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Abstract

Background: Diagnosis of venous thromboembolism (VTE) is often delayed, and facilitating earlier diagnosis may improve
associated morbidity and mortality. Clinical notes contain information not found elsewhere in the medical record that could
facilitate timely VTE diagnosis and accurate quality measurement. However, extracting relevant information from unstructured
clinical notes is complex. Today, there are relatively few electronic clinical quality measures (eCQMs) in our national payment
program and none that use natural language processing (NLP) techniques for data extraction. NLP holds great promise for
making quality measurement more accurate and more efficient. Given the potential of NLP-based applications to facilitate
more accurate VTE detection, primary care is one clinical setting in urgent need of this type of tool.

Objective: This study aimed to develop a tool that extracts VTE symptoms from clinical notes for use within an eCQM to
quantify the rate of delayed diagnosis of VTE in primary care settings.

Methods: We iteratively developed an NLP-based data extraction tool, venous thromboembolism symptom extractor
(VTExt), on an internal dataset using a rule-based approach to extract VTE symptoms from primary care clinical note text.
The VTE symptoms lexicon was derived and optimized with physician guidance and externally validated using datasets from
2 independent health care organizations. We performed 26 rounds of performance evaluation of notes sampled from the case
cohort (17,585 patient progress note sentences from 279 patient notes), and 5 rounds of evaluation of the control cohort (2838
patient progress note sentences from 50 patient notes). VTExt’s performance was evaluated using evaluation metrics, including
area under the curve, positive predictive value, negative predictive value, sensitivity, and specificity.

Results: VTExt achieved near-perfect performance in extracting VTE symptoms from primary care notes sampled from
records of patients diagnosed with or without VTE. In external validation, VTExt achieved promising performance in 2
additional geographically distant organizations using different electronic health record systems. When compared against a deep
learning model and 4 machine learning models, VTExt exhibited similar or even improved performance across all metrics.
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Conclusions: This study demonstrates a data-driven NLP-based approach to clinical note information extraction that can be
generalized to different electronic health record systems across different institutions. Due to the robust performance of this
tool, VTExt is the first NLP application to be used in a nationally endorsed eCQM.
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Introduction

Venous thromboembolism (VTE) is an often undetected
condition that includes both deep vein thrombosis (clots in the
deep veins of the body [1]), and pulmonary embolism (PE;
clot breaking free and entering the pulmonary arteries [1,2]).
VTE is associated with increased morbidity and mortality [3]
with a 1-year VTE case-fatality rate estimated at 23% [4] and
associated with increased health care costs [5].

The incidence of VTE in the United States is unknown
as there is currently no national VTE surveillance system in
place [1]. Cases are often missed since they are asymptomatic
or associated with symptoms similar to those of other chronic
conditions, leading to substantial undercounting. In a 2015
literature review, Heit [6] identified the incidence of VTE
as ranging from 104 to 183 cases per 100,000 person-years.
This rate is based largely on Caucasian populations [4,7-16]
and differs by race where African American individuals face
higher rates of VTE [17-19], and Asian [20], Asian Amer-
ican [21,22], and Native American individuals [23] see a
lower VTE incidence. Higher levels of education, income,
and employment status have also been shown to be associ-
ated with decreased risk of VTE [24]. Risk factors for VTE
include a history of VTE [25] (rates of recurrent VTE range
from 20%-36% within 10 years of the initial VTE event
[26,27]), older age [1], recent immobility or surgery, cancer,
smoking, thrombophilia [28], and obesity [6].

Delayed diagnosis of VTE is common due to its nonspe-
cific symptoms [29]. VTE can also be difficult to identify
in the electronic health record (EHR) due to variability in
how VTE is documented and coded [30]. Due to these
challenges and the lack of national surveillance, the incidence
of VTE is likely underestimated [31,32]. Tools to facilitate
measurement and earlier diagnoses of VTE may help in better
understanding VTE risk factors, reduce associated morbidity
and mortality [33,34], and improve patient safety.

