisfactory and consistent identifica-
tion for the named entity recognition task, which was also
observed in a recent evaluation conducted by Lu et al [18].
We found that Llama2 had difficulty following the instruc-
tions, and FLAN-T5 was only able to correctly identify 16
out of 137 incidences of performance status and 263 out of
1347 diagnosis mentions. We reviewed samples of errors and
found that FLAN-T5 tended to hallucinate and made up text
snippets that were not in the original clinical notes. This could
be because FLAN-T5 and similar general domain LLMs
were not pretrained on clinical notes or data that contain
language related to performance status or LMs. Fine-tuning
these LLMs will require larger datasets of clinical notes and
more extensive instruction tuning and supervised fine-tuning
and is beyond the scope of this study. Therefore, we decided
to develop rule-based modules based on expert input. Despite
the limitations of rule-based methods, they are still widely
used and implemented on tasks such as identifying cognitive
assessment tests and biomarkers from notes of patients with
Alzheimer disease and Alzheimer disease–related dementias
[19] and extracting risk factors for pancreatic cancer [20].
Development of a Rule-Based cNLP
Pipeline
The cNLP pipeline was iteratively developed by examining
annotated texts in the development set as well as consult-
ing the clinical experts on the study team. For example,
“ECOG,” “KPS,” and “Performance Status” were included
in the dictionary of the pipeline to capture potential men-
tions of performance status. Similarly, “Stage,” “Stg,” and
“Rai” were included to identify mentions of staging infor-
mation. “Tobacco,” “smoke,” “alcohol,” “drug,” “etoh,”
and other commonly used terms were included to extract
substance use mentions. For environmental exposures, we
used both chemical agents, such as “Agent Orange,” and
locations that are known to have toxicants, such as “Viet-
nam” or “shipyard.” All clinical notes were preprocessed by
converting words to lowercase. Punctuation was preserved.
We accounted for misspellings or format issues (eg, extra
or missing spaces) by curating the regular expressions.
Examples of the final regular expressions are provided in
Multimedia Appendix 3.

We added special modules in the cNLP pipeline after
matching regular expressions to account for the errors we

observed in the training set. For the primary diagnosis and
performance status, we observed that most false positives
(FPs) were due to the prevalent use of templates (eg,
in disability benefit questionnaires). We excluded matched
diagnoses and performance status that were present in a
template format (“[ ] Multiple Myeloma”; “() ECOG 1 ()
ECOG 2”). Excluding matches from templates reduced the
number of FPs in our study sample. In addition, for the
primary diagnosis, as the diagnosis process for LMs is
commonly complex and often undergoes numerous laboratory
tests and positron emission tomography scans, we excluded
mentions of LMs that were documented as differentials
or assessment plans and needed further confirmation. This
step ensured that the final extracted primary diagnosis is
confirmed and can be directly used for secondary analysis.
For performance status, we required all possible matches
of performance status to be followed by numeric values so
that ambiguous expressions such as performance status for
postscripts are excluded. For ECOG performance status, the
numeric values must be between 0 (indicating fully active)
and 5 (indicating death), and for KPS, the numeric values
must be between 0 (indicating death) and 100 (indicating
normal). This ensures that only text chunks that indicate
performance status will be included so that FPs can be
reduced.

For staging, we observed that most FPs were due to
their irrelevance to our diagnosis of interests, and it was
common for stages of multiple comorbidities to be docu-
mented (eg, stage II for chronic kidney disease). Therefore,
we checked whether the staging information identified is
within the window of a surrounding primary diagnosis. We
experimented with multiple values of the size of the window
to look for the primary diagnosis. The performances for
extracting staging using different window sizes are provided
in Multimedia Appendix 3. Overall, we observed that as the
window size increased, both test sets had higher precision
but lower recall. We selected a window size of 30, as the
F1-scores for both test sets were optimized. The window
sizes also enable more flexible configuration of the pipeline,
depending on whether the priority is to extract all potentially
relevant staging information (a larger window size) or to only
extract highly relevant staging information (a smaller window
size).

For identifying environmental exposures, we used multiple
rules informed by the development data, as well as VA’s
official PACT Act recommendation [9] to capture potential
exposure, as exact documentation containing the names of
chemical toxicants, such as Agent Orange, is limited and
does not capture all potential exposures. We also included
services and deployments that are potentially associated with
exposures, including service in Vietnam or Camp Lejeune.
Finally, we included locations that may expose patients to
toxicants, including shipyards, infantry, and chemical plant
factories.
Performance Evaluation
The extracted tokens were evaluated based on the lenient
matching criteria used in previous work [21,22], that is,
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2 tokens were deemed as a match if they overlapped, to
account for potential annotation issues and format irregular-
ities. Precision was calculated as true positives/(true positives
+ FPs) and recall was calculated as true positives/(true
positives + false negatives [FNs]). F1-score is (2 × precision
× recall)/(precision + recall). Misclassified entities in the test
set were extracted and analyzed manually by the medical
experts to identify potential sources of errors to improve the
performance of the cNLP pipeline.

