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Abstract
Background: Agitation and sedation management is critical in intensive care as it affects patient safety. Traditional nursing
assessments suffer from low frequency and subjectivity. Automating these assessments can boost intensive care unit (ICU)
efficiency, treatment capacity, and patient safety.
Objectives: The aim of this study was to develop a machine-learning based assessment of agitation and sedation.
Methods: Using data from the Taichung Veterans General Hospital ICU database (2020), an ensemble learning model was
developed for classifying the levels of agitation and sedation. Different ensemble learning model sequences were compared. In
addition, an interpretable artificial intelligence approach, SHAP (Shapley additive explanations), was employed for explana-
tory analysis.
Results: With 20 features and 121,303 data points, the random forest model achieved high area under the curve values
across all models (sedation classification: 0.97; agitation classification: 0.88). The ensemble learning model enhanced agitation
sensitivity (0.82) while maintaining high AUC values across all categories (all >0.82). The model explanations aligned with
clinical experience.
Conclusions: This study proposes an ICU agitation-sedation assessment automation using machine learning, enhancing
efficiency and safety. Ensemble learning improves agitation sensitivity while maintaining accuracy. Real-time monitoring and
future digital integration have the potential for advancements in intensive care.
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Introduction
Patients admitted to intensive care units (ICUs) often
experience various clinical problems, such as pain, agitation,
and delirium. Agitation refers to physical restlessness due to

treatment discomfort or delirium; this condition cannot be
self-controlled [1]. Agitation is common in patients in ICUs;
most of these patients (71%) exhibit agitation on approxi-
mately 58% of their total inpatient days [2-4]. Agitation
can lead to the accidental removal of tubes and catheters,
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compromising patient safety, extending ICU stays, and
causing complications [5]. Throughout the treatment period,
nurses must regularly evaluate the levels of agitation and
sedation and titrate the dosages of sedatives accordingly for
patient care.

Various scales have been developed for measuring
sedation effects. Among them, the Richmond Agitation-Seda-
tion Scale (RASS) is the most reliable and effective [6]. This
scale was developed by a multidisciplinary team at Virginia
Commonwealth University in Richmond. It employs a simple
and clearly defined scoring system with distinct standards
for measuring the levels of sedation and agitation. Agitation
and sedation levels are represented by positive and negative
scores, respectively. The RASS assessment is performed by
nurses every few hours, which consumes their significant
work time. Reducing the time required for RASS evaluations
could increase ICU treatment capacity, thereby improving
care quality and patient safety.

However, this scale has some disadvantages, such as low
evaluation frequency and high subjectivity, due to variations
in patient evaluation standards among medical personnel.
Occasionally, nurses may have insufficient knowledge about
delirium, which can increase the risk of incorrect evalua-
tions by 20 times [7]. Furthermore, errors in evaluation of
patient conditions may result in excessive or insufficient
sedation. These issues can be attributed to the subjectivity and
uncertainties in the RASS evaluation process, which relies
on patients’ audiovisual responses, making it is unsuitable
for those with severe audiovisual impairment [8]. The RASS
facilitates intermittent measurement of agitation levels and
assessment of patient behavior; however, unlike activity

monitors, it cannot assist in the continuous monitoring of
agitation levels [9].

The study’s aim was to develop an ensemble learning
model for the continuous evaluation of agitation and sedation
levels in patients admitted to ICUs. The model is expected
to facilitate patient monitoring, provide early warnings about
patient behavior, increase assessment frequency, and enable
automatic evaluation of patient conditions with treatment
suggestions. We believe that this novel design could improve
the clinical monitoring of agitation and sedation levels in
patients in ICUs, enhance the quality of medical care, and
reduce the wastage of medical resources.

Methods
Setting
Taichung Veterans General Hospital (TCVGH) is a 1530-bed
medical center in central Taiwan with 7 ICUs comprising
a total of 138 beds. We obtained access to the critical care
database (AI-111010) of the AI Center of TCVGH. The
following data were collected: basic information, disease
severity, ventilator use, blood biochemistry, vital signs,
catheter types, and medication records.
Research Framework
The study consisted of five major steps: (1) data collection
in the ICU, (2) data preprocessing (data imputation and data
sampling), (3) ensemble learning model construction, (4) final
evaluation, and (5) implementation of explainable AI (Figure
1).
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Figure 1. Research framework consisted of 5 steps: (1) data collection in the ICU, (2) data preprocessing (data imputation, data sampling), (3)
ensemble learning model construction, (4) final evaluation, (5) explainable AI. AI: artificial intelligence; RASS: Richmond Agitation–Sedation scale;
ROC: receiver operating characteristic; SHAP: Shapley additive explanations.