The widespread adoption of interoperable EHR systems
after the 2009 Health Information Technology for Eco-
nomic and Clinical Health Act [35,36] has led to a signif-
icant increase in unstructured text data, such as radiology
reports, progress notes, and discharge summaries [37]. These
unstructured data are estimated to constitute over 80% of
health and biomedical information [37]. Free-text clinical
notes in EHRs hold valuable insights for population-level
quality improvement, but efficient strategies leveraging Al,
machine learning, and natural language processing (NLP) are
essential to harness this potential.
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NLP is useful for analyzing unstructured EHR data in
areas like radiology [38], oncology [39,40], endocrinology
[41], substance misuse [42], PE identification [43], and
postoperative VTE [44]. By extracting information from
text, NLP creates structured data, reducing manual review
and enabling large-scale automated processing [45]. High-
throughput phenotyping algorithms using NLP-derived and
structured data show promise for developing standardizing
labeling [46] particularly for managing complex diseases in
large-scale patient populations. NLP can also uncover critical
information overlooked using structured variables [4748].
While large language models (LLMs) are popular for NLP
tasks, they are often more resource-intensive and costly than
traditional machine learning or rule-based methods [49].
Though machine learning methods tend to have improved
performance, a rule-based approach has advantages, such as
traceability of results and speed of development [50].

NLP tools can detect VTE events, but more sensitive tools
are needed to identify VTE events specifically in primary care
EHR progress notes [44,51]. The objective of this study was
to develop a simple, accessible NLP tool for identifying VTE
symptoms in primary care EHRs, suitable for both high- and
low-resource settings and aligned with the national quality
payment program. The tool was tested on external datasets
to evaluate its performance compared with deep learning and
machine learning models. This main aim is to use narrative
EHR data for clinical quality reporting to identify missed
or delayed diagnoses of VTE after a primary care visit. A
delayed diagnosis is defined as one that occurs >24 hours
after the primary care visit when the VTE symptoms were
documented.

Methods

Data Sources, Cohort Development, and
Feature Selection Strategy

The study was conducted at Mass General Brigham (MGB),
an integrated health care delivery system in Greater Boston,
Massachusetts, using data from the MGB Enterprise Data
Warehouse (EDW), an MGB central clinical data warehouse.

We used 2 internal datasets to develop and evaluate our
NLP application for symptom extraction, and 2 independ-
ent external datasets to test how well it works in other
settings. The first internal dataset, the case cohort, was used
for development and evaluation. Inclusion criteria for this
cohort are described below. The second internal dataset, the
control cohort, included patients who did not meet case cohort
inclusion criteria and was used for further evaluation. The

JMIR Med Inform 2025 | vol. 13 163720 | p. 2
(page number not for citation purposes)


https://doi.org/10.2196/63720
https://medinform.jmir.org/2025/1/e63720

JMIR MEDICAL INFORMATICS

external validation datasets came from 2 university health
systems: the University of Kentucky and Penn State Health.
These datasets were used to test if our symptom extractor
works well with notes from different EHR vendors and health
care systems.

We developed a multifactor phenotyping algorithm to
identify VTE patients in the MGB cohort [52]. This inclu-
ded patients diagnosed with VTE from 2016 through 2021
who had a primary care visit in the 30 days before the
date of diagnosis. We started by using ICD-10 (International
Statistical Classification of Diseases, Tenth Revision) codes
to identify an initial VTE patient cohort. Then we combined
data from imaging records (eg, current procedural terminol-
ogy [CPT] codes) and anticoagulant orders (RxNorm codes)
to further refine the initial cohort and develop the final VTE
case cohort. The diagnosis date and time of VTE diagnosis
was defined as when the radiologist signed off on the scan
report [52,53].