We further assessed whether the pipeline was prone to bias
on the test sets. In this study, we focused on racial bias, and in
particular, potential biases between non-Hispanic White and
Black patient populations. We conducted chi-square tests on
FPs and FNs using the cNLP pipeline. The null hypothesis
was that the cNLP performance, measured by FP and FN, was
independent of the patients’ race.
Ethical Considerations
This study was approved by the institutional review board
(VA IRB #1618998 and UCI IRB #1041) at both the
VA Long Beach Healthcare System and the University of

California, Irvine. Research was conducted in accordance
with the Declaration of Helsinki. Waivers of informed
consent and HIPAA (Health Insurance Portability and
Accountability Act) compliance were approved by the
institutional review board.

Results
NLP Performance on the Test Sets
For each clinical entity, the precision, recall, and F1-score
were calculated and presented in Table 2. For entities that
have clear standards for documentation such as perform-
ance status, the performance is higher (F1-score>0.90). For
entities that generally lack a documentation standard such as
substance use or environmental exposures, we observed lower
performance. In addition, the high precision and recall for
some entities were possibly due to overfits of the man-
ually tuned model, which is a common issue for rule-based
pipelines.

Table 2. Clinical natural language processing performance on test set 1 (89 notes) and test set 2 (106 notes).
Test set 1 Test set 2
Frequency Precision Recall F1-score Frequency Precision Recall F1-score

Performance status 54 0.96 0.96 0.96 73 0.85 0.96 0.90
Staging 71 0.94 0.69 0.80 116 0.85 0.60 0.71
Primary diagnosis 277 0.70 0.93 0.80 485 0.60 0.85 0.70
Substance use 104 0.65 0.61 0.63 148 0.66 0.76 0.70
Environmental exposures 29 0.72 0.62 0.67 5 0.5 0.6 0.54

Bias Assessment
The results from chi-square tests showed that the performance
of the cNLP pipeline was not statistically different across test
sets 1 and 2 for performance status and staging. However,
the cNLP pipeline’s FN rate for extracting substance use is
significantly associated with patients’ race (χ21=5.9; P=.02).
The pipeline’s FP rate for extracting the primary diagnosis
is significantly associated with race (χ21=10.2; P=.001), and

the FN rate is also associated with race (χ21=10.4; P=.001).
We were unable to run the test on environmental exposures
due to the small number of observations available (5/106,
4.7%). Detailed statistics and confusion matrices are provided
in Multimedia Appendix 2.
Error Analysis
Table 3 presents example snippets of FPs and FNs.

Table 3. Example snippets of false positive (FP) and false negative (FN)a.
FP example FN example

Performance status “ECOG 0‐1” “PS>2”
Staging “Chronic kidney disease stage 3 Multiple myeloma” “At least Stage IIIA”
Primary diagnosis “likely prostate cancer and CLL” “with kappa light chain MM”
Substance use “8. Tobacco/Marijuana Use–smoking cigarettes again” “crack use”
Environmental exposures “combat exposure” “worked as an exterminator”

aItalicized texts indicate misalignment between natural language processing extraction and annotation.

Our qualitative analysis reveals the following two major types
of errors:

1. Lack of documentation standards: many of the FNs
were caused by inconsistent documentation, especially
for environmental exposures. For example, while the
cNLP pipeline captured common mentions such as

“Agent Orange,” “service in Vietnam,” and “chemical
plant factory,” exposure-related information was often
documented in various ways that made it difficult for
the cNLP pipeline to capture exhaustively. Further-
more, some clinicians used locations such as “ship-
yards” to imply potential exposures to toxicants, while
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some explicitly listed the chemical toxicants, such as
“asbestos.”

2. Implicit association with the primary diagnosis:
while our efforts in associating staging information
with surrounding mentions of the primary diagnosis
effectively reduced the number of FPs (ie, incorrectly
identifying staging information), the pipeline also
resulted in FNs where relevant staging information was
not captured because there was no primary diagno-
sis mentioned around it. In reviewing the errors, we
observed that not all LM-related staging information
was explicitly documented together with the primary
diagnosis.

