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Abstract

Background: Infectious diseases have consistently been a significant concern in public health, requiring proactive measures
to safeguard societal well-being. In this regard, regular monitoring activities play a crucial role in mitigating the adverse effects
of diseases on society. To monitor disease trends, various organizations, such as the World Health Organization (WHO) and the
European Centre for Disease Prevention and Control (ECDC), collect diverse surveillance data and make them publicly accessible.
However, these platforms primarily present surveillance data in English, which creates language barriers for non–English-speaking
individuals and global public health efforts to accurately observe disease trends. This challenge is particularly noticeable in regions
such as the Middle East, where specific infectious diseases, such as Middle East respiratory syndrome coronavirus (MERS-CoV),
have seen a dramatic increase. For such regions, it is essential to develop tools that can overcome language barriers and reach
more individuals to alleviate the negative impacts of these diseases.

Objective: This study aims to address these issues; therefore, we propose InfectA-Chat, a cutting-edge large language model
(LLM) specifically designed for the Arabic language but also incorporating English for question and answer (Q&A) tasks.
InfectA-Chat leverages its deep understanding of the language to provide users with information on the latest trends in infectious
diseases based on their queries.

Methods: This comprehensive study was achieved by instruction tuning the AceGPT-7B and AceGPT-7B-Chat models on a
Q&A task, using a dataset of 55,400 Arabic and English domain–specific instruction–following data. The performance of these
fine-tuned models was evaluated using 2770 domain-specific Arabic and English instruction–following data, using the GPT-4
evaluation method. A comparative analysis was then performed against Arabic LLMs and state-of-the-art models, including
AceGPT-13B-Chat, Jais-13B-Chat, Gemini, GPT-3.5, and GPT-4. Furthermore, to ensure the model had access to the latest
information on infectious diseases by regularly updating the data without additional fine-tuning, we used the retrieval-augmented
generation (RAG) method.

Results: InfectA-Chat demonstrated good performance in answering questions about infectious diseases by the GPT-4 evaluation
method. Our comparative analysis revealed that it outperforms the AceGPT-7B-Chat and InfectA-Chat (based on AceGPT-7B)
models by a margin of 43.52%. It also surpassed other Arabic LLMs such as AceGPT-13B-Chat and Jais-13B-Chat by 48.61%.
Among the state-of-the-art models, InfectA-Chat achieved a leading performance of 23.78%, competing closely with the GPT-4
model. Furthermore, the RAG method in InfectA-Chat significantly improved document retrieval accuracy. Notably, RAG
retrieved more accurate documents based on queries when the top-k parameter value was increased.

Conclusions: Our findings highlight the shortcomings of general Arabic LLMs in providing up-to-date information about
infectious diseases. With this study, we aim to empower individuals and public health efforts by offering a bilingual Q&A system
for infectious disease monitoring.
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Introduction

Motivation
Throughout human history, there has been a continuing battle
against infectious diseases. Bacteria, parasites, and viruses can
spread quickly among people, resulting in a wide range of
illnesses and significantly affecting public health. Despite major
advancements in medicine and public health, new infectious
diseases continue to arise. The recent COVID-19 outbreak,
caused by the SARS-CoV-2 virus, is an example of the
continuing existence and profound impacts of infectious diseases
all over the world. Beyond COVID-19, there has been an
increase in other infectious diseases around the world. For
instance, the Middle East respiratory syndrome coronavirus
(MERS-CoV), a zoonotic infection primarily occurring in the
Arabian Peninsula, poses a significant public health threat.
Globally, as of April 29, 2024, there have been 2622 reported
cases of MERS-CoV, including 950 deaths [1]. Similarly,
cholera, a bacterial infection causing severe dehydration in the
human body, has been reported, particularly in Africa and Asia.
The World Health Organization (WHO) reported 787,813 cases
and 5586 deaths across 31 countries as of March 14, 2024 [2].
In addition, other infectious diseases, such as dengue fever and
avian influenza, have become a challenge to public health
around the world. These examples indicate that society needs
effective preventive measures to eliminate the adverse effects
of infectious diseases.

At this point, identifying the patterns of disease spread is quite
important for coping with infectious diseases. By identifying
the significant factors for disease persistence, several strategies
can be developed for public health prevention and control.
Regular monitoring operations play a critical role, allowing us
to track disease outbreaks and take preventive measures in
advance. Numerous platforms collect and make large amounts
of surveillance data publicly accessible for this purpose. The
WHO stands as a key leader in the public health domain,
delivering up-to-date outbreak information as well as regional
data and statistics.

Similarly, the European Centre for Disease Prevention and
Control (ECDC) is dedicated to disease surveillance, outbreak
preparedness, scientific advice, and public health training [3].
These platforms offer real-time disease monitoring for
individuals and public health efforts, fostering rapid responses
to outbreaks. While these platforms provide a large amount of
information, they bring challenges for individuals seeking
specific information. By delivering information primarily
through long news articles or reports, they offer timely updates
about infectious diseases. In this context, large language models
(LLMs), such as GPT-4 [4], Falcon [5], Pathways Language
Model (PaLM) [6], and LLaMA-2 [7] have recently played a
significant role in providing information about various fields,
including the medical and public health domains, in multiple

languages. These models, with their ability to understand and
generate humanlike text in multiple languages, have become
popular tools for public use.

The Rise of LLMs in the Medical Domain
Deep learning has yielded state-of-the-art results in various
fields, such as computer vision, natural language processing
(NLP), public health, biology, and recommendation [8]. Among
these advancements, the field of LLMs has rapidly evolved in
various ways. An LLM is a deep learning–based artificial neural
network, distinguished from traditional machine learning models
by its training on vast amounts of textual data [9]. Specifically,
following the introduction of the transformer architecture,
researchers began to explore pretrained, large-scale,
transformer-based models trained on vast amounts of data [10].
Models such as the GPT series and Bidirectional Encoder
Representations from Transformers (BERT) [11] demonstrated
the effectiveness of pretraining transformer models on large
corpora. Particularly, the GPT family has attracted significant
attention. Further enhancements in the GPT model led to more
sophisticated LLMs, such as GPT-4 [4], which demonstrated
outstanding performance in natural language understanding,
generation, and various NLP tasks. These models have opened
new research directions toward artificial general intelligence
[12].