We used a rule-based approach to identify terms from
a lexicon derived from a set of VTE signs and symptoms.
The lexicon was divided into 3 parts: one with relevant
symptoms dependent on the part of the body (eg, swelling),
another with the relevant symptom locations (eg, leg), and the
last containing location-independent symptoms (eg, cough).
Location-dependent symptoms required identification of both
the symptom and a relevant location to be considered a
symptom match. The lexicon was reviewed and revised over
the course of the study in accordance with physician expert
guidance.

Clinician-Guided VTE Lexicon
Development and Optimization

We identified VTE-related signs and symptoms by combin-
ing a literature review with interviews of physicians with
experience in treating VTE patients. Multiple optimization
steps were conducted: first, we conducted a comprehensive
literature review to create an initial list of signs and symp-
toms. Then, we held 1-hour semistructured interviews with
5 experienced physicians to provide additional insight into
signs and symptoms based on clinical experience. Signs and
symptoms were also reviewed by a technical expert panel
over the course of development, and their feedback was
used to finalize the lexicon. In total, we included 29 dis-
tinct symptoms in the lexicon, consisting of 7 location-inde-
pendent symptoms, 7 location-dependent symptoms, and 4
relevant locations. The final VTE symptom 3-part lexicon
can be found in Multimedia Appendix 1. Inclusion criteria
ICD-10, CPT, and RxNorm codes are provided in Multimedia
Appendix 2. The prevalence of each symptom in each dataset
is provided in Multimedia Appendix 3.

Extractor Development and Optimization

The Medical Text Extraction, Reasoning and Mapping
System (MTERMS) [54] venous thromboembolism symp-
tom extractor (VTExt) was developed using the Python
programming language. We chose a rule-based approach
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to identify symptoms in order to facilitate transferability
of the tool and to ensure transparency of its workings,
which can be challenging when using more complex machine
learning or LLM-based approaches [55]. Using a rule-based
approach also suited the need for VTExt to identify VTE
symptoms within specific contexts, for example, at specific
body locations.

The development cycle used in the creation of VTExt
entailed initial analysis of symptom extractor requirements,
design and implementation of the extractor, iterative testing
on samples of patient notes, and adjusting VTExt based on
error analyses. The overall study design and development
process is provided in Figure 1.

We first reviewed a small sample of cases from the dataset
described above to understand how VTE symptoms appear
in primary care progress notes, for example, how providers
document VTE symptoms. The initial version of VTExt
was then used to extract symptoms from a batch of sam-
pled primary care progress notes. A trained chart abstractor
reviewed each sentence analyzed by VTExt and determined
whether the structured output was accurate, marking each
case as a true positive, true negative, false positive, or
false negative. Whenever an error occurred, the reason was
identified, and adjustments were made to the extractor to
avoid the error in the processing of future batches. We
repeated this optimization process of running the extractor on
a new sample of 10-15 notes, reviewing output, and refining
the pattern-matching to iteratively improve the performance
of the symptom extractor until we achieved a precision
(positive predictive value [PPV]) of at least 0.95.

For each round, one progress note from each patient visit
was extracted and combined into a single file. Patient notes
were split into sentences using the MTERMS NLP sys-
tem [54]. The symptom extractor then used regular expres-
sion-based rules to identify signs and symptoms of VTE
in the curated lexicon and wrote output to a structured
query language database to allow for integration of extractor
output into other pipelines, including mapping symptoms to
standardized terminologies. The NLP output table contains
one column for each VTE symptom in the lexicon. Each
row in the table corresponds to 1 patient note, and a binary
output value for each symptom field indicates whether a
given symptom was detected in the note by VTExt—if yes,
presence was indicated with a value of “1,” and if not, a value
of “0.”