Discussion
Principal Findings
We developed a rule-based cNLP pipeline to identify
mentions of clinical information, including diagnoses,
performance status, staging, substance use, and environmen-
tal exposures from clinical notes of veterans with LMs. The
pipeline can be used in our future studies to produce weak
labels, which can serve as fine-tuning datasets to improve the
performance of LLMs in the domain of LMs.

In the literature, a study that reported better performance in
extracting staging and substance use information from notes
of patients with cancer [23]. However, the majority of these
studies only used radiology and pathology notes, which were
generally more structured and did not contain other clinical
information unrelated to cancer [2]. In our study, the wider
range of notes authored by a wide range of health providers
introduced additional challenges to accurately identify clinical
entities of interest due to the heterogeneity of information and
documentation styles of these notes. In addition, none of the
existing studies focused on rare cancers such as LMs but were
related to more prevalent cancer types such as breast cancer
and lung cancer. Some clinical entities and their documenta-
tion were therefore inherently different from those for LMs.
For example, breast cancer documentation uses TNM staging
system (where T, N, and M stand for tumor, node, and
metastasis, respectively) to record staging, which is stand-
ard for most solid tumors, while LM uses histology-specific
staging, such as Ann Arbor and Rai staging. The semantic
rules for capturing LM-specific staging information can be
used for other studies that aim to extract staging information
from notes of patients with LMs. In addition, the performance
of our rule-based system in extracting performance status
is also comparable with the performances reported in prior
studies [23,24].
Challenges of Developing cNLP Systems
for LMs
Through this study, we observed several challenges to the
development of high-performing cNLP systems for LMs
and other rare cancers. Future efforts in developing cNLP
for rare cancers should consider addressing these challenges
to improve performance, alleviate medical experts’ burden

in annotation, and facilitate the use of cNLP in real-world
clinical settings.

First, relevant clinical information on rare cancers may be
documented across many different note types, which creates
challenges for cNLP systems to consistently identify all of
them. Previous work often focused on specific note types
such as radiology reports to simplify system development,
with the assumption that certain clinical information often
appears in a narrow set of notes.

Second, the characteristics of certain clinical entities make
it challenging to extract using cNLP. For example, envi-
ronmental exposure information was rarely documented in
clinical notes in our study. Sparse documentation thus makes
it difficult to identify notes that include potentially relevant
information for medical experts to annotate. In addition,
the documentation of environmental exposure information
is highly inconsistent, with many mentions directly nam-
ing substances (eg, Agent Orange) as well as alluding to
potential exposures through locations (eg, shipyards and
combat sites) or deployment (eg, Vietnam or Camp Lejeune).
As environmental exposure documentation has not been
a routine component in clinical documentation until very
recently because of the PACT Act, there are no standards
for consistently documenting such information and further
compiling a high-quality dataset for training cNLP models to
extract them. To the best of our knowledge, this is the first
study that set out to develop and use NLP to extract poten-
tial military environmental exposures in accordance with the
PACT Act, despite prior studies that directly used structured
data to infer such exposures [25]. In our future work, we will
assess to what extent the NLP-extracted exposures overlap
with those inferred from structured data and whether NLP
can identify additional exposed patients that structured data
misses.

Third, the heterogeneity of clinical information also raises
challenges for cNLP systems to accurately identify all
relevant information. For example, while our cNLP pipe-
line showed decent performance in identifying the primary
diagnosis, it was unable to identify the myriad of secon-
dary and differential diagnoses for patients’ comorbidities
that span a wide range of diseases such as prostate cancer
and bladder cancer. Therefore, we prioritized our efforts
on optimizing the primary diagnosis rather than secondary
and differential diagnoses, which are also underexplored in
existing cNLP efforts. In our future work, we will continue
to refine the cNLP pipeline to identify the various types of
diagnoses from clinical notes, including optimizing for the
capture of secondary and differential diagnoses.

Fourth, while LLMs such as Bidirectional Encoder
Representations from Transformers and Llama have
demonstrated superior performance in many cNLP tasks, they
appeared to have poor transferability in our study. This may
be due in part to the characteristics of clinical information that
were unique to rare cancers such as LMs and how notes were
composed within the VA system. A more comprehensive and
in-depth evaluation of general and clinical LLMs on clinical
notes for rare cancers is therefore needed to assess their
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performance and transferability and identify ways to adapt
them to rare cancers.