While models like the GPT family have brought greater
capabilities, they pose challenges due to being closed-source
models. To address this issue, the research community in the
NLP field has shifted its focus to open-source alternatives. At
this point, LLaMA [13], LLaMA-2 [7], and Alpaca are important
examples of such endeavors [12]. In February 2023, the first
LLaMA models [13], which include parameters ranging from
7B to 65B, were released. Trillions of tokens from publicly
accessible datasets were used to pretrain these models. The
LLaMA architecture includes the SwiGLU activation function
and rotary positional embeddings, which are enhancements over
the GPT decoder-only architecture, which brings significant
performance with LLaMA-13B outperforming GPT-3 (175B)
on most benchmark datasets [13]. This release was significant
because it inspired the development of other open-source
models, such as Mistral [14].

Despite the advancements in multilingual LLMs, such as GPT
and LLaMA, they are still primarily trained on English datasets,
limiting their ability to extend comprehension and generation
capabilities to languages other than English. This situation
highlights the necessity for non-English LLMs, which are
pretrained predominantly in languages other than English, such
as Arabic. Arabic is one of the world’s most spoken languages,
with >400 million speakers, but it is underrepresented in the
LLM field so far. To address this issue, several Arabic LLMs
have been developed with various architectures. AraBERT [15],
QARiB [16], JABER and SABER [17], CAMeLBERT [18],
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and AraELECTRA [19] are examples of encoder-only models,
while ARABART [20], ARAGPT2 [21], Jais [22], and ALLaM
[23] are categorized as decoder-only models [22]. Recently, the
AceGPT model has gained prominence for its emphasis on
cultural sensitivity and the incorporation of local values, setting
it apart from other Arabic LLMs. Comprehensive evaluations
show that AceGPT demonstrates state-of-the-art performance
among open Arabic LLMs across various benchmarks [24].

Building upon the success of general LLMs, researchers
explored adapting these pretrained models to the specific needs
of the medical domain. This involved leveraging large-scale
biomedical corpora like PubMed Central articles. For instance,
PubMedBERT [25] was pretrained on PubMed data, while
ClinicalBERT [26] was pretrained on the Medical Information
Mart for Intensive Care III (MIMIC-III) dataset. In addition,
BERT for Biomedical Text Mining (BioBERT) [27] was
pretrained on PubMed and PubMed Central Dataset datasets
[28]. However, the rise of big autoregressive generative models,
such as GPT and LLaMA, led to the use of decoder-only
architectures to train medical LLMs with medical domain data.
GatorTronGPT [29], a model that is similar to GPT-3, was
pretrained on 227 billion words of mixed clinical and general
English data, boasting 20B parameters. In terms of medical
reasoning, Flan-PaLM [30] and PaLM-2 [31] are examples of
pretrained models, both with 540B parameter sizes. MEDITRON
[32] is one of the fine-tuned models that shows competitive
performance with the PaLM-2 and Flan-PaLM models [32].
These pretrained language models can be fine-tuned for many
downstream tasks, leading to the development of several
specialized medical LLMs such as ChatDoctor [33], MedAlpaca
[34], PMC-LlaMA [35], BenTsao [36], and Clinical Camel [37],
in addition to publicly available general-purpose LLMs [28].
While the number of medical LLMs is growing, only a few
Arabic language models were developed for medical domains,
such as Bilingual Medical Mixture of Experts Large Language
Model (BiMediX) [38] and Apollo [39]. Despite their abilities
to assist society and medical efforts, there are still limitations,
particularly for infectious disease monitoring, due to being
trained on limited infectious disease surveillance data.

The Contributions of InfectA-Chat
To tackle this issue, we present InfectA-Chat, a cutting-edge
Arabic LLM designed to improve AceGPT’s abilities to
understand and generate text in Arabic in the domain of
infectious diseases by providing information on the latest
outbreaks of infectious diseases based on user queries. We
prepared and curated an instruction-following dataset for the
question and answer (Q&A) task based on infectious
disease–related news articles, using instruction tuning on the
AceGPT-7B and AceGPT-7B-Chat models. To facilitate
efficient fine-tuning of these models, we adopted the low-rank
adaptation (LoRA) [40] method, which is particularly beneficial
in scenarios with limited computational resources or data
availability. Unlike other parameter-efficient fine-tuning (PEFT)
approaches, such as adapters or prompt tuning, LoRA integrates
trainable rank decomposition matrices within specific layers of
the pretrained model. This enables the model to capture the
necessary low-rank updates for fine-tuning without significantly
increasing inference latency. LoRA’s efficiency makes it a

tempting solution for real-world applications that need to
preserve performance while decreasing computational expenses.
Therefore, we use LoRA as a PEFT method for these reasons
[12]. Our model addresses the need for an interactive and
real-time infectious disease tracking system with potential
applicability across different languages and public health
domains. To sum up, the contributions made by the InfectA-Chat
model are mentioned subsequently.

First, we enhanced AceGPT’s capabilities in the infectious
diseases domain by extending its dataset with related articles.
This improved model, named InfectA-Chat, is an Arabic and
English Q&A application dedicated to infectious disease
tracking. It offers valuable resources to the NLP and public
health communities and empowers individuals to stay informed
about infectious disease trends and developments.

Second, we leveraged LoRA to facilitate PEFT, optimizing
performance despite constrained computational resources.

Third, we used the retrieval-augmented generation (RAG)
pipeline to demonstrate that reapplying instruction tuning is
unnecessary when updating the model with recent data. To
validate this approach, we assessed the performance of the RAG
model using the latest infectious disease–related information
on InfectA-Chat and compared its efficiency to that of
state-of-the-art models.

Fourth, we encourage additional research and collaboration
within the NLP and public health communities by making our
study publicly available [41].

Methods

Overview
InfectA-Chat is based on the AceGPT-7B-Chat model, a
fine-tuned version of the AceGPT model that was derived from
the LLaMA2-7B model by further training using a large corpus
of Arabic text, containing 19.2B Arabic and 10.8B tokens in
English. The AceGPT methodology addresses the localization
concerns in the Arabic LLMs that contain unique, cultural
characteristics inappropriately. To address this issue, it provides
localized pretraining, localized supervised fine-tuning, and
reinforcement learning from artificial intelligence feedback with
localized preference data. During the localized pretraining, to
adapt the English-focused LLaMA2 model to Arabic, the
researchers leveraged a variety of Arabic datasets, including
Arabic text 2022, Arabic Wikipedia, CC100, and OSCAR3. To
prevent the loss of knowledge in English text, they obtained a
dataset from SlimPajama. In addition, the original vocabulary
of LLaMA2, which contains 53 Arabic letters, is retained to
reduce training costs. Furthermore, AceGPT was fine-tuned
with localized instructions and responses to allow the model to
follow Arabic user instructions, using questions derived from
real-world scenarios. In the evaluation results, it is shown that
AceGPT becomes a state-of-the-art model among open Arabic
LLMs across various benchmarks [24].