To facilitate the clinical implementation of our tool, we
developed a streamlined version of VTExt with simplified
output for use with the electronic clinical quality measure
(eCQM). Instead of producing output values for presence of
individual signs and symptoms, this version produced a single
“0” or “1” value for each patient note to indicate whether
at least 1 VTE symptom was identified. This streamlined
version of VTExt was used in the external evaluation of the
tool. Pseudocode for the tool can be found on our project
GitHub page [56].
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Figure 1. Venous thromboembolism symptom extractor development and evaluation process. EDW; enterprise data warehouse; EHR; electronic
health record; MGB; Mass General Brigham; VTExt: venous thromboembolism symptom extractor.

New sample of 10-

Case cohort 15 notes

MGB EDW

New sample of 10-

Control cohort
15 notes

External test site
EHR database

External testing
dataset
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We evaluated the VTExt symptom extractor using both
internal and external datasets. For internal evaluation, we
used both a case cohort and a control cohort. The case cohort
included patients who met our inclusion criteria for incident
VTE based on the presence of 3 codes; ICD-10 VTE codes,
CPT imaging codes, and RxNorm anticoagulation codes [53].
The control cohort included patients who did not meet these
criteria.

Internal evaluation of the VTExt symptom extractor was
an iterative process, illustrated in Figure 1. From all patients
who met the case cohort inclusion criteria, we randomly
selected batches of 10 to 15 patient visits for each round of
testing. We used a similar method to sample control notes
to evaluate how well the symptom extractor generalized to
patients that did not meet the case cohort inclusion criteria
(eg, patients who did not have a VTE diagnosis).

External Evaluation

We worked with collaborators at both the University of
Kentucky and Penn State Health (PSH) to test VTExt
on patient notes. These sites used different EHR systems
which also differed from MGB and had different textual
data structures. In Epic (used at MGB), patient notes exist
in tables, which include note-related information including
metadata and the note content itself. Veradigm (formerly
Allscripts; used by University of Kentucky) and Oracle
Cerner (used by PSH) similarly store patient note data in
document tables. For free text notes in Veradigm and Oracle
Cerner, note contents of many documents are stored in
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“Character Large Objects” or “Binary Large Objects” fields.
Notes in these areas of the database require special query-
ing techniques to extract unstructured text, usually requiring
certified analysts. Despite these differences, once note text
data are available, the NLP tool functions properly irrespec-
tive of the EHR as it is not dependent on the EHR itself.

In addition, each system served a different population:
MGB serving mostly urban and metro, University of
Kentucky serving more rural, and PSH serving a mixed
population of urban, metro, and rural. The diversity of sites
included served as a good preliminary test for generalizability
of VTExt.

During external evaluation, we compared the performance
of the rule-based extractor against a pretrained sequence
classification deep learning model derived from Bio+Clinical
BERT (bidirectional encoder representations from transform-
ers; using the HuggingFace transformers Python package), a
contextualized word representation model based on Bio-
BERT and trained further on Medical Information Mart
for Intensive Care (MIMIC) data [57-60]. We also com-
pared performance against 4 classical machine learning
models: logistic regression, support vector machine (SVM),
and random forest, implemented using the Python Scikit-
learn module, and gradient boosting, implemented using the
Python XGBoost module [61-63]. MGB data used during
the development of VTExt were preprocessed using the
Bio+Clinical BERT tokenizer for further training of the deep
learning model. For training the four classical models, the
MGB data were instead represented as unigrams transformed
using term frequency —inverse document frequency (TF-IDF)
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[64]. For all models, data were divided into training and
validation sets for training and tuning of model parameters,
respectively. Final parameters for deep learning and machine
learning models are provided in Multimedia Appendix 4.
Each external site manually labeled a testing set of 500 note
sentences for evaluation, 250 containing at least one VTE
symptom and 250 with no VTE symptoms.