Assessing Biases in Applying NLP on
Clinical Notes for Rare Diseases
The results of this study suggest potential biases in cNLP
performance in extracting substance use and the primary
diagnosis from the notes of non-Hispanic White veterans
versus non-Hispanic Black veterans. Several strategies could
be used to mitigate such potential biases. First, it may be
desirable to use standardized documentation, that is, the type
of substance and frequency or duration of exposure, such
as “tobacco use, 3 packs per day for 50 years.” Second,
researchers may consider alternative sampling methods when
selecting notes and patient samples for developing cNLP
methods, especially when the patient population is already
heavily dominated by patients with certain characteristics,
such as older White adults in our patient cohort.

Clinical Impacts
The PACT Act aims to provide benefits for veterans
who have been exposed to environmental toxicants that
are associated with cancer diagnosis and progression, but
we found that environmental exposure information is only
scarcely and inconsistently documented in our study data.
We observed that especially for non-Hispanic Black patients,
the documentation rate is low. In addition, the ways environ-
mental exposure information was documented also differ,
with some being explicitly documented (eg, “exposure to
Agent Orange”) and many only alluding to exposures by
documenting deployment sites and occupations that may
expose veterans to toxicants. Toxic exposure screening
was implemented as part of the PACT Act across VA
systems nationwide [26], which could help capture environ-
mental exposure information. Our study indicates that more
consistent and comprehensive adherence to documentation
of environmental exposure is needed in order to facilitate
the efficient identification of eligible patients for clinical
research, patient care, and benefit enrollment.

There were statistically significant differential perform-
ances in the FNs of extracting substance use information
from notes for non-Hispanic White versus non-Hispanic
Black patients. This may be due to the rich information
and variations in documenting patients’ substance use. The
use of templates will help standardize how documentation
occurs as well as how information is captured. This will also
help improve the performance of cNLP extraction pipelines
because fewer outliers will appear in the clinical documenta-
tion. Such templates will also help standardize the documen-
tation of substance use. Templates that are autopopulated can
also capture data more uniformly.

Limitations
As a preliminary effort for developing a cNLP system for
LMs, our study had several limitations. By using nationwide
VA EHR data, there was variability in data quality and
completeness. As mentioned previously, documentation of
elements such as environmental exposures did not have an

established standard, resulting in inconsistent and heteroge-
neous documentation. Military exposure documentation was
infrequent, which reflects the nuanced nature of this type
of screening. However, the recently mandated screening
implemented in August 2023 will improve documentation for
future research and analysis. Our study only examined racial
bias due to the limited number of annotated notes we had and
may have overlooked other potential sources of bias such as
age, gender, and geography. Finally, our data come from the
national VA health care system. Despite being a single EHR
system, the VA health care system spans the entire country
as well as Puerto Rico, Guam, and the Philippines, and its
EHR captures the heterogeneity in regional practice patterns.
For our work in understanding military exposure and the
association with developing LMs, it is a vertically integrated
system that is unique in the patient population and prioritiza-
tion of military service–connected conditions, suitable for our
research objective.
Future Directions
Our future directions include improving the performance of
the cNLP pipeline. To achieve this, we plan to leverage
more advanced pretrained LLMs such as CancerBERT [27]
and GatorTron [28] and fine-tune them on our dataset to
extract the clinical entities. We will use the rule-based cNLP
pipeline developed in this study to generate weak labels for
fine-tuning these LLMs, without having medical experts to
further annotate notes. We will also conduct a more thor-
ough and large-scale review of the environmental exposure
documentation to construct a more comprehensive terminol-
ogy dictionary for identifying environmental exposures for
patients with LMs. In addition, many clinical entities should
be extracted in fine-grained forms (eg, substance use with
frequency, amount, and status) and in relation to other
information if available (eg, temporal information). Another
next step is to use cNLP to identify and analyze the current
documentation practices and potential biases for less common
clinical entities. We will also apply cNLP-enabled analyses to
all veterans with LMs in the VA CDW to assess the docu-
mentation patterns of the clinical information among different
patient groups (by race, gender, branch, and socioeconomic
status); provider types; and note types to identify potential
biases. We will also apply the pipeline to clinical notes from
health systems outside of the VA to assess its generalizability.

Another future direction is to design and implement a tool
integrated into the EHR system and help clinicians improve
their documentation quality and identify inconsistencies or
inadequacies (eg, lack of documentation of environmental
exposures) at the time of documentation.
Conclusions
In our rule-based cNLP pipeline that integrates clinical
domain expertise, clinical entities such as performance status,
staging, and the primary diagnosis were captured with
satisfying accuracy. The primary diagnosis and substance
use exhibit differential performance for non-Hispanic Black
and White patients. Our future work will build upon the
rule-based pipeline and leverage more advanced models to
enhance the performance of extraction for substance abuse
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and environmental exposures, as well as ensuring that model
performance is equitable across different racial groups.
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