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Abstract
Background: Cirrhosis is a leading cause of noncancer deaths in gastrointestinal diseases, resulting in high hospitalization
and readmission rates. Early identification of high-risk patients is vital for proactive interventions and improving health care
outcomes. However, the quality and integrity of real-world electronic health records (EHRs) limit their utility in developing
risk assessment tools.
Objective: Despite the widespread application of classical and ensemble machine learning for EHR-based predictive tasks,
the diversity of health conditions among patients and the inherent limitations of the data, such as incompleteness, sparsity, and
temporal dynamics, have not been fully addressed. To tackle those challenges, we explored a framework that characterizes
patient subgroups and adaptively selects optimal predictive models for each patient on the fly to enable individualized decision
support.
Methods: The proposed framework uniquely addresses patient heterogeneity by aligning diverse subgroups with dynamically
selected classifiers. First, patient subgroups are generated and characterized using rules indicating medical diagnosis patterns.
Next, a meta-learning framework trains a meta-classifier for optimal dynamic model selection, which identifies suitable models
for individual patients. Notably, we incorporated a tailored region of competence to refine model selection, specifically
accounting for cirrhosis complications. This approach not only enhances predictive performance but also elucidates why
individualized predictions are better supported by selected classifiers trained on specific data subsets.
Results: The proposed framework was evaluated for predicting 14-day and 30-day readmission in patients with cirrhosis
using multicenter data obtained from 6 hospitals. The final dataset comprised 3307 patients with at least 2 admission records,
along with a range of factors including demographic information, complications, and laboratory test results. The proposed
framework achieved an average AUC (area under the curve) improvement of 5% and 4% compared to the best baseline
models, respectively.
Conclusions: By leveraging the expertise of the most competent classifiers for each patient subgroup, our approach ena-
bles interpretable training and dynamic selection of heterogeneous predictive models. This advancement not only improves
prediction accuracy but also highlights its considerable potential for clinical applications, facilitating the alignment of diverse
patient subgroups with tailored decision-support algorithms.

JMIR Med Inform 2025;13:e63581; doi: 10.2196/63581

JMIR MEDICAL INFORMATICS Shi et al

https://medinform.jmir.org/2025/1/e63581 JMIR Med Inform 2025 | vol. 13 | e63581 | p. 1
(page number not for citation purposes)

https://doi.org/10.2196/63581
https://medinform.jmir.org/2025/1/e63581


Keywords: data mining; electronic health records; multiple classifier systems; predictive models; readmission risk; EHR;
cirrhosis; gastrointestinal disease; decision-making; framework

Introduction
Cirrhosis, a chronic condition caused by hepatocyte injury
and liver fibrosis [1], is often accompanied by complications
[2] such as ascites and hepatic encephalopathy, posing severe
risks to patients’ health and survival. Patients with cirrhosis
typically have high hospitalization rates, prolonged hospi-
tal stays, and frequent readmissions [3]. Notably, patients
with decompensated cirrhosis are particularly vulnerable,
with a 5-year survival rate of merely 14%‐35% [4] and
a readmission rate ranging from 10% to 50% within 7-90
days postdischarge [5]. These challenges not only disrupt
the continuity of care and degrade patients’ quality of life
but also impose a substantial economic and societal burden
on hospitals and health care systems [6]. Statistics indi-
cate that the annual economic expenditure attributable to
unplanned readmissions from cirrhosis amounts to approxi-
mately US $17.4 billion [7]. Given the significant impact
of the readmission issue on health care resource allocation
[8], the Patient Protection and Affordable Care Act (2010)
established reducing hospital readmission rates as a pivo-
tal objective in the reforming of fee-for-service hospital
reimbursement policies [9]. Even though the readmission rate
is not commonly used as an evaluation metric by hospitals,
the global significance of the readmission problem cannot be
ignored [10,11].

Research has demonstrated that a substantial proportion,
up to 27.1% [12], of readmissions are potentially preventable,
highlighting a substantial opportunity for the development of
predictive models aimed at identifying high-risk patients. In
recent years, electronic health records (EHRs) have gained
widespread adoption in both clinical practice and research
endeavors, providing a vast and diverse dataset for machine
learning algorithms [13]. By harnessing clinical indicators
embedded within EHRs, such as laboratory test results and
vital signs, researchers have developed numerous predictive
models to precisely evaluate patients’ risk of readmission.
For instance, Berman et al [14] used comprehensive EHR
data sourced from 2 prominent academic medical centers to
identify variables predictive of 30-day readmission among
patients with liver disease. Similarly, Hu and colleagues [15]
conducted an analysis of 30-day and 90-day readmission rates
for patients with end-stage liver disease, leveraging EHR
data in conjunction with models such as logistic regression,
support vector machines, and random forests. These models
hold significant potential to enhance our ability to anticipate
and mitigate the risk of readmission in vulnerable patient
populations [15].

However, the diverse patient population and the inherent
challenges of EHR data [16], including high dimensional-
ity, incompleteness, sparsity, and temporal dynamics, pose
substantial obstacles for model development. While individ-
ual machine learning models have demonstrated effective-
ness on specific datasets, they frequently face difficulties in
comprehensively addressing these complexities [17]. Multiple

classifier systems [18] with dynamic ensemble selection
(DES) [19] emerge as a promising approach to address
those challenges. DES typically surpasses single models in
predictive performance by selecting and integrating diverse
classifiers tailored to unknown test instances during the
inference process, thereby enhancing predictive accuracy.