Ethical Considerations

This project was reviewed and approved by the Mass General
Brigham institutional review board (protocol #2020P003979).
In this protocol, a waiver of informed consent and a waiver
of HIPAA (Health Insurance Portability and Accountabil-
ity Act) authorization was requested because this quality
improvement research involves no more than minimal risk
to the participants and the research could not practicably be
carried out without the waiver given the large number of
patients who had a VTE diagnosis in a primary care setting.
In addition, this research could not practicably be conducted
without access to and use of the protected health informa-
tion. The following procedures were followed to prevent
breach in confidentiality: (1) data were accessed only behind
MGB firewall using password-protected, secure devices by
Collaborative Institutional Training Initiative—certified study
staff, and (2) we will destroy all patient identifiers at the
end of the study, once analysis and publications are finalized.
In accordance with the approved institutional review board
protocol, all electronic data were kept in password-protected
files on a secure server behind the MGB firewall. Only
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study personnel were given a unique identifier—no partici-

pant identifiers are linked to the data. No compensation was
provided for participation.

Results

We performed 26 rounds of evaluation of VTExt performance
on notes sampled from the case cohort. This included 17,585
patient progress note sentences from 279 notes from distinct
patients, 171 of which were found to contain 1 or more VTE
symptoms. Evaluation of the control cohort included 2838
note sentences from 50 patient notes over the course of five
rounds of evaluation, of which 21 notes contained at least 1
relevant symptom.

Performance was evaluated at the sentence level. We
measured precision (PPV), recall (sensitivity), specificity, and
negative predictive value (NPV; Table 1). Of these metrics,
achieving a high precision score proved to be the greatest
challenge. Many false positives initially arose due to 3 kinds
of errors, shown in Table 2. Some errors were due to word
misspellings in the notes (which we refer to as type A errors).
For example, misspelling of the word “denies” caused VTExt
to miss negation of subsequent VTE symptoms. In other
cases, an error occurred because a symptom was identified
but was attributed to the incorrect body part (a type B error).
Many false positives arose in early stages of evaluation from
failure to detect negation or context, as in the Type C error
examples in Table 2.

Table 1. Venous thromboembolism symptom extractor validation performance on notes of case cohort (patients with venous thromboembolism

diagnosis).
Validation round Patients, n Precision (positive predictive value) Recall (sensitivity) Specificity Negative predictive value
Round 1 673 0.500 0.863 0.929 0.988
Round 9 692 0.851 0.966 0.984 0.997
Round 17 489 0.750 1.000 0.998 1.000
Round 26 938 1.000 1.000 1.000 1.000

Table 2. Examples of common sources of symptom extractor false positive errors.

Error type Examples

Type A: misspelling
Type B: symptom attributed to wrong body part
Type C: negation or context

She “deneis” shortness of breath or pleuritic chest pain

Worsening R hip “pain” as well as recent development of R “leg,” ankle, and foot erythema
“Resolution” of hypoxia and chest pain. Nitroglycerin 0.4 MG SL tablet place 1 tablet (0.4 mg

total) under the tongue every 5 (five) minutes “as needed” for chest pain

For the first example, VTExt captured the symptom hypo-
xia without identifying the negating phrase “resolution of.”
In the second example, though chest pain is mentioned, it
appears in the context of a medication to be taken as needed,
which we deemed not to be strong enough evidence of the
presence of a symptom. Repeated validation allowed us to
learn what contexts and negating phrases appeared in clinical
text, and this knowledge was used to improve VTExt’s ability
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to locate them. Through this process, precision improved
from 0.5 in the first round of testing to near-perfect in the
final round. Near-perfect performance was also achieved for
recall, specificity, and NPV in the final round of validation. In
addition, we tested the extractor on several random samples
of primary care clinical notes of patients in the cohort, that is,
those not diagnosed with VTE (Table 3, in batches of 10-15
notes, with precision ultimately reaching 0.85).
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Table 3. Venous thromboembolism symptom extractor validation performance on notes of the control cohort (patients with no venous thromboembo-
lism diagnosis).