Data Preprocessing

Data Imputation
Basic information includes patients’ age. Predicting RASS
in older patients is more challenging. Regarding disease
severity, patients’ acute physiology and chronic health
evaluation (APACHE II) scores may impact their predic-
ted RASS scores [6,10]. Missing data were imputed using
average values.

In addition, the use of ventilators was considered.
Ventilator modes were categorized into 3 conditions: no
ventilator use, noninvasive ventilator use, and invasive
ventilator use. Invasive ventilators may cause discomfort,
indirectly affecting RASS scores [8,10-12]. Furthermore,
PAW (average airway pressure) values, a ventilator param-
eter, were estimated accordingly. For patients on ventila-
tors, the average value from all ventilator-wearing patients
was used to impute missing data, whereas patients without
ventilators were assigned normal random values.

In the category of blood biochemistry, features such as
creatinine, lactate, and glucose were included. These were
directly associated with patients’ physiological conditions
[10]. Typically, blood tests were conducted weekly within a
7-day data window. When no blood test data were availa-
ble within this timeframe, indicating stable patient condition,
normal random values were used for imputation.

Vital signs, including blood pressure, pulse rate, and
respiratory rate, were indirectly associated with changes in
patients’ RASS scores [13]. Since vital signs were densely
and continuously monitored features, adjacent values were
used to fill in missing data directly.

Medication records included the type and dosage of
sedatives and analgesics administered to patients, such as
benzodiazepine sedatives, muscle relaxants, opioid-related
analgesics, antipsychotics, hypnotics, and anesthetics. These
drugs can directly or indirectly influence patients’ conscious-
ness levels and RASS score changes. Due to the varying
recording methods for drug dosage across different types of
medications, establishing a consistent standard was challeng-
ing. Therefore, in this study, the presence or absence of
records indicating the use of muscle relaxants or sedative-
hypnotics within the past 8 hours was used as a feature for
RASS assessment.

Data Sampling
To address severe data imbalance issues (oversedation:
43,199 cases, maintain range: 77,290 cases, agitation: 814
cases), this study employed data oversampling and undersam-
pling techniques to enhance model learning effectiveness. In
addition, discussions with clinical experts were conducted to
determine the most suitable sampling approach.
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Model Construction
Based on clinical care experience, this study proposed an
ensemble learning model that integrates two submodels—
sedation and agitation—to classify events into overseda-
tion (RASS -5 to -2), maintain range (clinically expected
maintenance RASS -1 to 1), and agitation (RASS 2 to 4).

First, the sedation and agitation models were construc-
ted using 4 ML algorithms: logistic regression, random
forest, XGBoost, and LightGBM. The algorithm with the
best performance was selected as the foundation for both
the sedation and agitation models. Subsequently, the two

submodels were combined into 2 sequential ensemble
learning models: the sedation-first ensemble model and the
agitation-first ensemble model. In the sedation-first model,
the sedation model was first used to distinguish “overse-
dation” from “other,” and the remaining categories were
then input into the agitation model to further differentiate
between “maintain range” and “agitation.” Conversely, in the
agitation-first model, the agitation model was first applied
to separate “agitation” from “other,” and the remaining
categories were then passed into the sedation model to
classify “oversedation” and “maintain range.” (Figure 2).

Figure 2. Ensemble model construction consisted of 3 steps: (1) Choose a more suitable ML model, (2) Construct difference sequence ensemble
learning model, (3) Classify patient into three categories. ML: machine learning

Final Evaluation
We used confusion matrices and the receiver operating
characteristic (ROC) curves as indicators to evaluate model
accuracy, precision, recall, F1-score, and area under the
curve. The ROC curves helped to compare sensitivity with
specificity. Effective models exhibited high sensitivity and
specificity, resulting in high area under the curve values.