The META-DES (dynamic ensemble selection using
meta-learning) framework [20] transforms the task of
classifier selection into a meta-problem. This approach entails
extracting meta-features pertinent to the base classifiers
and training a meta-classifier to assess their classifica-
tion prowess. Nonetheless, when applied to tabular data
classification, particularly in predicting readmissions for
patients with cirrhosis, the existing DES algorithms do
not always outperform state-of-the-art ensemble models.
This performance gap seems to stem from 2 challenges.
First, the development of predictive models needs to be
deeply integrated with the characteristics of specific clinical
problems, such as the complexity and diversity of inpa-
tient care. Second, the quality issues of EHR data, such
as incompleteness, sparsity, and temporal dynamics, further
exacerbate the difficulties in model development.

To address these challenges, this study aims to develop
an interpretable framework that dynamically aligns patient
subgroups with optimized classifier selection. Specifically,
the aim of this study is threefold: (1) to generate and
characterize patient subgroups through clinically meaningful
rules based on complication and comorbidity patterns; (2) to
design a tailored region of competence incorporating medical
diagnoses, enabling optimized dynamic selection of patient-
specific predictive models; and (3) to establish a paradigm
shift from conventional one-size-fits-all approaches to an
adaptive methodology that accounts for heterogeneous patient
profiles. By integrating medical knowledge with DES, this
approach not only improves predictive performance but also
provides interpretable insights into the classifier selection
rationale for diverse clinical subgroups.

Methods
Ethical Considerations
The study received ethics review and approval from the
institutional review board of Chongqing Medical University
(approval no. 2023098). Due to its retrospective nature, this
study required no informed consent. All collected data were
fully anonymized with no personally identifiable information
included. No financial or material incentives were provided to
participants.
Data Collection
This retrospective prognostic study focused on decompensa-
ted liver cirrhosis data sourced from 6 tertiary hospitals in
Chongqing, China. The initial cohort encompassed 13,476
patient records from January 2011 to June 2020, identified
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using cirrhosis diagnostic codes according to the ICD-9
(International Classification of Diseases, 9th Revision)
or ICD-10 (International Classification of Diseases, 10th
Revision) systems. We followed the TRIPOD (Transparent
Reporting of a Multivariable Prediction Model for Individ-
ual Prognosis or Diagnosis) [21] guidelines for reporting
cohort studies. To refine our cohort, we applied the follow-
ing exclusion criteria: (1) patients hospitalized for cancer,
malignant tumors, tuberculosis, or HIV (n=1906); (2) patients
lost to follow-up or who died during their initial hospitali-
zation (n=151); (3) patients with no recorded readmissions
(n=7150); and (4) patients with missing data exceeding 10%
(n=1113).
Variable Description
The refined cohort consisted of 3307 patients, each with
at least 1 readmission record. The dataset covered a wide
range of variables, including 3 demographic factors, 5
etiological variables, 35 comorbidities and complications,
38 clinical test indicators, 10 surgical variables, 7 medica-
tion-related factors, 1 composite scoring variable, and 1
outcome variable. All included indicators were thoroughly
reviewed by clinical experts. Demographic data included
age, gender, and the number of hospitalizations. The list
of complications featured hepatic encephalopathy, acute-on-
chronic liver failure, ascites, and esophageal or gastric
varices. The laboratory test indicators included prothrombin
time, international normalized ratio, hemoglobin concentra-
tion, creatinine, and several other critical measurements. A
comprehensive list is provided in Multimedia Appendix 1.
Statistical Methods
For descriptive analyses, continuous variables, such as
laboratory indices, were summarized using medians and
IQRs, while categorical variables were presented with
frequencies and proportions. A 2-step variable selection
process was used.

Univariate Analysis
Potential predictors of 14-day and 30-day readmissions were
evaluated. Quantitative predictors were assessed using the

Mann-Whitney U test, and binary predictors were analyzed
with the chi-square test or the Fisher exact test. Considering
the high dimensionality of the data and the complexity of the
model, predictors with a P value less than .05 were retained
for further analysis.

Automated Feature Selection
The selected predictors from the univariate analysis were
then incorporated into an automatic variable selection process
within the DES framework to identify the optimal subset of
predictors. The final set of variables included in the model
was determined based on a careful balance between accuracy
and simplicity.
The DES Framework

Key Features of the Framework
The proposed framework highlights 2 critical components:
the generation of the classifier pool and the dynamic selection
of classifiers. The classifiers trained with different training
subsets play a pivotal role in tackling issues such as the
incompleteness and sparsity of EHR data by capitalizing on
the diverse feature selection capabilities across the heteroge-
neous classifiers. This approach enables the framework to
maximize data utility even with fragmented or scarce data.
Moreover, as patients’ health status evolves over time, the
dynamic classifier selection process enables the framework
to adapt more effectively to these fluctuations, enhancing
its overall adaptability and relevance in real-world clini-
cal scenarios. Notably, medical expert knowledge can be
seamlessly integrated into both classifier pool generation and
dynamic selection processes. This integration ensures that
the framework is not only data-driven but also informed by
the expertise and insights of medical professionals, adding
a layer of clinical validity and practicality. An overview of
the framework is graphically presented in Figure 1, provid-
ing a clear visual representation of its core components and
interrelationships.
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Figure 1. Overview of the proposed framework.

Classifier Pool Generation
Traditional DES systems typically generate diverse classi-
fier pools through strategies such as altering initialization
parameters, hyperparameter configurations, classifier models,
training datasets, and feature subsets. In this study, to ensure
the diversity of the base classifiers, we introduced a rule-
based method to generate data subsets to support the training
of classifiers. Given that complications are major causes of
readmission in patients with cirrhosis as reported in existing
studies, the descriptions of complications and comorbidities
associated with liver cirrhosis are presented in Table 1. Based
on this, we extracted rule sets that consist of binary varia-
bles representing medical diagnoses from real-world datasets.
These rule sets allow us to characterize patient subgroups
(SG1, SG2,..., SGn) based on distinct combinations of these
complications and comorbidities. For example, a rule might
be

(Electrolyte metabolic disorders = TRUE) AND (Hepatic encephalopathy = FALSE)
This rule-based method, grounded in medical diagnosis
patterns, represents an innovative approach to integrating
medical knowledge into the classifier generation process.
By examining these subgroups, researchers and clinicians
can gain deeper insights into the underlying reasons why
individualized predictions are supported by classifiers trained
on certain subsets of the data. By leveraging diverse data
subsets and training heterogeneous classifiers, the classifier
pool can capture a wide range of patterns within the EHR data
to enhance the overall predictive performance. In this phase,
a classifier pool C = c1, c2, . . . , cm  was generated with m
classifiers.