Due to AceGPT’s advanced capabilities among Arabic LLMs,
the development of InfectA-Chat followed a 2-stage pipeline
based on the AceGPT structure (Figure 1). First, we used
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instruction tuning on the AceGPT-7B and AceGPT-7B-Chat
models [24] using the instruction-following dataset. The LoRA
method was chosen for this stage, enabling PEFT to minimize
computational cost while maintaining performance. This resulted
in the creation of the InfectA-Chat (based on AceGPT-7B) and
InfectA-Chat (based on AceGPT-7B-Chat) models. Following
the instruction tuning, we conducted a comprehensive GPT-4
evaluation [42] to compare the performance of InfectA-Chat
models (based on AceGPT-7B and AceGPT-7B-Chat) against
each other, state-of-the-art models, and Arabic LLMs such as
GPT-3.5 [43], GPT-4 [4], Gemini [44], AceGPT [24], and Jais
[22]. During the GPT-4 evaluation, instruction-tuned models
were assessed using English and Arabic real-world data
pertaining to infectious diseases, reflecting actual outbreak
information and other relevant details extracted from articles
from the Center for Infectious Disease Research and Policy
(CIDRAP) [45] platform. By prompting the GPT-4 model to

compare the answers of comparison models with relevant
queries and articles, GPT-4 evaluated the performance of
models. To ensure the consistency and trustworthiness of the
GPT-4 evaluation method, we also implemented variance
analysis. In addition, to evaluate the generalizability of the
best-performing InfectA-Chat model, we conducted
cross-domain testing on an Arabic benchmark dataset,
comparing it with other Arabic LLMs and state-of-the-art
models. In the second stage, we leveraged the RAG [46] pipeline
based on the superior InfectA-Chat model, which was identified
in the GPT-4 evaluation. Applying RAG allowed us to update
the model’s data with the latest information in the infectious
disease domain without requiring further instruction tuning
while maintaining performance. This 2-stage approach
empowered InfectA-Chat to effectively address the Q&A task
within the infectious disease domain.

Figure 1. Modeling of InfectA-Chat. RAG: retrieval-augmented generation.

Data Collection and Preprocessing
Data preprocessing plays a vital role in training high-quality
LLMs [12], especially when working with the limited structured
data available on infectious diseases in English and Arabic. To
address this gap, we conducted many steps to get high-quality
Arabic and English instruction–following data. The overall
pipeline of the data preprocessing flow is shown in Figure 2.
As a first step, we selected CIDRAP [45] as our major data
source due to its reputation for publishing timely and
well-researched articles on infectious diseases. CIDRAP’s
information is both credible and extensive, with daily updates
on growing health threats globally, making it a great foundation
for our dataset. Given the challenges of sourcing accurate data
on infectious diseases, CIDRAP’s meticulous reporting and
in-depth coverage were vital for our study. Therefore, we
conducted web scraping to gather data from the CIDRAP
website, focusing on the MENA (Middle East and North Africa)
region, including 20 countries, with published dates between
February 20, 2020, and February 20, 2024. This resulted in 2770

English articles collected from CIDRAP’s website.
Subsequently, we further enriched the articles by adding
essential information, such as the country, title, and publication
date of the article. The collected articles had varying lengths,
some exceeding the maximum context length of InfectA-Chat,
which is 2048. This posed a challenge because long articles
could not be processed directly within the model. To tackle this
limitation and enhance the dataset’s usability, we implemented
2 summarization methods, GPT-3.5-Turbo [47] and Gensim
[48]. We implemented 2 summarization methods as a more
cost-effective alternative compared to relying solely on
GPT-3.5-Turbo, which incurs application programming interface
use costs. By incorporating a dual-approach strategy, we could
streamline the summarization process, reducing the application
programming interface cost while preserving the essential
information in the summarized articles for model training. The
first approach was summarization by using Gensim (RARE
Technologies Ltd), a popular open-source Python toolkit that
is well-suited for NLP tasks, such as text summarization. Gensim
provides powerful summary algorithms that effectively condense
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articles while retaining key information, allowing users to define
a desired word count. In this phase, we established a word count
that is consistent with the 2048-token limit, allowing us to
efficiently summarize our collection of 2770 articles. The second
approach used GPT-3.5-Turbo-0125, an autoregressive model
known for providing high-quality text generation based on
various tasks, including summarization. By prompting the
GPT-3.5-Turbo-0125 model to produce summaries based on
our specified token count, we were able to distill our collected

articles effectively. Using both approaches, the articles were
effectively summarized while retaining essential information,
expanding their maximum context length to 2048. Given that
we used 2 distinct summarization approaches, we are generating
2 types of summarized articles. Therefore, these 2 approaches
not only addressed the context length limitation but also
effectively augmented the data by leveraging their advanced
text summarization capabilities.

Figure 2. The overall pipeline of data collection and preprocessing. Q&A: question and answer.

This study focused on building an instruction-following dataset
based on a Q&A task. To generate Q&A pairs from summarized
articles, we used the GPT-3.5-Turbo-0125 model, generating
5 high-quality Q&A pairs per summarized article. During the
Q&A generation process, we particularly instructed the model
to generate Q&A pairs that are explicit and directly related to
the context and to include date information in the questions by
avoiding ambiguous phrases, such as “last week,” “over the
past week,” and “this year.” Therefore, we built an English
instruction–following dataset that contains 27,700 Q&A pairs
based on each summarized article as shown in Textbox 1.
Textbox 1 presents the example of English and Arabic
instruction–following data with their translation. Because there
is a lack of Arabic data in the domain of infectious diseases, we

needed to translate our English instruction–following data into
Arabic. To generate an Arabic instruction–following dataset,
we used the GPT-3.5-Turbo-0125 model to translate all the
English instruction–following data into Arabic. As a final step,
we concatenated the English and Arabic instruction–following
datasets, yielding 55,400 Q&A pairs with a token size of 54.5B,
based on the AceGPT-7B-Chat tokenizer. We used the original
vocabulary of the AceGPT-7B model, which has a size of 32,000
tokens and contains 53 Arabic letters. The 55,400 generated
instruction-following data points, which reflect real-world
information about infectious diseases, were divided into training,
validation, and test datasets in proportions of 90%, 5%, and 5%,
respectively.
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Textbox 1. Example of English and Arabic instruction–following data.