Explainable AI
Explainable Artificial Intelligence (XAI) was applied, making
the ML system transparent. The top 20 features were selected,
and Shapley additive explanations and partial dependence
plots were used to visualize their contributions, aiding in
understanding the model’s decision-making process. Clinical
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personnel could use this information to offer patient-specific
evaluations or decision-making suggestions.
Statistics
This study used statistical methods, including mean (SD) and
t-test, for numerical data analysis and observation. These
methods were used to describe dataset central tendencies,
assess variability, and compare group differences. Proportions
of each category were also calculated for categorical data.
They helped to extract meaningful information and interpret
research results.
Ethical Considerations
This study was approved by the TCVGH Institutional Review
Board (CE22484A). Informed consent was obtained, with
participants given the option to withdraw at any time. For
secondary analyses, original consent covered data reuse
without additional approval. Data were anonymized to protect
privacy, and strict security measures were applied.

Results
Data Collection
This study collected data from adult patients (aged≥20
years) admitted to the ICU at TCVGH between January
1 and December 31, 2020, with an ICU stay lasting
more than 24 hours. Every 4-hour RASS assessment (with
increased frequency depending on the patient’s condition)
was considered as a classification event, with events marked
as not assessable excluded due to concurrent procedures.
Since the average ICU stay did not exceed 30 days, events
from ICU stays longer than 30 days were also excluded. A
total of 121,306 events were collected, with an average of 108
events per patient (range: 6 to 186). The machine learning
(ML) model was trained using data from the 8 hours prior to
each event, including ventilator parameters, vital signs, and
medication records, along with laboratory biochemical data
from the previous week (Figure 3).

Figure 3. Flowchart of subject enrollment. ICU: intensive care unit; RASS: Richmond Agitation–sedation scale; TCVGH: Taichung Veterans
General Hospital.

Feature Selection
Based on the literature and clinical experience, the feature
selection process in this study involved in-depth discussions
with physicians and nurses. During this process, the miss-
ing rate of each feature was considered, and features with
a missing rate exceeding 20% were excluded. Finally, 23
features were selected, and appropriate imputation methods

were applied (Table 1). Categorical features (eg, ventilator
modes and medications) were defined based on the pres-
ence of recorded events within the past 8 hours. Continuous
features such as vital signs and ventilator parameters were
calculated as the average values over the past 8 hours, while
laboratory test features were based on the most recent record
within the past week.
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Table 1. All features used in model training, including their respective units, missing rates, and data imputation methods aligned with clinical
requirements.
Projects and features Unit Missing rate (%) Imputation method
Basic Information
  Age years 0.0 None
Disease severity
  APACHEa II score 2.4 Average
Use of ventilator —b 0.0 None
  Ventilation Mode —
   No ventilation (0) —
   Noninvasive ventilation (1) —
   Invasive ventilation (2) —
  Average airway pressure (Paw) cmH2O 5.0 Average/Normal Range (Random)
Blood biochemical test data Normal Range (Random)
  BUNc mg/dL 4.8
  Creatinine mg/dL 2.0
  Glucose (One touch) mg/dL 2.7
  Bicarbonate (HCO3) mmol/L 11.8
  Hematocrit (Hct) % 12.7
  Hemoglobin (Hgb) g/dL 0.2
  Potassium (K) mEq/L 0.2
  Lactate mg/dl 17.3
  Phytohemagglutinin (PH_A) value 12.7
  Sodium (Na) mEq/L 12.7
  Platelets (PLT) thou/mm³ 0.2
  Partial pressure of oxygen (PO2) mmHg 4.1
  White blood cells (WBC) thou/mm³ 0.3
Vital signs Pre and post values
  Systolic blood pressure (SBP) mmHg 0.1
  Diastolic blood pressure (DBP) mmHg 0.1
  Respiratory rate (RR) bpm 0.1
  Blood oxygen saturation (SPO2) % 0.0
  Pulse bpm 0.0
Medication records 0.0 None
  Medicine —
   No (0)
   Yes (1)

aAPACHE: acute physiology and chronic health evaluation.
bNot applicable.
cBUN: blood urea nitrogen.

Description of the Study Population
Statistical analysis indicated that nearly all features signifi-
cantly affect the level of agitation-sedation. Patients with
oversedation typically exhibited higher disease severity,

lower blood oxygen levels, and a higher proportion of
invasive ventilator use. In contrast, patients with agitation
showed higher vital sign values and a greater proportion of
sedative medication usage (Table 2).