Besides diverse patient subgroups, a variety of machine
learning algorithms can be integrated into the framework to
create the classifier pool.
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Table 1. Definition of complications and comorbidities.
Category Complications Comorbidities
Definition Diseases or pathological conditions directly caused by liver cirrhosis Other independent diseases or pathological conditions

coexisting with the patient
Cause Caused by liver cirrhosis (eg, portal hypertension and liver failure) Caused by factors other than liver cirrhosis
Common stage Most common in the decompensated stage Can occur at any stage of the disease

Meta-Feature Extraction and Meta-Training
The DES problem involves selecting an optimal subset of
base classifiers C′ ⊂ C to classify a given test sample xj.
To train a meta-classifier λ that acts as a classifier selector,
the key challenge is to define the criteria to evaluate the
competence of base classifiers as meta-features. In this study,
2 sets of meta-features are used. The first set of meta-fea-
tures includes the criteria to measure the local accuracy in
the region of competence (f1), extent of consensus in the
region of competence (f2), overall accuracy in the region
of competence (f3), accuracy in the decision space (f4), and
degree of confidence for the input sample (f5). To extract
those meta-features, a region of competence θj is defined, for
instance, xj, using the k-nearest neighbors clustering of the
entire feature space of each data subset.

To effectively incorporate complications and comorbidi-
ties into the characterization of patients with cirrhosis and
refine dynamic classifier selection, a novel competence
region θj′ is defined. This region, grounded in medical
diagnoses, emphasizes complications and comorbidities as
binary indicators of their presence or absence. Notably, the
competence region θj′ consists of an equal number of positive
and negative data samples to ensure a balanced evaluation
of the base classifiers’ performance. The new set of meta-fea-
tures (f6) was defined as the local accuracy within the region
of competence θj′ to be aware of patients’ subgroup with
specific complications or comorbidities. Thus, a meta-fea-
ture vector is extracted as vij = f1, f2, f3, f4, f5, f6  for
classifier ci and instance xj. To construct the training set
for the meta-classifier, labels are assigned to each meta-fea-
ture vector: for each meta-feature vector, its label αij = 1
if classifier ci correctly classifies instance xj, otherwiseαij = 0. By embedding patients’ medical diagnoses, this
framework proficiently captures the impact of complications
and comorbidities during the dynamic selection of suitable
classifiers. This approach represents an improvement over
traditional methods, as it explicitly incorporates the unique
characteristics of patients with cirrhosis. The critical role
of this redefinition lies in its ability to determine model
applicability for specific patient subgroups. Technical details
of the implementation can be found in the GitHub repo-
sitory [22]. This dynamic framework not only improves
the predictive performance but also enhances the model’s
adaptability to real-world clinical scenarios.

Dynamic Classifier Ensemble
In traditional machine learning workflows, a single model
is typically used for both the training and testing data-
sets. Nevertheless, different models display diverse strengths
and weaknesses in terms of accuracy, interpretability, and
other aspects. The fundamental theory of dynamic classifier
selection postulates that not every classifier in a pool is
an expert for all unseen samples. On the contrary, each
base classifier is proficient in distinct regions of the fea-
ture space. When we apply this concept to our study, it
becomes clear that no single classifier can yield optimal
prediction results for the entire test set. However, by using the
dynamic classifier selection strategy, we are able to extract
diverse meta-features for different data subsets and choose the
base classifier that provides the most accurate prediction for
each subset. This method guarantees the achievement of the
optimal prediction results.

Given an instance xj, test, the dynamic selection data-
set, and the classifier pool, the set of meta-featuresf1, f2, f3, f4, f5  is extracted using the region of competence
θj, and the meta-feature f6 is extracted using the region of
competence θj′ based on the diagnosis of patients. Once the
meta-features are extracted, the meta-classifier λ is used to
calculate competence scores for each classifier in the pool.
These competence scores, typically expressed as probabilities
estimated by the meta-classifier, indicate the capability of
each classifier. The classifiers with the highest competence
score are selected as the pool of ensemble of classifiers
C*. If multiple classifiers have equal competence scores,
the predictions of those classifiers are aggregated using the
majority vote rule.

Results
Data Analysis
The final dataset comprises 3307 patients with readmission
records in this study. Among these patients, 1121 (33.9%)
are female and 2186 (66.1%) are male, with an average
age of 55 years. Within a 14-day period, 423 (12.8%)
patients were readmitted, while within 30 days, 879 (26.6%)
patients experienced readmission. Tables 2 and 3 present
detailed descriptive statistics for the entire dataset. Taking
total bilirubin levels (normal range of 1.7‐21 µmol/L) as an
example, it was observed that patients fulfilling the discharge
criteria exhibited heightened total bilirubin levels. Upon
admission, the percentages of patients with total bilirubin
levels exceeding the normal range were 71.9% (304/423)
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for the 14-day period and 60.4% (531/879) for the 30-day
period. However, at discharge, these percentages declined to
65.9% (279/423) and 54.7% (481/879), respectively. Both
admission and discharge laboratory indicators aligned with

the anticipated clinical outcomes for cirrhotic patients. The
missing rates for all selected features are below 10%, and
missing data were imputed using the mean of k-nearest
neighbors.