Validation round N Precision (positive predictive value) Recall (sensitivity) Specificity Negative predictive value
Round 1 281 0.533 1.000 0974 1.000
Round 2 471 0.556 1.000 0.991 1.000
Round 3 613 0.750 1.000 0.998 1.000
Round 4 559 0.806 1.000 0.989 1.000
Round 5 912 0.850 0.895 0.997 0.998

As seen in the external evaluation results in Table 4,
performance metrics for the rule-based extractor were similar
or better than those for the deep learning and machine
learning models at both external testing sites. While VTExt’s
precision and specificity scored high, sensitivity showed room
for improvement (0.61 and 0.66 at PSH and University of
Kentucky, respectively).

Error analysis of external testing results showed many
deep learning model false negatives falling into 2 categories.
Some errors can be attributed to overrepresentation of negated
instances of certain VTE symptoms in the training dataset.
This then makes the model more inclined to mark note
sentences containing said symptoms as negative, even when
the symptom is not negated. For the second category, less
common terms used to describe relevant symptoms appear
in testing data, for example, “malleoli” used in describing
swelling of ankle. If such terms are not present in the training
data, the model has no way of knowing they are relevant.

The rule-based model also produced false negatives, many
belonging to one of two types. First, some errors can be
attributed to double negation, which VTExt is not currently
able to handle. For example, “SOB not resolved” —here, we
see a VTE symptom, shortness of breath (SOB), followed
by negating term “resolved.” However, “resolved” itself has
been negated, and so this represents a positive instance. The
second error type pertains to synonymous terms of phrases of
VTE symptoms that are not currently included in the lexicon,
for example, “black and blue area” as another way to phrase
bruising. Since the phrase “black and blue area” is not part of
the symptom lexicon, the rule-based model did not detect the
symptom.

The results for the eCQM have been reported elsewhere
[53]. The calculated rate of delayed VTE diagnosis was over
70% at both MGB and University of Kentucky, suggesting a
clinically and practically meaningful measure for understand-
ing delayed diagnosis rates across diverse health care sites.
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Discussion

Principal Findings

Much of the data not captured in structured EHR fields, like
patient symptoms, are found in clinical notes [48]. In this
study, we developed and validated a simple and generalizable
NLP tool to identify and extract signs and symptoms of VTE
from primary care notes through an iterative optimization
process. VTExt is novel as the first NLP application linked
to a nationally endorsed eCQM [65], helping to quantify
the rate of delayed diagnosis of VTE in primary care.
Through multiple rounds of optimization, VTExt showed
robust performance and speed. Testing at two external sites
demonstrated its ability to work well with different datasets
and system configurations and its potential for optimizing
quality measurement. We suggest that analysts familiar with
their EHR and its local configurations could readily apply this
NLP tool to their patient notes.

We learned several important lessons during optimiza-
tion. Reducing the prevalence of false positives was crucial
for improving extractor performance. In early rounds of
validation, type B and type C errors often arose in long
sentences due to a lack of constraint on the allowed search
distance between a VTE symptom and a body part, or
between a negating or contextual phrase and a symptom. We
experimented with search distances of various lengths and
found a distance of 150 characters struck a good balance of
incorporating context without introducing too much noise,
improving precision while maintaining high sensitivity.

We focused on primary care progress notes for devel-
oping and testing VTExt. Our external evaluation indica-
ted that differences in note styles and hospital policies
can affect performance. However, consistent performance
observed between the 2 external sites highlighted VTExt’s
strong generalizability. VTExt’s rule-based approach offers
advantages including easier implementation, faster process-
ing, and easier interpretation of results when compared with
the tested machine learning and deep learning models. Error
analysis also revealed further improvement opportunities
for the symptom extractor. Working with collaborators at
external sites to further refine VTEXxt to reduce false negatives
would prove beneficial in improving sensitivity and NPV.