Table 2. Statistical analysis of datasets used to train the two models. Proportion: Percentage of Population

Overall (N=121,303)
Oversedation
(n=43,199)

Maintain range
(n=77,290) Agitation (n=814) P value

Numerical features, mean (SD)
 

JMIR MEDICAL INFORMATICS Dai et al

https://medinform.jmir.org/2025/1/e63601 JMIR Med Inform 2025 | vol. 13 | e63601 | p. 6
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e63601


 

Overall (N=121,303)
Oversedation
(n=43,199)

Maintain range
(n=77,290) Agitation (n=814) P value

  Age 67.5 (14.9) 68.21 (5.2) 67.2 (14.8) 66.1 (15.3) <.001
  APACHEa II 23.9 (7) 26.4 (6.6) 22.5 (6.8) 23.2 (6.2) <.001
  Average airway pressure

(Paw)
22.0 (5.7) 23.6 (6.2) 21.1 (5.1) 21.3 (4.9) <.001

  BUNb 39.8 (30.6) 45.1 (33.7) 36.8 (28.4) 34.7 (26.7) <.001
  Creatinine 2.0 (2.2) 2.1 (2.2) 1.9 (2.2) 1.9 (2.2) <.001
  Glucose (One touch) 168.8 (49.4) 175.5 (53.1) 165.2 (46.8) 162.9 (46.9) <.001
  Bicarbonate (HCO3) 24.1 (4.7) 23.4 (5.1) 24.5 (4.4) 24.8 (4.7) <.001
  Hematocrit (Hct) 30.9 (7.1) 30.9 (7.6) 30.9 (6.8) 32.2 (7) .14
  Hemoglobin (Hgb) 9.7 (1.9) 9.6 (2) 9.8 (1.8) 10.1 (1.9) <.001
  Potassium (K) 3.9 (0.6) 4.0 (0.6) 3.9 (0.5) 3.9 (0.6) <.001
  Lactate 17.7 (16.6) 22.4 (21.4) 15.1 (12.4) 18.0 (20.4) <.001
  Phytohemagglutinin

(PH_A)
7.4 (0.1) 7.4 (0.1) 7.4 (0.1) 7.4 (0.1) <.001

  Sodium (NA) 140.3 (6.5) 141.0 (6.9) 139.9 (6.2) 141.4 (6.4) <.001
  Platelets (PLT) 187.8 (114.5) 175.3 (108.2) 194.7 (117.3) 201.1 (115.5) <.001
  Partial pressure of oxygen

(PO2)
124.2 (50.2) 120.4 (49.6) 126.3 (50.4) 121.5 (53.7) <.001

  White blood cells (WBC) 12394.1 (12277) 13764.4 (15679.1) 11636.5 (9854) 11601.5 (6364.6) <.001
  Systolic blood pressure

(SBP)
123.2 (19.4) 119.5 (19.7) 125.2 (18.9) 126.2 (18.5) <.001

  Diastolic blood pressure
(DBP)

70.1 (12.7) 67.4 (13) 71.6 (12.2) 73.7 (11.8) <.001

  Respiratory rate (RR) 18.8 (4.2) 19.7 (4.9) 18.2 (3.7) 19.1 (3.9) <.001
  SPO2 97.2 (7.2) 95.9 (10.9) 97.9 (3.7) 97.2 4) <.001
  Pulse 88.7 (17.8) 90.4 (19.3) 87.7 (16.8) 93.2 (18.5) <.001
Categorical features, n (%)
  Medicine (Yes) 26,787 (22%) 8,601 (20%) 17,658 (23%) 528 (65%) <.001
  Invasive ventilation 92,257 (76%) 40,168 (93%) 51,505 (67%) 584 (72%) <.001
  Noninvasive ventilation 5937 (5%) 587 (1%) 5295 (7%) 55 (7%) <.001
  No ventilation 23,109 (19%) 2444 (6%) 20,490 (26%) 175 (21%) <.001

aAPACHE: acute physiology and chronic health evaluation.
bBUN: blood urea nitrogen.