Table 2. Characteristics of patients experiencing 14-day readmission.
Characteristics Readmission (n=423) Nonreadmission (n=2884) P value
Demographics, n (%) .006
  Female 118 (27.9) 1003 (34.8)
  Male 305 (72.1) 1881 (65.2)
Complications, n (%)
  Peritonitis 111 (26.2) 470 (16.3) <.001
  Hepatic encephalopathy 55 (13.0) 199 (6.9) <.001
  Abdominal fluid 55 (13.0) 232 (8.0) .001
  Liver failure 55 (13.0) 252 (8.7) <.001
  EMDa 49 (11.6) 230 (8.0) .02
  Ruptured esophagogastric varices 178 (42.1) 1603 (55.6) <.001
Comorbidities, n (%)
  Autoimmune diseases 34 (8.0) 329 (11.4) .07
  Gastritis 28 (6.6) 316 (11.0) .008
  Neuropathy 22 (5.5) 75 (2.6) .005
  Ulcers 26 (6.2) 297 (10.3) .009
Surgery, n (%)
  Bilirubin adsorption-plasma exchange 13 (3.1) 13 (0.5) <.001
  Bone marrow puncture biopsy 60 (14.2) 252 (8.7) <.001
  Autologous ascites concentration and reinfusion 48 (11.4) 88 (3.1) <.001
Laboratory tests, median (IQR)
  Albumin 29.6 (26.50‐33.23) 31.7 (27.80‐36.20) <.001
  Erythrocyte count 3.13 (2.58‐3.62) 3.35 (2.80‐3.87) <.001
  Leukocyte count 4.59 (3.10‐6.89) 3.86 (2.74‐5.32) <.001
  Hemoglobin concentration 93 (74.00‐112.00) 100 (81.00‐119.00) <.001
  Total platelets 73 (46.00‐117.50) 63 (43.00‐100.00) <.001
  Total bilirubin 35.7 (17.55‐82.65) 24.75 (15.90‐41.50) <.001
  INRb 1.48 (1.28‐1.87) 1.34 (1.20‐1.55) <.001
  Prothrombin time 17.75 (15.70‐21.40) 16.4 (14.90‐18.60) <.001
  Creatinine 69.3 (57.10‐89.75) 65.7 (55.20‐0.40) .002
  Serum sodium 137.5 (132.90‐140.50) 139.3 (136.40‐141.80) <.001
  Serum potassium 4 (3.62‐4.40) 3.87 (3.57‐4.20) <.001
  Neutrophil count 3.14 (1.98‐5.23) 2.46 (1.64‐3.66) <.001
  Fibrinogen concentration 1.77 (1.27‐2.46) 2 (1.55‐2.62) <.001
  Urea nitrogen 6.02 (4.49‐9.38) 5.38 (4.17‐7.41) <.001
  Total protein 66.8 (56.75‐69.95) 66.2 (59.42‐72.57) <.001
  Prealbumin 65 (44.00‐95.50) 83 (54.00‐122.00) <.001
  Direct bilirubin 17.2 (8.70‐47.10) 11.5 (7.20‐21.60) <.001
  Indirect bilirubin 14.9 (8.30‐30.60) 11.8 (7.90‐18.70) <.001
  Total bile acids 39.1 (15.15‐94.30) 29.15 (12.30‐60.80) <.001
Discharge laboratory tests, median (IQR)
  Albumin 30.1 (27.80‐33.00) 32.2 (29.40‐36.00) <.001
  Serum sodium 137.7 (134.00‐140.45) 139.2 (136.70‐141.45) <.001
  Total bilirubin 31.5 (16.25‐71.70) 23.5 (15.30‐38.30) <.001
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Characteristics Readmission (n=423) Nonreadmission (n=2884) P value
  Total white blood cells 3.74 (2.42‐5.28) 3.4 (2.43‐4.63) .006
  INR 1.5 (1.29‐1.87) 1.34 (1.20‐1.57) <.001
  Creatinine 71.2 (56.35‐91.75) 68 (56.30‐83.80) .02
Scoring variables, median (IQR)
  MELDc 13 (10.00‐18.00) 11 (8.00‐14.00) <.001

aEMD: electrolyte metabolism disorder. It is an imbalance in the balance of electrolytes (eg, sodium, potassium, calcium, and chloride) in the body,
usually caused by levels of electrolytes in the body that are outside of normal ranges.
bINR: international normalized ratio. INR = (PTpatient/PTcontrol)ISI, where PTpatient is the patient's prothrombin time, PTcontrol is the average
normal prothrombin time, and ISI is the international sensitivity. The normal range of INR varies among hospitals, laboratories, and patient,s and
ranges from 0.8 to 1.2.
cMELD: Model for End-Stage Liver Disease [23]. MELD = 9.57*ln(creatinine) + 3.78*ln(bilirubin) + 11.20*ln(INR) + 6.43. The patient's serum
creatinine value is in milligrams per deciliter (mg/dL), the patient's total bilirubin value is in milligrams per deciliter (mg/dL), and the INR is the
patient's international normalized ratio for coagulation. The higher the value, the higher the risk level.