English instruction–following data

Below is an instruction that describes Q&A task. Write a response to complete the request appropriately.

### Instruction: How many patients were reported with MERSCoV cases in Saudi Arabia between December 29, 2021, and October 31, 2022?

Title: WHO details 4 more MERS cases in Saudi Arabia

Date: November 17, 2022

Country: Saudi Arabia

Source: “https://www.cidrap.umn.edu/mers-cov/who-details-4-more-mers-cases-saudi-arabia”

Contents: The World Health Organization (WHO) yesterday posted an update on Middle East respiratory syndrome coronavirus (MERS-CoV) in
Saudi Arabia that covers 4 cases reported by the country since the WHO’s last update in April. Three of the patients had recent contact with camels.
No secondary cases were reported, and none were fatal. The WHO said the 4 MERS-CoV cases were reported between December 29, 2021, and
October 31, 2022. Symptom onset ranged from December 27 to June. All patients—3 men and a woman, were aged 23 to 68 years and were not health
care workers. All had underlying conditions and were hospitalized. The men had contact with camels and had consumed camel milk. The agriculture
ministry’s related investigations identified the virus in camels in those 3 instances. So far, the source of virus exposure for the woman aged 23 years
is not known. Two patients are from Riyadh province, from the cities Afif and Al Kharj. The others are from Mecca in Mecca province and Buridah
in Al Qassim province. The WHO noted that the number of MERS-CoV cases has declined since the start of the COVID-19 pandemic, likely due to
health officials prioritizing COVID-19 activities. In addition, the WHO said COVID-19 protective measures may have reduced MERS-CoV transmission.
However, the WHO said MERS-CoV circulation continued in dromedary camels and that the zoonotic threat remains. The WHO said the latest cases
from Saudi Arabia lift the global total since September 2012 to 2600 cases, 935 of them fatal.

### Response: In February, Saudi Arabia reported 18 MERS-CoV cases, with 5 of them being fatal, from 9 different cities.

Arabic instruction–following data

Below is an instruction that describes Q&A task. Write a response to complete the request appropriately.

### Instruction:                                                                                                                 

Title:                 25        2020

Date: 25        2020

Country:        

Source: “https://www.cidrap.umn.edu/salmonella/news-scan-sep-25-2020”

Contents:                                                                                     41          10                                                                      Wismettac Asian Foods.              
                                              2013         2017                                                                      .                                          .                                                    
                                            .

### Response:                                                                                                 .

English version: Below is an instruction that describes Q&A task. Write a response to complete the request appropriately.

### Instruction: Which countries were mentioned to have reported more polio cases, and which country reported its first vaccine-derived cases?

Title: News Scan for September 25, 2020

Date: September 25, 2020

Country: Sudan

Source: “https://www.cidrap.umn.edu/salmonella/news-scan-sep-25-2020”

Contents: A Salmonella outbreak linked to dried mushrooms in dishes served at ramen restaurants has affected 41 people in 10 states, with the likely
source traced to wood ear mushrooms distributed by Wismettac Asian Foods. In Australia, antibiotic use has shown a decline from 201,314 to 201,718,
though still higher compared to countries like the Netherlands and Sweden. Efforts to optimize antibiotic prescribing continue. In addition, 5 countries
reported more polio cases, with South Sudan reporting its first vaccine-derived cases.

### Response: Five countries reported more polio cases, with South Sudan reporting its first vaccine-linked case

Supervised Fine-Tuning (Instruction Tuning)
Pretrained LLMs often struggle to effectively track user
instructions and may generate inadequate output based on given
instructions. This limitation stems from their primary goal,
which is predicting the next token rather than generating output
directly in response to the given instruction, as described in
equation 1; the loss of pretraining LPT is updated with the next
token prediction based on the pretraining dataset DPT [12].

To overcome this challenge, the supervised fine-tuning, also
known as instruction tuning method, is often used, which allows
pretrained LLMs to be adapted to a specific task using
instruction-following data. The instruction tuning method
consists of a prompting model with instructions, which are
encapsulated by a prompt template. The model is then trained
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by using given instructions and generates the proper output. In
this study, we applied instruction tuning on the AceGPT-7B
and AceGPT-7B-Chat models using Arabic and English
instruction–following data as shown in Figure 3. Our

instruction-following dataset follows a format that is similar to
the Alpaca dataset [49], where each data point contains an
instruction and output. The template for fine-tuning is shown
in Textbox 2.

Figure 3. The overall pipeline of supervised fine-tuning (instruction tuning).

Textbox 2. Prompting template of instruction tuning.

“Below is an instruction that describes Q&A task. Write a response to complete the request appropriately.

### Instruction: {question}\n {Title: title, Date: date, Country: country, Source: source, Contents: article}

### Response:”

In our instruction-following dataset, the prompt template’s
instruction part combines both a question and an article,
distinguished by “\n,” which differs from the structure of the
Alpaca dataset. Admittedly, we enhanced the dataset by
including important details for articles, such as title, publication
date, country, and source alongside the main context of the
article. This also helped with accurate article retrieval during
the application of RAG.

During traditional training, all parameters of LLMs are often
updated, which is not cost-effective and takes a lot of time [12].
To tackle this, PEFT methods are generally applied during the
process of fine-tuning, such as prefix tuning, adapter tuning,
and LoRA, which have been recently studied as representative
PEFT methods. Among the 3 representative PEFT models,
prefix tuning offers limited performance with no added latency,
while adapter tuning prioritizes performance at the cost of
increased latency [50]. In addition, prefix tuning is difficult to
optimize, as the training process can be unstable due to
nonmonotonic changes in training loss [40].

Compared to other methods, LoRA reduces computation by
applying, as its name implies, “low-rank adaptation” weights
to the query and key operations of the attention module. The
feed-forward operation remains the same as in general attention
modules, while the backward operation uses low-rank weights
to perform calculations for each layer. This entails mapping to

a smaller dimension, applying nonlinear activation, and then
returning to the original dimension size. LoRA emerges as the
most attractive solution for PEFT in LLMs due to its superior
mix of performance, efficiency, and latency. Therefore, in this
study, we use LoRA during the fine-tuning of the AceGPT-7B
and AceGPT-7B-Chat models by integrating LoRA adapters
into the weights of the multilayer perceptron layers and attention
modules. The application of LoRA to all linear transformer
blocks has been confirmed in quantized LoRA [12,51].