Comparison With Previous Work

Shi et al [44] developed an NLP tool to detect postoperative
VTE from free-text EHR notes. Internal validation demon-
strated a sensitivity of 0.71 and specificity of 0.99. In the 2
health care systems tested, this NLP approach demonstrated
superior performance in DVT surveillance than existing tools,
and similar performance in PE surveillance compared with
existing tools. Chapman et al [51] developed an NLP-based
application to classify pulmonary angiography reports for
document-level identification of PE, with test set performance
resulting in sensitivity of 0.98 and PPV of 0.83. Sabra et al
[66] incorporated Unified Medical Language System concept
mapping into an NLP tool to generate feature vectors. These
were then used to train and test an SVM machine learning
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model that achieved a PPV and sensitivity of 0.55 and 0.86,
respectively. Work done by Jin et al [67] to identify VTE in
inpatient notes using rule-based NLP methods highlights an
approach that achieved similar performance to VTExt (0.90
sensitivity, 1.0 specificity), splitting notes into sentences,
and then aggregating sentence-level information to make
VTE inference at the sentence, document, and patient level.
Although many of their tools would not be sufficient for our
study’s goal of VTE symptom identification for quantifying
delayed diagnosis, these studies show that NLP tools can
effectively identify VTE events, and there is a need for more
sensitive tools to identify VTE events using EHR progress
notes in the primary care setting.

Limitations

Our study has a number of limitations. First, VTExt is
currently unable to handle misspellings in note text. Revi-
sing VTExt to handle misspellings would result in improved
performance. Second, MGB was unable to view clinical note
data used by external sites in the testing of VTExt in order
to maintain patient data privacy. This reduced our ability
to improve the tool’s generalizability, as MGB was unable
to directly review output from the University of Kentucky
and PSH other than performance metrics. Third, development
and refinement of VTExt was based on 279 patient notes.
While high performance was achieved, a wider dataset would
provide additional context and understanding of the ways
VTE symptoms are documented in clinical note text, allowing
for further improvement of the tool.

Future Directions

While a rule-based approach was simpler to implement,
future improvements in accessible, high-performance LLMs
could make them useful and feasible for quality measurement.
These tools have already shown good results in extracting
information from radiology reports [68], and could also be
used to extract signs and symptoms from other types of
clinical notes. Since LLMs are trained on large volumes of
data, such an approach may generalize better across differ-
ent health care systems and differently formatted notes when
compared with a rule-based method. An LLM approach may
more easily generalize to extracting symptoms from types of
notes other than primary care progress notes, a logical future
direction for research in this area. An immediate LLM-based
approach was not pursued because we began this project in
2020 before there was mass public access to LLMs. While
LLMs prove a promising direction for future work, the cost,
time, and knowledge required to test such an approach at the
collaborating sites were real limiting factors. In addition to an
LLM approach, future work to improve model performance
could include expanding the lexicon of symptom synonyms,
as well as more robust handling of context and negation.

In addition to an LLM approach, future work to improve
model performance could include expanding the lexicon of
symptom synonyms, as well as more robust handling of
context and negation.
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Conclusions VTExt’s generalizability across health care systems
further supports its real-world applicability, enabling scalable
deployment in diverse EHR environments. Its rule-based
design facilitates transparency and ease of implementation,
particularly for quality measurement initiatives such as
tracking delayed diagnosis. Furthermore, the clinician-guided
optimization process developed alongside VTExt provides a
replicable framework for future NLP tool development and
integration into clinical workflows, helping bridge the gap
between EHR data and actionable insights for patient safety
and care improvement.

We developed a robust and efficient NLP-based tool, VTExt,
to extract VTE-associated symptoms from primary care notes.
VTEXt achieved high sensitivity and specificity, performance
that matches or exceeds that of deep learning models and
demonstrates its reliability for clinical use. High sensitivity
ensures that most patients with VTE symptoms are correctly
identified, reducing the risk of missed or delayed diagno-
ses, which can have serious or fatal consequences. High
specificity minimizes false positives, helping avoid unneces-
sary tests, anxiety, and resource use. Together, these metrics
underscore  VTExt’s clinical value in supporting timely,
accurate identification of potential VTE cases from unstruc-
tured data.
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