Table 3. Characteristics of patients experiencing 30-day readmission.
Characteristics Readmission (n=879) Non-readmission (n=2428) P value
Demographics, n (%) .003
  Female 262 (29.8) 859 (35.4)
  Male 617 (70.2) 1569 (64.6)
Complications, n (%)
  Peritonitis 209 (23.8) 372 (15.3) <.001
  Hepatic encephalopathy 87 (9.9) 167 (6.9) .005
  Abdominal fluid 109 (12.4) 178 (7.3) <.001
  Liver failure 140 (15.9) 198 (8.2) <.001
  EMDa 90 (10.2) 189 (7.8) .03
  Ruptured esophagogastric varices 445 (50.6) 1336 (55.0) .03
Comorbidities, n (%)
  Autoimmune diseases 70 (8.0) 293 (12.1) <.001
  Gastritis 67 (7.6) 277 (11.4) .002
  Neuropathy 35 (4.0) 62 (2.6) .04
  Ulcers 67 (7.6) 256 (10.5) .02
Surgery, n (%)
  Bilirubin adsorption-plasma exchange 18 (2.1) 8 (0.3) <.001
  Bone marrow puncture biopsy 104 (11.8) 208 (8.6) .006
  Autologous ascites concentration and reinfusion 77 (8.8) 59 (2.4) <.001
Laboratory tests, median (IQR)
  Albumin 30.1 (26.70‐33.70) 31.9 (27.90‐36.40) <.001
  Erythrocyte count 3.11 (2.60‐3.63) 3.38 (2.83‐3.89) <.001
  Leukocyte count 4.36 (3.02‐6.40) 3.8 (2.71‐5.28) <.001
  Hemoglobin concentration 93 (74.00‐113.00) 101 (82.00‐119.00) <.001
  Total platelets 71 (46.00‐115.00) 63 (43.00‐97.00) <.001
  Total bilirubin 29.1 (15.90‐64.25) 24.6 (16.10‐40.20) <.001
  INRb 1.42 (1.24‐1.72) 1.33 (1.20‐1.54) <.001
  Prothrombin time 17.2 (15.40‐20.20) 16.3 (14.90‐18.40) <.001
  Creatinine 68.9 (57.25‐87.10) 63.3 (55.00‐79.17) <.001
  Serum sodium 138 (134.00‐140.90) 139.4 (136.60‐141.90) <.001
  Serum potassium 3.92 (3.58‐4.34) 3.87 (3.57‐4.20) <.001
  Neutrophil count 2.93 (1.92‐4.71) 2.41 (1.59‐3.60) <.001
  Fibrinogen concentration 1.88 (1.40‐2.56) 2.02 (1.56‐2.61) <.001
  Urea nitrogen 5.96 (4.35‐9.04) 5.32 (4.14‐7.25) <.001
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Characteristics Readmission (n=879) Non-readmission (n=2428) P value
  Total protein 63.8 (58.00‐70.30) 66.3 (59.70‐72.88) <.001
  Prealbumin 70 (46.00‐109.00) 84 (55.00‐122.00) <.001
  Direct bilirubin 14.1 (7.70‐35.80) 11.4 (7.20‐21.10) <.001
  Indirect bilirubin 12.8 (7.70‐25.70) 11.8 (7.95‐18.30) <.001
  Total bile acids 32.3 (11.99‐79.16) 29.45 (12.80‐59.79) .01
Discharge laboratory tests, median (IQR)
  Albumin 30.6 (28.40‐33.70) 32.4 (29.50‐36.10) <.001
  Serum sodium 138.1 (135.00‐140.78) 139.4 (137.00‐141.60) <.001
  Total bilirubin 27.4 (15.60‐54.80) 23.6 (15.40‐37.40) <.001
  Total white blood cells 3.66 (2.47‐5.06) 3.39 (2.41‐4.60) .001
  INR 1.42 (1.25‐1.75) 1.34 (1.20‐1.56) <.001
  Creatinine 70.85 (57.10‐90.10) 67.7 (56.00‐82.40) <.001
Scoring variables, median (IQR)
  MELDc 12 (10.00‐17.00) 11 (8.00‐14.00) <.001

aEMD: electrolyte metabolism disorder. It is an imbalance in the balance of electrolytes (eg, sodium, potassium, calcium, and chloride) in the body,
usually caused by levels of electrolytes in the body that are outside of normal ranges.
bINR: international normalized ratio. INR = (PTpatient/PTcontrol)ISI, where PTpatient is the patient's prothrombin time, PTcontrol is the average
normal prothrombin time, and ISI is the international sensitivity. The normal range of INR varies among hospitals, laboratories, and patients, and
ranges from 0.8 to 1.2.
cMELD: Model for End-Stage Liver Disease [23]. MELD = 9.57*ln(creatinine) + 3.78*ln(bilirubin) + 11.20*ln(INR) + 6.43. The patient's serum
creatinine value is in milligrams per deciliter (mg/dL), the patient's total bilirubin value is in milligrams per deciliter (mg/dL), and the INR is the
patient's international normalized ratio for coagulation. The higher the value, the higher the risk level.

Feature Selection and Statistical Analysis
A 2-step variable selection procedure was applied to the
14-day and 30-day readmission datasets, using tailored
statistical methods for both quantitative and binary predictive
factors. The application of these methods resulted in slightly
different sets of included predictors for the 2 datasets. The
P values for each variable are presented in Tables 2 and 3.
Predictive factors with P values less than .05 were subse-
quently considered in the automatic variable selection process
within the DES framework, aimed at pinpointing the optimal
subset of predictors. Selected variables for both datasets are
detailed in Multimedia Appendices 2 and 3.
The DES Framework Development
In the proposed DES framework, the classifier pool gen-
eration phase used an ensemble of 11 machine learning
algorithms, each trained on different subsets and feature sets,
to enhance the diversity and accuracy of trained models.
During this phase, an interpretable set of rules was derived
from each training dataset. Notably, these rules exhibited
considerable overlap, suggesting the existence of common
features across different rules. Across all training datasets,
a total of 80 rules were extracted, with each rule cover-
ing at least 500 instances. These rules served as patterns
for identifying specific characteristics or conditions within
patient records. Using these rules, tailored data subsets
were generated for experiments. Subsequently, during the
meta-feature extraction and meta-training phase, 2 groups
of meta-features were defined and extracted. Specifically,
a customized competence region was designed to leverage
the complications and comorbidities of cirrhotic patients, to
extract meta-feature vectors for training the meta-classifier.