During the fine-tuning process, the loss is only calculated on
the {output} part of the input sequence and can be expressed
as shown in equation 2. In this equation, LSFT represents loss of
instruction tuning. Θ represents the model parameters, while
DSFT is the fine-tuning dataset; x=(x0, x1, ...) represents the
tokenized input sentence [12].

RAG Based on InfectA-Chat
For building domain-specific LLMs like InfectA-Chat,
instruction tuning has emerged as a highly effective method,
demonstrating impressive results in tasks such as Q&A.
However, instruction tuning LLMs for specific tasks has various
limitations that can hinder their effectiveness. Instruction tuning

JMIR Med Inform 2025 | vol. 13 | e63881 | p. 7https://medinform.jmir.org/2025/1/e63881
(page number not for citation purposes)

Selcuk et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


mostly relies on the quality and quantity of training data. In
addition, fine-tuned LLMs may struggle to generate factually
correct and contextually relevant responses, particularly when
the training data are limited, known as “hallucinations.”
Especially in domains such as infectious diseases, where
up-to-date information is crucial for accurate monitoring,
repeatedly applying instruction tuning to new datasets becomes
impractical due to time and resource constraints. RAG [46]
provides a convincing method that complements instruction
tuning while resolving its limitations. RAG uses the power of
accessing a wide external knowledge base to generate text for
a query. This allows RAG to gather relevant information specific
to the prompt, yielding more informative and accurate outputs.

RAG typically consists of 2 main components: a retriever and
a generator. The retriever first identifies relevant documents or
information from the external knowledge source based on the
input prompt. The retrieved information is then passed on to
the generator, which is often a fine-tuned LLM. The generator
produces the final result by combining both the retrieved
information and its own internal knowledge to produce the final

output. RAG prioritizes article quality. To enable more accurate
retrieval, essential information, such as country, title, source,
and published date, was included in the main content of the
article.

The overall pipeline of RAG is depicted in Figure 4. Initially,
summarized articles were embedded using
text-embedding-3-small model [52]. When a user query was
received, it was embedded as a vector by the
text-embedding-3-small model, which calculates the similarity
between a user query and the vector database of summarized
news articles. As a similarity metric, the cosine similarity was
used. Following the similarity calculation, the top-k articles
were selected and sent to InfectA-Chat along with the query.
Top-k refers to the specified number of articles that have a high
correlation with the query and are set by the developer during
the RAG process. Once the RAG pipeline recalls the highly
correlated articles with the query, the model can generate an
answer based on the selected top-k articles and the query. By
using RAG, the model can provide more factually and
contextually accurate answers.

Figure 4. The overall pipeline of Retrieval-Augmented Generation.

Our goals included not only preventing hallucinations when
applying RAG but also avoiding the need for repeated
instruction tuning when updating InfectA-Chat’s data. To
demonstrate the necessity of the RAG pipeline for updating
InfectA-Chat’s data, we prepared 50 instruction-following data
points with published dates from March to June 2024, ensuring
that they were not part of the original InfectA-Chat training
data. During the recent data preparation, we specifically
emphasized the importance of including the date in the
questions. We applied the RAG pipeline using these recent 50
instruction-following data to InfectA-Chat, GPT-3.5, and GPT-4,
using GPT-4 evaluation for a comprehensive comparison.

In addition, we investigated the impact of the top-k parameter
on information retrieval within the RAG framework.
Specifically, we compared the retrieval performance using top-1,
top-3, and top-5 settings in the RAG process.

Ethical Considerations
This study used publicly available data sourced from the
CIDRAP. The preprocessing steps ensured that the data protects
the individual’s privacy. Due to these factors, no ethics review
was required. All analyses and findings are presented in
alignment with the standards set by JMIR Medical Informatics
and aim to contribute to the field of infectious disease research
without compromising ethical norms.

Results

Experimental Setup
LLM training represents a significant engineering problem. Due
to the enormous number of the model parameters, a large-scale
distributed training framework is required, allowing the use of
several graphics process units (GPUs) across numerous
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processing nodes. The InfectA-Chat models were trained with
a total of 4 Nvidia A100 80GB GPUs on 2 nodes, provided by
the Korea Institute of Science and Technology Information. To
leverage complementary parallelism for faster and more
memory-efficient training, we used the DeepSpeed framework
during instruction tuning. DeepSpeed [53] is a robust
open-source library that optimizes deep learning training for
PyTorch by reducing memory use and increasing training
efficiency. It solves the issues of training LLMs on restricted
hardware by using approaches, such as Zero Redundancy
Optimizer, which distributes model parameters and gradients
over numerous processors, significantly reducing memory
footprint. In this study, Zero Redundancy Optimizer stage 2
was applied, enabling the distribution of optimizer states and
gradients across GPUs, thereby facilitating efficient large-scale
training.

Instruction tuning was performed using 49,860
instruction-following data points, containing 49 million tokens,
each for 2 models: AceGPT-7B and AceGPT-7B-Chat, while
validation and test datasets comprised 2770

instruction-following data points, containing 2.8 and 2.7 million
tokens, respectively. All models were trained with a batch size
of 12 per device, resulting in a total batch size of 1296. The
AdamW optimizer was used, using a cosine learning rate
scheduler with a warmup ratio of 0.03% of steps and a peak
learning rate of 0.0001. A weight decay of 0.01 was applied
along with a maximum sequence length of 2048 as well as a
gradient accumulation of 27. In addition, all models included
LoRA with a rank of 64, an α of 128, weights of Q, K, V, O,
and multilayer perceptron, and a dropout rate of 0.05. The
hyperparameters of instruction tuning of both AceGPT-7B and
AceGPT-7B-Chat models are listed in detail in Table 1 [12].
Following instruction tuning, a comprehensive comparison
analysis was conducted to evaluate each model’s performance.
Using GPT-4 evaluation, an advanced model published by
OpenAI, renowned for its state-of-the-art performance in text
generation among LLMs, provided a robust assessment. By
using an evaluation prompt, GPT-4 systematically evaluated
the models by comparing their responses to specific questions
and articles (Textbox 3). The comparison analysis was
performed in 3 distinct phases.

Table 1. Hyperparameters.