Model Development and Validation

Data Sampling of Agitation Classification
Given the significant class imbalance observed (Table 2),
we explored various data sampling methods to enhance

the model’s sensitivity (recall) for detecting agitated
patients. Among these methods, the undersampling approach
demonstrated the most notable performance, achieving a
sensitivity of 0.82 (Table 3). Consequently, we selected the
undersampling method as the data processing strategy.

Table 3. Random forest model performance of different sampling methods for agitation category patients.
Classification Sampling method (number of patients) Precision Recall F1 score
Agitation Model Non (n=77288, 814) 0.81 0.26 0.39

Undersampling (n=642,642) 0.03 0.82 0.06
SMOTEa (n=61834, 61834) 0.28 0.24 0.26

aSMOTE: synthetic minority oversampling technique

Performance Comparison of Two Submodels
in ML Models
The results of the confusion matrices and ROC curves for
the 4 ML models (as shown in Table 4) indicate that the

random forest model outperformed the others in both the
sedation prediction (accuracy: 0.92, AUC: 0.96) and agitation
prediction (accuracy: 0.80, AUC: 0.88). Additionally, the
random forest model exhibited superior sensitivity (recall)
for detecting agitated patients. Consequently, we selected
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the random forest model as the foundation for constructing
various ensemble learning frameworks to facilitate further
analysis and applications.
Table 4. Four different ML models performance comparison of sedation classification and agitation classification.
Classification and models Accuracy Precision Recall AUCa Cross-validation Avg-ACCb (kfold=10)
Sedation
  Logistic regression 0.72 0.71 0.65 0.71 0.71
  Random forest 0.92 0.91 0.91 0.96 0.92
  XGBoostc 0.92 0.91 0.91 0.94 0.90
  LGBMd 0.83 0.81 0.83 0.90 0.84
Agitation
  Logistic regression 0.64 0.51 0.61 0.72 0.66
  Random forest 0.80 0.03 0.82 0.88 0.77
  XGBoost 0.76 0.51 0.76 0.84 0.73
  LGBM 0.75 0.51 0.77 0.85 0.75

aAUC: area under the curve.
bACC: accuracy.
cXGBoost: extreme gradient boosting.
dLGBM: light gradient-boosting machine.

Ensemble Learning Model Performance
Comparison
The performance results of different sequences of ensem-
ble learning models indicate that prioritizing the identifica-
tion of agitated patients is more effective in improving

sensitivity (recall: 0.82) compared to strategies that first
identify oversedated patients. Furthermore, the AUC for all
3 states remained above 0.82 (as shown in Table 5. Given
the higher immediate risk associated with agitated patients,
the agitation-first ensemble model was selected as the most
suitable approach.

Table 5. Comparison of performance in classifying the three categories among ensemble learning models with different sequences.
Classification sequence and categories Accuracy Precision Recall AUCa

Sedation-first ensemble model 0.79
  Oversedation 0.91 0.84 0.90
  Maintain range 0.92 0.84 0.82
  Agitation 0.03 0.76 0.81
Agitation-first ensemble model 0.75
  Oversedation 0.92 0.73 0.85
  Maintain range 0.92 0.76 0.82
  Agitation 0.03 0.82 0.82

aAUC: area under the curve.

Explainable AI (XAI)
The top 4 features that contribute the most to sedation
classification are the use of an invasive ventilator (invasive
ventilation), APACHE II score, lactate level (LACTATE),
and average airway pressure (PAW). A high APACHE II
score indicates a high likelihood of oversedation (Figure
4A). The dependency graph of the first 4 features represents
how each feature affects the classification results. In most
cases, an APACHE II score>29 was positively associated
with oversedation (Figure 4B).

Patients who used sedatives were more likely to experi-
ence agitation. Patients with a high hemoglobin level were

more likely to experience agitation. The dependence plots
of the top 4 features indicated that sedative use was posi-
tively correlated with agitation. Hemoglobin levels >10 g/dL
and≤10 g/dL were positively correlated with agitation and
maintained sedation range, respectively (Figure 5).

Overall, patients on mechanical ventilation were mostly
sedated, with those in the maintain range exhibiting more
stable blood test results and vital signs compared to overseda-
ted or agitated patients.
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Figure 4. The explanations of features contribution to sedation classification. (A) The attributes of the features in the model. Each line represents
a feature, and the abscissa is the SHAP value. Red dots represent higher feature values, and blue dots represent lower feature values. (B) SHAP
dependence plot for the top 4 clinical features contributing to the model. APACHE: acute physiology and chronic health evaluation; Paw: average
airway pressure.