Finally, in the dynamic classifier ensemble phase, the
meta-classifier calculated the competence score of each
classifier. Either the classifier with the highest score was
selected, or a majority voting rule was applied to make
predictions, ensuring optimal predictive performance in local
regions for each patient.

The machine learning algorithms used to train the base
classifiers include Naïve Bayes, k-nearest neighbors, logistic
regression, linear discriminant analysis, quadratic discrimi-
nant analysis, and ensemble models such as random forest,
extra trees, AdaBoost (adaptive boosting), gradient boost-
ing classifier, LightGBM (light gradient boosting machine),
and XGBoost (extreme gradient boosting). The hyperpara-
meter tuning in this study comprised 2 components. First,
the PyCaret library was used to automate machine learning
workflows, including feature selection, model training, and
hyperparameter optimization. Each model required tailored
tuning metrics, such as the selection of the optimal k-value
and distance metrics for k-nearest neighbors, tuning the C and
γ parameters for the support vector machine, and adjusting
the number and depth of trees for the random forest. Second,
for the DES framework, hyperparameters such as the type of
meta-classifier and the number of neighbors in local regions
were optimized via grid search.

Furthermore, a 5-fold cross-validation approach was
applied to maximize the use of a limited dataset, achieve
stable predictions, and mitigate overfitting concerns. Building
on the established framework of the DESlib library [24], the
implementation of the proposed framework is accessible for
online reference [22].

JMIR MEDICAL INFORMATICS Shi et al

https://medinform.jmir.org/2025/1/e63581 JMIR Med Inform 2025 | vol. 13 | e63581 | p. 8
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e63581


Evaluation Results
The evaluation focused on assessing unplanned readmissions
within 14 days and 30 days. To address the challenge
of imbalanced classification, where the model might tend
to predict the majority class, we implemented a sensitiv-
ity-focused threshold adjustment. The threshold used for
calculating the accuracy score was chosen to ensure a
sensitivity greater than 0.5, indicating a focus on correctly
identifying positive cases. The AUROC metric quantifies
the area under the receiver operating characteristic curve,
which illustrates the relationship between the true positive
rate and the false positive rate at various thresholds. Visual

representations of these metrics are presented in Figures 2 and
3. Table 4 summarizes the average scores obtained dur-
ing cross-validation, alongside the maximum and minimum
values observed. For 14-day readmission prediction, the
DES framework achieved the highest accuracy of 0.783
and the peak AUC (area under the curve) of 0.739. For
30-day readmission prediction, it attained the best accuracy
of 0.683 and the highest AUC of 0.684. In both accuracy and
AUROC, the proposed method demonstrated superiority over
the baseline models. This performance improvement can be
attributed to the innovative features of our framework, such as
the dynamic classifier selection based on patient subgroups.

Figure 2. ROC (receiver operating characteristic) curves for the prediction of 14-day readmission. ADA: adaptive boosting; AUC: area under the
receiver operating characteristic curve; DT: decision tree; ET: extra trees; GBC: gradient boosting classifier; KNN: k-nearest neighbors; LDA: linear
discriminant analysis; LGB: light gradient boosting machine; LR: logistic regression; NB: Naive Bayes; QDA: quadratic discriminant analysis; RF:
random forest; XGB: extreme gradient boosting.
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Figure 3. ROC (receiver operating characteristic) curves for the prediction of 30-day readmission. ADA: adaptive boosting; AUC: area under the
receiver operating characteristic curve; DT: decision tree; ET: extra trees; GBC: gradient boosting classifier; KNN: k-nearest neighbors; LDA: linear
discriminant analysis; LGB: light gradient boosting machine; LR: logistic regression; NB: Naive Bayes; QDA: quadratic discriminant analysis; RF:
random forest; XGB: extreme gradient boosting.

Table 4. Performance comparison of different prediction models.
Classifier 14-day readmission 30-day readmission

AUROCa Accuracy AUROC Accuracy
AdaBoostb 0.671 (0.619‐0.706) 0.717 (0.635‐0.736) 0.623 (0.548‐0.659) 0.644 (0.590‐0.675)
Extra trees 0.695 (0.642‐0.727) 0.733 (0.682‐0.779) 0.639 (0.593‐0.662) 0.636 (0.581‐0.658)
Gradient boosting classifier 0.687 (0.648‐0.710) 0.729 (0.685‐0.791) 0.632 (0.579‐0.670) 0.635 (0.593‐0.657)
K-nearest neighbors 0.579 (0.558‐0.605) 0.557 (0.504‐0.589) 0.536 (0.502‐0.557) 0.507 (0.424‐0.569)
Linear discriminant analysis 0.684 (0.624‐0.761) 0.732 (0.657‐0.835) 0.656 (0.606‐0.681) 0.659 (0.578‐0.699)
LightGBMc 0.680 (0.644‐0.711) 0.718 (0.658‐0.772) 0.613 (0.546‐0.653) 0.623 (0.570‐0.679)
Logistic regression 0.683 (0.618‐0.763) 0.721 (0.604‐0.790) 0.650 (0.591‐0.681) 0.653 (0.584‐0.685)
Naïve Bayes 0.688 (0.641‐0.742) 0.735 (0.657‐0.802) 0.632 (0.560‐0.658) 0.642 (0.576‐0.676)
Quadratic discriminant
analysis

0.606 (0.548‐0.631) 0.647 (0.623‐0.672) 0.563 (0.492‐0.628) 0.580 (0.501‐0.672)

