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Abstract

Background: For the public health community, monitoring recently published articles is crucial for staying informed about
the latest research developments. However, identifying publications about studies with specific research designs from the
extensive body of public health publications is a challenge with the currently available methods.

Objective: Our objective is to develop a fine-tuned pretrained language model that can accurately identify publications from
clinical trials that use a group- or cluster-randomized trial (GRT), individually randomized group-treatment trial (IRGT), or
stepped wedge group- or cluster-randomized trial (SWGRT) design within the biomedical literature.

Methods: We fine-tuned the BioMedBERT language model using a dataset of biomedical literature from the Office of
Disease Prevention at the National Institute of Health. The model was trained to classify publications into three categories of
clinical trials that use nested designs. The model performance was evaluated on unseen data and demonstrated high sensitivity
and specificity for each class.

Results: When our proposed model was tested for generalizability with unseen data, it delivered high sensitivity and
specificity for each class as follows: negatives (0.95 and 0.93), GRTs (0.94 and 0.90), IRGTs (0.81 and 0.97), and SWGRTSs
(0.96 and 0.99), respectively.

Conclusions: Our work demonstrates the potential of fine-tuned, domain-specific language models to accurately identify
publications reporting on complex and specialized study designs, addressing a critical need in the public health research
community. This model offers a valuable tool for the public health community to directly identify publications from clinical
trials that use one of the three classes of nested designs.
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they may require these publications to conduct meta-analyses
and systematic reviews.

Introduction

Researchers need to identify publications from trials that
use nested designs to access evidence relevant to commun-
ity-level interventions and make informed decisions about
public health strategies, as well as to understand the effective-
ness of these interventions in improving health outcomes and
reducing health disparities within populations. Additionally,
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There are three important classes of nested designs widely
used in clinical trials [1,2]. The parallel group- or clus-
ter-randomized trial (GRT) involves the randomization of
groups or clusters to study arms with observations taken
using members of those groups or clusters [3-8]. This design
is widely used to evaluate interventions that are delivered
to groups or clusters that modify the physical or social
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environment, or that cannot be delivered to individuals
without the substantial risk of contamination. The stepped
wedge group or cluster-randomized trial (SWGRT) involves
the randomization of groups or clusters to sequences; all
groups or clusters begin in the control arm and transition
to the intervention arm on a schedule determined by their
sequence so that by the end of the trial, all groups or clusters
are in the intervention arm [9]. The individually randomized
group-treatment (IRGT) trial involves the random assignment
of individuals to study arms but delivery of the intervention
in a group-based format or using shared intervention agents
[10,11]. All three nested designs have design, analytic, and
sample size challenges not found in the traditional random-
ized clinical trial [1,2].

Currently, most public health researchers, including
ourselves, use manual searches to identify GRTs, IRGTs,
or SWGRTs, because, so far as we are aware, there are no
automated methods for identifying published papers using
these designs. However, manual searches can easily miss
many qualifying publications due to the complexity of search
parameters and the lack of consistent reporting. Document
classification using machine learning and natural language
processing techniques offers a more promising approach for
categorizing documents into predefined groups.

Garcia et al [12] enhanced automatic document classi-
fication in the biomedical domain by leveraging Wikipe-
dia knowledge to create bag-of-concepts representations,
resulting in performance gains over traditional bag-of-words
approaches in both single-label and multi-label classification
tasks. Cohen [13] also proposed a biomedical text classi-
fier, which integrates document words, MeSH terms, and
normalized biological entity identifiers.

Previous studies have demonstrated the utility of machine
learning approaches in identifying randomized controlled
trials (RCTs) from biomedical literature databases. Marshal
et al [14] used machine learning models, including con-
volutional neural networks, support vector machines, and
ensemble models to identify RCT publications. Al-Jaishi
et al [15] addressed the challenge of accurately identifying
GRTs reports from bibliographic citations by leveraging static
embedding techniques, developing and validating machine
learning algorithms for information retrieval.

While these studies have focused on identifying specific
types of RCTs, such as conventional RCTs and GRTs, our
research aims to extend this approach to the identification
of diverse categories of randomized trials, including GRTs,
IRGTs, and SWGRTs. To achieve this, we propose a novel
approach leveraging fine-tuned language models, specifically
the pretrained BioMedBERT model, trained on a dataset
of biomedical literature curated by the Office of Disease
Prevention at the National Institute of Health.

Large language models represent an ideal choice for
the development of biomedical text classifiers due to their
capacity to grasp the contextual nuances within the data.
Pretrained transformer language models, like bidirectional
encoder representations from transformers (BERT) [16-18],
have outperformed the existing deep neural network models,
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including convolutional neural networks and recurrent neural
networks. Examples of transformer-based models trained
on biomedical data include BioBERT [19], BioLinkBERT
[20], BlueBERT [21], and BioMedBERT [22], which are
pretrained on biomedical literature and clinical text.