AceGPT-7B-ChatAceGPT-7BBase model

32,000 (AceGPT-7B-Chat)32,000 (AceGPT-7B)Vocabulary size (tokenizer)

49,860 (49 million tokens)49,860 (49 million tokens)Training dataset

2770 (2.8 million tokens)2770 (2.8 million tokens)Validation dataset

2770 (2.7 million tokens)2770 (2.7 million tokens)Test dataset

Nvidia A100×4Nvidia A100×4GPUa

1212Batch size per device

846.42 s846.42 sTraining time per 1 step

2727Gradient accumulation

4848Total batch size

Zero stage 2Zero stage 2DeepSpeed

3 (115)3 (115)Epoch (steps)

CosineCosineLearning rate scheduler

0.030.03Warmup ratio (% of steps)

0.00010.0001Peak learning rate

AdamWAdamWOptimizer

0.010.01Weight decay

20482048Maximum sequence length

float32float32Data type

6464LoRAb rank

128128LoRA α

Query, key, value, output, MLPQuery, key, value, output, MLPcLoRA weights

0.050.05LoRA dropout

aGPU: graphics processing unit.
bLoRA: Low-Rank Adaptation.
cMLP: multilayer perceptron.
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Textbox 3. Prompting template for GPT-4 evaluation.

You are a super-intelligent AI assistant.

question: {question}

context: {Title: title, Date: date, Country: country, Source: source, Contents: article}

Considering the context provided, determine which answer is the best answer for the given question and context. The answer should point out the
what the question requires. You must choose only one among options below.

* Answer A

* Answer B

* Answer C

* Answer N

Initially, GPT-4 evaluation was used to assess the performance
of AceGPT-7B-Chat, InfectA-Chat (based on AceGPT-7B),
and InfectA-Chat (based on AceGPT-7B-Chat). Subsequently,
the model demonstrating superior performance in the first phase
underwent evaluation against Arabic LLMs, including
Jais-13B-Chat and AceGPT-13B-Chat, in the second phase.
Finally, building upon the results of the second phase, the
selected model was evaluated against state-of-the-art LLMs,
such as GPT-3.5, GPT-4, and Gemini, in the last phase.
Furthermore, to assess the generalizability of the superior model
from the InfectA-Chat suite (comprising AceGPT-7B and
AceGPT-7B-Chat), we extended our evaluation beyond the
infectious disease domain. We used a broad dataset built for
tasks that required common-sense reasoning and Q&A skills.
This cross-domain testing enabled us to assess the model’s

capacity to use its learned information and reasoning skills in
a broader environment, offering vital insights into its overall
robustness and adaptability. This enabled a full evaluation of
model performances.

Experimental Result

Overview
We present the training progress for the InfectA-Chat models
(based on AceGPT-7B and AceGPT-7B-Chat), which are
visualized in Figures 5 and 6, respectively. Both figures depict
a learning rate starting at 0.0001 and gradually decreasing due
to the learning rate scheduler used for optimizing convergence.
The loss curves in both figures reveal a steady decrease,
demonstrating both models effectively learned from the training
data and generalized well to unseen data.

Figure 5. Training progress of AceGPT-7B–based InfectA-Chat (training loss, validation loss, and learning rate). SFT: supervised fine-tuning.
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Figure 6. Training progress of AceGPT-7B-Chat–based InfectA-Chat (training loss, validation loss, and learning rate). SFT: supervised fine-tuning.

Performance Comparison of InfectA-Chat in the
Infectious Disease Domain
The results of qualitative performance comparisons were
conducted across 3 phases using GPT-4 (Figures 7-9). The
decision to exclude base models among Arabic LLMs during
GPT-4 evaluation was motivated by the number of errors
observed in the base models. During the GPT-4 evaluation on
AceGPT-7B, 102 errors occurred. In terms of AceGPT-13B
and Jais-13B evaluation process, 41 and 669 errors occurred,

respectively. Due to the generation of improper answers, GPT-4
could not process during the evaluation. The inclusion of the
AceGPT-7B, AceGPT-13B, and Jais-13B models in the
comparison study may have a negative impact on the
performance analysis’s accuracy. Therefore, these 3 base models
were omitted from the GPT-4 evaluation to enable a more
accurate assessment of model performance. The performance
results represent the average accuracy of the 5-step GPT-4
evaluation, which is depicted in Table 2.

Figure 7. Qualitative performance comparison for AceGPT-7B-Chat, AceGPT-7B–based InfectA-Chat (ours), and AceGPT-7B-Chat–based InfectA-Chat
(ours) by GPT-4 evaluation.
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Table 2. Qualitative performance analysis of 5-step GPT-4 evaluation process.

AccuracyEvaluation phases and models

Mean (SD)Step 5Step 4Step 3Step 2Step 1

Phase 1 (%)

43.52 (0.46)43.4643.6142.7743.9343.86InfectA-Chat (based on AceGPT-7B-Chat)

34.75 (0.58)34.4034.5135.6634.2234.99InfectA-Chat (based on AceGPT-7B)

21.71 (0.37)22.1221.8821.5721.8521.15AceGPT-7B-Chat

Phase 2 (%)

48.61 (0.20)47.7646.5350.3751.2747.44InfectA-Chat (based on AceGPT-7B-Chat)

31.52 (0.11)29.8632.8231.2231.3732.35AceGPT-13B-Chat

19.8 (0.19)22.3820.6518.4117.3620.21Jais-13B-Chat

Phase 3 (%)

23.78 (0.47)23.3624.3323.9323.2124.08InfectA-Chat (based on AceGPT-7B-Chat)

10.83 (0.38)11.3310.5210.7611.1210.43Gemini

14.19 (0.46)14.7014.1814.5613.5414GPT-3.5-Turbo

51.18 (0.62)50.6150.9750.7652.1351.49GPT-4

In the initial phase, InfectA-Chat (based on AceGPT-7B-Chat)
demonstrated superior performance compared to
AceGPT-7B-Chat and InfectA-Chat (based on AceGPT-7B),
achieving an accuracy of 43.52% on the overall
instruction-following dataset (Figure 7). Notably, for English
and Arabic instruction–following data, InfectA-Chat (based on
AceGPT-7B-Chat) surpassed other models, achieving
performance rates of 44.06% on 614 of 1393 English test cases
and 42.78% on 589 of 1377 Arabic test cases, respectively. In
addition, the performance gap between AceGPT-7B-Chat and
InfectA-Chat (based on AceGPT-7B-Chat) can also be observed
in their answers to Arabic and English queries (Multimedia
Appendix 1).