Random forest 0.701 (0.668‐0.726) 0.728 (0.711‐0.748) 0.630 (0.586‐0.655) 0.620 (0.606‐0.634)
XGBoostd 0.666 (0.624‐0.702) 0.694 (0.622‐0.739) 0.611 (0.561‐0.660) 0.616 (0.563‐0.678)
Proposed method 0.739 (0.697‐0.775) 0.783 (0.766‐0.803) 0.684 (0.664‐0.709) 0.683 (0.658‐0.701)

aAUROC: area under the receiver operating characteristic curve.
bAdaBoost: adaptive boosting.
cLightGBM: light gradient boosting machine.
dXGBoost: extreme gradient boosting.
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Although the accuracy of the model is not particularly high,
a result similar to those reported in comparable literature, it
was found that in some patient subgroups, the framework
we used can exhibit more promising application prospects.
This also constitutes one of the significant values of our
research. Data-driven models are challenging to implement
in real-world clinical applications due to their potential lack
of generalizability across all patient populations. Within our
framework, during the process of dynamic classifier selection,
we can initially ascertain whether a model is suitable for
a specific patient. This is accomplished by evaluating the
performance of models with respect to the corresponding
patient subgroups. As illustrated in Figure 4, patient subgroup
1 consists of patients with liver cirrhosis who have varices but

no ascites or portal hypertensive gastroenteropathy. Patient
subgroup 2 comprises patients with liver cirrhosis who have
splenomegaly but no liver failure or peritonitis. Multiple
heterogeneous classifiers were trained using multiple data
subsets that meet these criteria to form the classifier pool.
For patients 1 and 2, a gradient boosting classifier and
a random forest classifier were selected, respectively. We
evaluated the performance of the aforementioned subgroups.
For the patients (n=152) in the test set who fit the criteria of
subgroup 1, the accuracy, precision, recall, and F1-score were
0.881, 0.862, 0.881, and 0.870, respectively. For the patients
(n=195) in the test set who met the criteria of subgroup 2, the
accuracy, precision, recall, and F1-score were 0.891, 0.872,
0.891, and 0.879, respectively.

Figure 4. Illustration of characterization of patient subgroups and dynamic model selection for different patients. GBC: gradient boosting classifier;
RF: random forest.

Interpretability
In addition to improving accuracy, the proposed method
offers the capability to generate a classifier pool and facilitate
dynamic selection of classifiers in a highly interpretable
manner [25]. The interpretable rules used to generate the
training subset for this classifier can describe clinical
characteristics of patient subgroups. These rules provide
insights into the specific features or conditions that con-
tribute to the prediction, thereby assisting clinicians in
making informed decisions and tailoring interventions for
different patient subgroups. In cases where multiple classifi-
ers are selected for prediction, analyzing the intersection of
elements across these rules can provide additional insights for
characterizing patient subgroups.

During the dynamic classifier selection phase, the
proposed method selects classifiers with the highest compe-
tence scores for prediction. Our experiments revealed that,
in most instances, a single optimal classifier was chosen for
each individual to predict the risk of readmission. When the
selected classifier is inherently intelligible and explainable,

its predictions can be directly interpreted and understood.
If multiple classifiers or black box models are selected
for prediction, interpretability techniques such as SHAP
(Shapley Additive Explanations) can be used to interpret
the model’s predictions. For instance, Figure 5 demonstrates
that higher indirect bilirubin, total bilirubin at discharge,
prothrombin time – international normalized ratio, ascites
concentrate, and lower albumin at discharge were associated
with higher predicted outcomes for a patient subgroup. Figure
6 presents individual SHAP force diagrams for non-readmit-
ted and readmitted patients, with predicted probabilities of
0.41 and 0.80 for patients 1 and 2, respectively. For the first
patient, total bile acid, platelet count, glutathione, aspar-
tate aminotransferase, and peritonitis contributed negatively
to the predicted outcome, while calcium and hemoglobin
contributed positively. Conversely, for the second patient,
calcium, hemoglobin, sex, electrolyte metabolism disorder,
autoimmune diseases, total bilirubin at discharge, and sodium
at discharge contributed positively to the prediction, while
glutathione contributed negatively.
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Figure 5. SHAP summary plot of the effect of input variables for 14-day readmission. ALB: albumin; BUN: blood urea nitrogen; D_ALB: albumin
at discharge; D_Hepatic encephalopathy: hepatic encephalopathy at discharge; D_TBIL: total bilirubin at discharge; DBIL: bilirubin at discharge;
HGB: hemoglobin; IBIL: indirect bilirubin; K: potassium; MELD: Model for End-Stage Liver Disease; Neu: neutrophils; PLT: platelet count; PT:
prothrombin time; PTA: prothrombin activity; PT-INR: prothrombin time – international normalized ratio; SHAP: Shapley Additive Explanations;
TBIL: total bilirubin.

Figure 6. SHAP (Shapley Additive Explanations) force plot showing (A) not readmitted and (B) readmitted. AST: aspartate aminotransferase; Ca:
calcium; D_Na: sodium at discharge; D_TBIL: total bilirubin at discharge; EMD: electrolyte metabolism disorder; HGB: hemoglobin; PLT: platelet
count; TBA: total bile acid.
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Discussion
In this study, we developed a DES framework that
comprises 3 components: classifier pool generation, meta-
feature extraction and meta-training, and dynamic classi-
fier ensemble. Initially, the classifier pool was formed
by generating data subsets using a rule-based method
to characterize patient subgroups and train heterogene-
ous machine learning models. Subsequently, by defining
competence regions that encompass both complications and
comorbidities, meta-features were extracted, and a meta-
classifier was trained. Finally, a dynamic classifier ensem-
ble was used to select the optimal classifier based on
competent scores calculated by the meta-classifier, while
a majority voting strategy was used when deemed neces-
sary. This framework demonstrates its potential for applica-
tion in EHR-based predictive tasks, by adaptively selecting
models for individuals, enhanced by the medical knowledge
integrated into the DES framework. The dynamic align-
ment of classifier selection with diverse patient subgroups,
identified as the core contribution of this research, signifi-
cantly enhances the clinical applicability and reliability of
the model. By capturing heterogeneous health profiles and
treatment responses across patient populations, the framework
accommodates the complexity of real-world clinical care,
thereby facilitating clinical experts’ comprehension and trust
in model predictions.