While these pretrained models are readily applicable to
common tasks due to their training on biomedical data,
classifying scientific literature presents a unique challenge
because scientific literature encompasses a diverse range of
topics, writing styles, and research fields. Identifying and
categorizing clinical trials into highly specialized categories
is especially challenging, even for human coders. Leverag-
ing transfer learning and fine-tuning a pretrained language
model allows the machine learning platform to learn and
adapt to the particular context and vocabulary of these
types of documents, enhancing its effectiveness in tasks
such as document classification, information extraction, and
summarization [18].

To our knowledge, there is currently no transformer-based
language model fine-tuned to identify clinical trial publica-
tions based on nested designs. In our method, we leverage
BioMedBERT [22], a model that has been pretrained from
scratch using abstracts from PubMed and full-text articles
from PubMedCentral. We fine-tuned BioMedBERT using
labeled clinical trials, with a specific focus on distinguishing
various types of clinical trial publications, including GRTs,
IRGTs, and SWGRTSs. The fine-tuning process involved
training on a carefully curated dataset comprising a substan-
tial number of GRTs, IRGTs, and SWGRTs. The outcome of
this fine-tuning process is a model that provides a high level
of sensitivity and specificity in classifying and differentiating
various types of randomized trial publications.

Methods

Traditional Machine Learning Models
(Baseline Model)

In our study, we initially established a baseline model for
classifying publications using traditional machine learning
and word embedding techniques to demonstrate the effective-
ness of employing a transformer-based model in identifying
publications based on nested designs. To create the baseline
model, we employed FastText (Facebook AI Research) to
generate word embeddings, followed by a logistic regression
model. Logistic regression has been widely recognized in
the literature as an effective classifier for text data due to
its simplicity, interpretability, and robust performance across
various domains [23]. To enhance the model’s capability
to process biomedical text data, we leveraged pretrained
FastText embeddings specifically trained on PubMed and
MIMIC-III data, known as BioWordVec [24], to extract
meaningful features from titles and abstracts of publications.
Subsequently, we used these extracted embeddings to train a
logistic regression model for the classification of publications.
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Evaluation Metrics

There are various metrics available to evaluate the perform-
ance of a classifier. While the area under the curve is
commonly used in binary classifiers, accuracy can be helpful
for balanced evaluation datasets. However, in our case, where
the model serves as a multiclass classifier with imbalanced
data, the Fi-score emerges as the most reliable metric [25].
Our primary objective was to fine-tune an existing pretrained
language model to maximize the Fj-score on a validation
dataset.

The F{-score is the harmonic mean of precision and recall.
Precision is the ratio of correctly predicted positive observa-
tions to the total predicted positives. It measures the accuracy
of the positive predictions made by the model. High precision
ensures that when our model predicts an article belongs to
a nested design group, it is highly likely to be accurate.
This is crucial in applications where precision contributes
to the trustworthiness of the classification outcomes, such as
systemically classifying research publications. Recall, which
is the same as sensitivity, is vital when the cost of false
negatives is high. A high recall ensures that our model
effectively captures a comprehensive set of articles within
each predefined group.

The Fi-score is particularly useful in situations where
there is an imbalance between the classes or when there
is an equal importance placed on precision and recall. It
is a metric that balances the trade-off between precision
and recall, providing a single value that reflects the overall
performance of the model.

Our dataset is imbalanced with fewer examples in the
IRGT and SWGRT classes, and accuracy alone can be
misleading. Precision, recall, and Fl-score provide a more
nuanced view of a model’s effectiveness, especially in
identifying the strengths and weaknesses associated with false
positives and false negatives.

True Positives
True Positives+False Positives

Precision =

True Positives

Recall = True Positives+False Negatives

PrecisionxRecall

F1 Score = 2 % Precision+Recall

Specificity serves as a crucial metric for assessing the number
of false positives within a model. It measures the ability of the
model to correctly identify negative instances, thus providing
insight into the model’s performance in avoiding false-pos-
itive predictions. Although it was not initially used as an
evaluation metric during our experimental phase and model
development, it was calculated to provide a comprehensive
assessment of performance, particularly in gauging the rate of
false positives.
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True Negatives

Ficity =
Specificity True Negatives+False Positives

The weighted average considers the class imbalance in
the dataset by considering the contribution of each class
proportional to the number of instances in that class. In other
words, classes with more instances have a greater impact on
the overall metric than classes with fewer instances.

c
Di= 1M

WeightedAverage = ==

Where

m; is the metric value (eg, precision, recall, F1-score) for
class, n; is the number of instances in class i, C is the number
of classes, and N is the total number of instances in the
dataset