In comparison to other Arabic LLMs such as AceGPT-13B-Chat
and Jais-13B-Chat, InfectA-Chat (based on AceGPT-7B-Chat)
showed better performance, achieving an overall performance
rate of 48.61% on 1346 of 2770 overall test cases in the
instruction-following dataset (Figure 8). Particularly, its
performance in English and Arabic instruction–following data,
where InfectA-Chat (based on AceGPT-7B-Chat) surpassed
other models, achieving rates of 44.25% (616/1393 English test
cases) and 53.16% (732/1377 Arabic test cases), respectively.
These results prove the capability of InfectA-Chat (based on
AceGPT-7B-Chat) not only to outperform similar-scale Arabic
LLMs but also to compete favorably against larger models with
up to 13 billion parameters.

Figure 8. Qualitative performance comparison for AceGPT-13B-Chat, Jais-13B-Chat, and AceGPT-7B-Chat–based InfectA-Chat (ours) by GPT-4
evaluation.

As the final step, in addition to comparing with open-source
Arabic LLMs, the InfectA-Chat (based on AceGPT-7B-Chat)
model was evaluated against state-of-the-art closed-source

models, including GPT-3.5, GPT-4, and Gemini (Figure 9).
These comparisons revealed that the InfectA-Chat (based on
AceGPT-7B-Chat) model substantially outperformed GPT-3.5
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and Gemini, achieving a performance rate of 23.78% on 656 of
2770 test cases while competing closely with the GPT-4 models,
which attained a performance rate of 51.18% (1417/2770 test

cases) against other models. This highlights the competitive
edge of InfectA-Chat (based on AceGPT-7B-Chat) against
top-tier closed-source models in the field of infectious diseases.

Figure 9. Qualitative performance comparison for InfectA-Chat (ours), GPT-4, GPT-3.5, and Gemini.

As demonstrated, we used GPT-4 as an evaluation metric.
However, since GPT-4 can show variability during generating
answers based on our prompts, we used SD to ensure the
trustworthiness of this evaluation method. To do that, we applied
GPT-4 evaluation 5 times to our 3-step evaluation process and
we compared each model’s accuracy in each evaluation step
and observed their SD. The further details of this analysis are
depicted in Table 2.

As we can see in the SD results from Table 2, the SD of each
model in each phase is quite low. This proves the consistency
of our GPT-4 evaluation method that reflects our comparison
model’s performance.

Performance Comparison of InfectA-Chat in the General
Domain
To evaluate the generalizability of the best-performing
InfectA-Chat model (based on AceGPT-7B-Chat), we conducted
cross-domain testing on the Arabic Massive Multitask Language
Understanding (MMLU) [54] benchmark (Table 3). This dataset
assesses common-sense reasoning and Q&A capabilities, crucial
for tasks beyond the infectious disease domain. The Arabic
MMLU dataset comprises 40 tasks and 14,575 multiple-choice
questions in Modern Standard Arabic, meticulously constructed
in collaboration with native Arabic speakers. This dataset covers
a wide range of subjects, including science, technology,
engineering, and mathematics (STEM); social sciences;
humanities; and others, ensuring its relevance as a source of
common-sense knowledge. The questions are designed to assess
a spectrum of knowledge levels, from primary education to
university-level understanding. Because the dataset is
specifically tailored to evaluate models’ real-world knowledge,
we chose to use the Arabic MMLU dataset to assess our model’s
performance on practical data. We evaluated InfectA-Chat and
other models’ performance in a multiple-choice Q&A task in
4 different domains, such as STEM, humanities, social sciences,
and others, as reflected in Table 3. In the STEM domain,

InfectA-Chat achieved a performance score of 40.84% on 1315
of 3220 STEM data, outperforming the LLaMA models
(LLaMA-7B and LLaMA-13B) as well as the Jais base models
(Jais-13B and Jais-30B) and Bloomz. Its performance was on
par with that of the more advanced AceGPT chat models
(AceGPT-7B-Chat and AceGPT-13B-Chat), Jais chat models
(Jais-13B-Chat and Jais-30B-v3-Chat), and GPT-3.5-Turbo,
indicating its strong capabilities in technical subjects. In the
humanities domain, InfectA-Chat scored 46.94% on 1715 of
3655 humanities data, demonstrating higher accuracy than
LLaMA models, Bloomz, Jais base models, AceGPT base
models, and GPT-3.5-Turbo. Its results closely approach those
of the AceGPT chat models (48.54% for AceGPT-7B-Chat and
50.91% for AceGPT-13B-Chat, with the following 1774 and
1861 data points out of 3655) as well as the Jais chat models.
In the social sciences and other general domains, InfectA-Chat
achieved scores of 45.58% (1613/3540 social sciences-related
data) and 49.48% (1751/3540 general domain data),
respectively, surpassing LLaMA models, AceGPT base models,
Bloomz, and Jais base models. Instruction tuning is one of the
primary factors limiting the generalizability of InfectA-Chat.
Despite this, our model, which is specifically focused on the
infectious diseases domain, demonstrates performance
comparable to that of the AceGPT and Jais chat models,
highlighting its adaptability and strong performance across a
wide range of disciplines. On average, across 4 domains,
InfectA-Chat achieved a strong overall score of 45.71% on 6662
of 14,575 general domain data, positioning it competitively
among large multilingual models such as Bloomz (34.53% of
14,575 data), LLaMA-7B (30.78% of 14,575 data), and
LLaMA-13B (37.27% of 14,575 data). Notably, InfectA-Chat
outperformed leading Arabic pretrained models, such as
AceGPT-13B and the Jais-series base models (Jais-13B-base
and Jais-30B-base), with a performance gap ranging from 2.99%
to 12.28% of 14,575 data. This suggests that InfectA-Chat is
especially effective at handling common-sense multiple-choice
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Q&A tasks compared to other prominent Arabic models. Its
performance also closely approaches that of instruction-tuned
models such as AceGPT-7B-Chat (47.58% performance rate
on 6934/14,575 data) and AceGPT-13B-Chat (50.81%
performance rate on 7405/14,575 data) while remaining
competitive against advanced Jais-series chat models
(Jais-13B-Chat and Jais-30B-v3-Chat), which scored between

55.11% and 61.14% of 14,575 data, respectively. This
underscores InfectA-Chat’s significant performance not only
in the domain of infectious diseases but also in real-world
common-sense data, outperforming both English and Arabic
base models while maintaining competitive results with a small
performance gap with Arabic chat models.