Figure 5. The explanations of features contribution to agitation classification. (A) The attributes of the features in the model. Each line represents
a feature, and the abscissa is the SHAP value. Red dots represent higher feature values, and blue dots represent lower feature values. (B) SHAP
dependence plot for the top 4 clinical features contributing to the model. HCT: hematocrit; Hgb: hemoglobin; SpO2: blood oxygen saturation.
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Discussion
Principal findings
This study successfully developed a model for automat-
ing RASS-like agitation-sedation evaluation. Automated
agitation-sedation evaluation could be an alternative to RASS
and play a crucial role in enhancing ICU efficiency, ulti-
mately improving health care outcomes, care quality, and
patient safety.

Machine learning aids ICU personnel in the early detection
of high-risk events [14]. Previous studies have used ML
to predict mortality rates in ICU patients with acute kid-
ney injury, predict postoperative sepsis mortality rates, and
forecast extubation failure in the ICU [15-17]. However,
studies on ML for agitation-sedation evaluation in ICU
patients are limited.

Zhang et al [18] ensemble 4 machine-learning methods
for predicting agitation in ventilated patients under light
sedation for 24 hours. However, their ensemble model was
limited to predicting agitation in patients with invasive
ventilator support under light sedation for 24 hours. Other
researchers have proposed using patient body and facial
image monitoring for agitation detection [19,20]. However,
image monitoring faces challenges such as data acquisition,
clinical environment influences, workflow integration, and
system installation. Therefore, in addition to the imaging
model developed by our research team [21], we have created
another model using commonly available feature data in
most hospitals, serving as an alternative solution when image
monitoring is not feasible.

The study employs 2 ML models for ensemble learn-
ing to automate RASS assessment. By using undersampling
and adjusting the classification sequence, the sensitivity for
detecting agitation is enhanced. Although models with higher
sensitivity may reduce the accuracy of classifying over-seda-
ted patients, they perform better in mitigating immediate
risks. Traditional methods, which involve manual assessments
every 4 hours, result in insufficient monitoring, especially for
patients who may experience multiple episodes of agitation
within a short period. In contrast, our health care information
system can transmit data in real time, perform inference every
hour, and adjust inference frequency based on clinical needs,
enabling more intensive monitoring. This allows clinicians

to track patient conditions and respond promptly to changes
continuously.

Understanding algorithmic predictions is crucial in clinical
practice. Due to the lack of explanations in the decision-
making process, clinicians often distrust black-box mod-
els. Explainable artificial intelligence enhances transparency,
aiding in the development of reliable decision models
[22-24]. Continuous analgesics and sedatives ensure optimal
gas exchange between patients and ventilators, making deep
sedation important during this period [25]. For patients with
stable parameters such as hemoglobin, hematocrit, blood
oxygen saturation, and creatinine, the goal is maintaining
light sedation (RASS score 0 to −2) [26]. It has been
demonstrated that the interpretability of the model aligns with
clinical experience.

This study acknowledges its limitations, particularly the
imbalance in case numbers due to the high risk of agitation
in patients. Especially for agitated individuals, the model’s
precision of 0.03 suggests there is room for improvement.
In future clinical applications, we plan to adjust the deci-
sion threshold based on specific needs to balance sensitiv-
ity and specificity and reduce false positives. Additionally,
the study lacks observations of potential drug overdoses
at different sedation levels. Future efforts will focus on
integrating this model with digital imaging monitoring and
a comprehensive drug dosage system. Real-time monitor-
ing will help identify patient conditions, guide prescription
adjustments, and accelerate recovery, ultimately supporting
early intervention, ensuring patient safety, and improving the
quality of intensive care.
Conclusions
This study proposes using ML technology to achieve
automated RASS-based assessments in ICU settings,
enhancing clinical efficiency, and patient safety. Our
integrated learning model, combined with the hospital
information system, enables real-time data transmission,
supports intensive monitoring, and facilitates continuous
tracking of patient conditions. The system automatically
categorizes patients into three groups, significantly improving
sensitivity in detecting agitation categories. This innovative
approach not only alleviates the workload of health care
professionals but also advances the precision and intelligence
of critical care management.
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