Readmission, a critical indicator of hospital quality [26],
performance [27], and patient care standards [12], imposes
significant burdens on health care systems and costs, with
nationwide readmission expenses surpassing US $4.45 billion
annually [28] and posing substantial survival challenges for
low-income families [29]. Accurate prediction of readmission
is increasingly essential for the effectiveness of interventions
aimed at reducing readmissions. While bed availability may
influence the timing of readmissions, it is not a determi-
nant of readmission occurrence itself. In China’s highly
efficient health care system, most patients requiring treatment
can access timely care, and bed availability variations (eg,
overcrowding vs idleness in specialized units) were not major
factors in the hospitals included in this study. To address
potential timing biases, this research reports predictions for
2 discrete time intervals (14-day and 30-day readmission),
providing comprehensive coverage of readmission dynam-
ics [30]. Although bed availability could theoretically be a
confounding factor, its impact was minimized in our analysis.

Over the past decade, numerous studies have modeled
readmission risks using diverse methods, typically reporting
AUC scores within the range of 0.60 to 0.78 [10,14,15]. The
majority of studies have focused on developing and validat-
ing a single machine learning model. In contrast, within
our study, the proposed DES method demonstrated superior-
ity over other approaches. Notably, the framework implic-
itly addressed class imbalance through subgroup-specific
undersampling during classifier pool generation, whereas
explicit techniques such as SMOTE (Synthetic Minority
Oversampling Technique) did not improve performance in
our experiments.

Our study revealed that the 14-day unplanned readmis-
sion rate for patients with cirrhosis was 12.8% (423/3307),
while the 30-day readmission rate stood at 26.6% (879/3307).
In contrast, the 30-day readmission rates among insurance-
covered populations in 2014 and 2019 were 22.6% and
21%, respectively [7]. The slightly elevated readmission
rates observed in our study may be attributed to the higher
average patient age of 55 years, which is associated with
increased disease severity and a greater propensity for
comorbidities. These patients are also more susceptible to
developing complications and infections during hospitaliza-
tion [2]. According to weighted analyses of readmission
databases, complications [31], MELD (Model for End-Stage
Liver Disease) scores [7], and infections [28] are crucial
predictors of readmission in patients with cirrhosis. Our study
echoed these findings, with prevalent complications including
ascites (14-day data: 368 cases vs 55 controls; 30-day data:
770 cases vs 106 controls), variceal bleeding (14-day: 245 vs
178; 30-day: 434 vs 445), hepatic encephalopathy (reference
21; 14-day: 368 vs 55; 30-day: 792 vs 87), spontaneous
bacterial peritonitis (14-day: 312 vs 111; 30-day: 670 vs 209),
and acute-on-chronic liver failure (14-day: 337 vs 86; 30-day:
739 vs 140). These results are largely in alignment with
previous studies [32]. Our study further revealed a gender
disparity in liver disease prevalence, with male patients
comprising the majority of readmissions (14-day: 305 vs
118; 30-day: 617 vs 262). This may be linked to unhealthy
lifestyle behaviors, including a higher prevalence of alcohol-
related cirrhosis in males [33] and increased susceptibility to
infections, both of which contribute to elevated readmission
rates. Smoking, another established risk factor for cirrhosis,
underscores the need for early intervention targeting smoking
and alcohol cessation in cirrhotic patients. However, the
asymptomatic nature of early-stage cirrhosis often delays
diagnosis, exacerbating disease severity and readmission risks
in males.

The advantages of this study can be summarized as
follows. First, by leveraging heterogeneous classifiers’
diverse feature selection capabilities and integrating temporal
dynamics of patient health status into the DES framework,
the model’s robustness and clinical applicability are enhanced
to address real-world EHR data limitations. Second, medical
expert knowledge is seamlessly integrated into both classifier
pool generation and dynamic selection processes. Specif-
ically, medical diagnosis-based rules are used to define
patient subgroups and competence regions, ensuring the
framework is not purely data-driven but also informed
by clinical expertise. This integration adds clinical valid-
ity—for example, incorporating complications and comorbid-
ities (critical factors in clinical assessments)—to enhance
model relevance and interpretability in real-world practice.
Third, the framework enables dynamic updates of classifier
pools and meta-classifiers with incoming data, demonstrating
flexibility and scalability that hold promise for extending
its application to prediction and management of a broad
spectrum of diseases.

This study acknowledges several limitations. First, the
dataset used in this study does not include patients readmitted
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from other hospitals. Although previous research suggests
that the majority of readmissions occur within the same
institution, this limitation may potentially affect the com-
prehensiveness of the study. Additionally, the study only
encompasses patients who have had at least 2 readmis-
sions. Future research should strive to expand the dataset
and the scope of the sample to improve the reliability
and generalizability of the findings. Second, the risk of
readmission is affected by a multitude of factors, includ-
ing socioeconomic status, educational level, and health

insurance. This complexity poses a certain constraint on the
model’s discriminatory power. In future research, the goal
is to incorporate these indicators through prospective and
follow-up studies, thereby enhancing the model’s predic-
tive accuracy. Third, the practical implementation of the
model requires continuous monitoring and calibration in line
with local medical environments. Future studies should give
priority to developing methods to enhance data interopera-
bility across different sites, which will facilitate a wider
application of the model.
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