Table 3. The results of testing Arabic large language models on the Arabic Massive Multitask Language Understanding benchmark dataset (accuracy).

Others (%)Social sciences (%)Humanities (%)STEMa (%)Mean (%)Model

34.5337.5829.2933.3534.53Bloomz

30.7827.4629.3330.3030.78LLaMA2-7B

37.2733.4232.3032.9437.27LLaMA2-13B

33.4333.7431.2530.5133.43Jais-13B-based

39.6042.1330.6732.6739.60Jais-30B-based

34.4233.4530.9529.7334.42AceGPT-7B-based

42.7243.7638.7436.6042.72AceGPT-13B-based

52.3347.0348.5442.4147.58AceGPT-7B-Chat

54.2750.9750.9147.1050.81AceGPT-13B-Chat

59.6654.0556.7349.9855.11Jais-13b-Chat

67.4359.1063.4554.5961.14Jais-30b-v3-Chat

53.2155.5744.1243.3849.07GPT-3.5-Turbo

49.4845.5846.9440.8445.71InfectA-Chat

aSTEM: science, technology, engineering, and mathematics.

Advanced InfectA-Chat Performance With RAG Pipeline
Traditionally, recurrent fine-tuning of models with additional
data incurs significant time and computational costs, making it
an inefficient strategy. To address this issue, the implementation
of the RAG pipeline is critical. In our study, we validated the
necessity by applying the RAG pipeline to InfectA-Chat
alongside cutting-edge models such as GPT-3.5 and GPT-4,
using a set of 50 recent instruction-following data. The results
illustrated the efficacy of the RAG pipeline when incorporating
recent data (Figure 10). The results in Figure 10 were obtained
by averaging the inference accuracy of each model across 5
runs in English and Arabic data to prove the consistency of
model performances. Across all datasets, InfectA-Chat exhibited
a remarkable performance of 90.08% on 45 of 50 RAG test
data, with an SD of 1.7%. Particularly in the Arabic dataset,
InfectA-Chat demonstrated superior performance at 86.4%
(43/50 RAG test data), and in the English dataset, it excels at
96% on 48 of 50 RAG test data, outperforming both GPT-3.5
and GPT-4 models, which have SD of 0.8% (4/50 RAG test
data) and 0.16% (8/50 RAG test data), respectively. These

findings highlight the capacity of RAG to obviate the need for
repetitive instruction tuning by integrating the model with
up-to-date information, particularly crucial in domains such as
public health and infectious diseases.

Following the results of the RAG pipeline with the up-to-date
dataset, to delve deeper into the influence of information
retrieval on factual language models like InfectA-Chat, we
investigated the impact of the top-k parameter within the RAG
pipeline. This parameter controls the number of top-ranked
documents passed from the retrieval stage to the generation
stage. Our experiments with RAG using top-1, top-3, and top-5
settings demonstrated a positive relationship between increasing
the top-k value and the accuracy of retrieval (Figure 11).

This implied that exposing InfectA-Chat to a greater range of
potentially relevant information during retrieval can
considerably improve its factual language modeling capabilities.
As observed, this translated to a substantial performance
improvement for InfectA-Chat, with an accuracy of 80.05% on
40 of 50 RAG test data, achieved using the top-5 parameter
compared to the top-1.
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Figure 10. Qualitative performance results for InfectA-Chat on the recent dataset (March 20, 2024, to June 20, 2024) by GPT-4 evaluation.

Figure 11. Accuracy of retriever based on top-k parameter in Retrieval-Augmented Generation pipeline.

Discussion

In conclusion, the critical need for real-time disease monitoring,
particularly in regions like the Middle East, has exposed a gap
in accessible, multilingual resources. Regional public health
agencies, such as the US Centers for Disease Control and
Prevention [55] and the Chinese Center for Disease Control and
Prevention [56], play an important role in protecting public
health by conducting research and offering disease surveillance
and prevention programs in their regions. In addition, there has
been a rise in innovative platforms providing daily alerts, such
as the CIDRAP [45] and the Program for Monitoring Emerging

Diseases [57]. Apart from these platforms, with the rise of
LLMs, LLMs started to play a role in delivering information in
various domains, including infectious disease tracking. Given
our focus on Arabic-speaking countries within the MENA
region, there remain a limited number of Arabic language
models specifically tailored for the medical and public health
domains. While the development of medical LLMs is expanding
globally, only a few models, such as BiMediX [38] and Apollo
[39], have been created with a focus on Arabic language
capabilities. Although these models are valuable for supporting
societal and medical initiatives, they still face limitations,
especially in monitoring infectious diseases, due to the limited
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availability of infectious disease surveillance data for training.
InfectA-Chat addresses this challenge by delivering up-to-date
information on infectious diseases in both Arabic and English.
Moreover, the exceptional performance of InfectA-Chat in
handling instruction-following data in Q&A tasks across
languages sets a new standard in the field of infectious disease
monitoring. By leveraging the power of LLMs, InfectA-Chat
positions itself as a pioneer for bridging the information gap
and promoting public health awareness compared to other
existing LLMs. However, even though InfectA-Chat has
significant performance, it still shows limitations itself.

First, while InfectA-Chat demonstrates significant performance
in Arabic and English understanding, it may still face challenges
due to limited computing resources and data availability. The
limitation in the amount of data available in English and Arabic
in the field of infectious diseases create a barrier to the model’s
performance. In addition, because the training of LLMs requires
more computational resources, such as GPUs, this would make
the development process faster and more efficient. Due to our
limited computational resources, the process becomes slower,

restricting us to using smaller model sizes. As the accessibility
of computational resources and instruction-following data
continue to grow, InfectA-Chat can achieve greater performance.

Second, in some scenarios, the model may generate inconsistent
answers based on the given questions, such as incorrect
information about specific diseases, known as the hallucination
problem. Although this issue was mitigated by implementing
a RAG pipeline, InfectA-Chat may still exhibit a small
likelihood of hallucination. Applying RAG with a larger volume
of data could further reduce the hallucination rate to nearly 0.

Future work efforts should focus on mitigating these limitations
to unlock the potential of InfectA-Chat. With larger datasets
and more computational resources, the performance of
InfectA-Chat can be increased. In addition, we will focus on
how to improve the performance of our model in the general
domain by mitigating the disadvantages of instruction tuning.
We aim to establish InfectA-Chat as a truly transformative tool
in the fight against infectious diseases by enhancing our target
regions and obtaining massive data in different languages.
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