BioMedBERT

We chose BioMedBERT as the initial pretrained model due
to its superior performance compared to other existing models
on our gold standard data, publications published prior to
2021 that were identified as GRT, IRGT, and SWGRT papers
using search queries. BloMedBERT is a pretrained language
model developed by Microsoft Research for biomedical text
processing using abstracts from PubMed and full-text articles
from PubMedCentral [22]. It is a specialized variant of
the BERT architecture [16], designed to capture domain-spe-
cific nuances in biomedical literature. The architecture of
BioMedBERT enables it to learn contextualized representa-
tions of words and phrases bidirectionally and understand the
contextual relationships within biomedical texts. The BERT
model used in our study was downloaded from Hugging
Face’s Transformers library, configured as a classifier. In
this framework, the tokenizer automatically manages special
tokens such as [CLS] and [SEP], ensuring proper preprocess-
ing for input sequences.

For the classification task, the [CLS] token's embedding
from the final layer of BERT serves as a representation of
the input sequence's contextual information. A multilayer
perceptron is applied to this embedding to perform the
classification. This multilayer perceptron consists of fully
connected layers that map the [CLS] token's representation
to the output space, followed by the softmax activation for
probability distribution over classes.

The pretrained BioMedBERT wuses a bidirectional
transformer architecture with several layers of self-atten-
tion mechanisms. The model embeddings, including word
embeddings and positional embeddings, contribute to
encoding patterns in biomedical language.

During the pretraining phase, BioMedBERT was
initialized with weights obtained from training on a domain-
specific corpus: 14 million abstracts, 3.2 billion words, and
21 gigabytes [22]. This large-scale training ensures that
the model captures a wide range of biomedical concepts,
terminology, and contextual relationships. BERT-BASE [16]
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with 12 transformer layers and 100 million parameters was
used to pretrain BioMedBERT.

A pooling layer was introduced atop the transformer’s
final layer, known as the embedding layer. This embedding
layer underwent pooling to derive a fixed-size representa-
tion of the entire input sequence. To capture nonlinearity
and intricate patterns within the data, a feedforward layer
was incorporated. This layer is linked to the output layer,
responsible for computing logits.

Fine-Tuning BioMedBERT

For this study, we fine-tuned BioMedBERT to adapt the
model to the specific nuances of our dataset related to
publications from clinical trials that use nested designs. By
leveraging the contextual information encoded in BioMed-
BERT, we aimed to enhance the accuracy and efficiency of
our machine learning model in identifying and distinguishing
various types of clinical trial publications. In particular, our
goal was for BioMedBERT to serve as a multiclass classifier
that can categorize biomedical publications into four distinct
categories: GRT, IRGT, SWGRTSs, and the broader category
of publications based on studies that used other designs,
which we refer to as negatives (Multimedia Appendix 1).

Data

The National Institute of Health Office of Disease Preven-
tion provided a labeled dataset consisting of publications
from PubMed, published prior to 2021, with each publica-
tion categorized into one of the three classes: GRT, IRGT,
and SWGRT. We selected nonclinical trial publications from
a list of 120 journals that published most of the nested
clinical trial publications; we will refer to those publications
as negative publications. The original dataset consisted of
891 GRT publications, 59 IRGT publications, 109 SWGRT
publications, and 996 negative publications. The first version
of the fine-tuned language model underwent training on titles
and abstracts from this dataset. The best-performing model
was subsequently employed to classify unlabeled publications
published in 2021. After thorough verification of predictions
by domain experts, a complementary set of 299 GRT, 40
IRGT, 65 SWGRT, and 1200 negative examples from 2021
was added to the original training, validation, and test sets.

The new dataset served as the foundation for tuning the
model hyperparameters to predict labels for publications
published in 2022. With the improved training data, the
model demonstrated higher accuracy and Fl-score, enabling
precise classification of publications from the subsequent
year, 2022. The same strategy as above was employed to
add 2022 verified data to our training dataset, which resulted
in the addition of 461 GRT, 195 IRGT, and 93 SWGRT,
and 539 negative publications to the training, validation, and
test datasets to prepare the classifier to predict labels for
publications published in 2023. The Results section describes
the final performance of the model trained and evaluated on
this dataset.

https://medinform.jmir.org/2025/1/e63267

Aghaarabi & Murray

Tokenization

To process the textual data, we utilized the Hugging Face
Trainer API in conjunction with the BioMedBERT token-
izer. The BioMedBERT tokenizer is trained on a corpus of
biomedical text to tokenize and segment text into subwords
using the WordPiece algorithm, just like the original BERT
tokenizer. Therefore, the tokenizer is tailored to handle
biomedical terminology and language patterns [22]. For
instance, when tokenizing the title “Comparison of differ-
ent intervention methods to reduce the incidence of venous
thromboembolism: study protocol for a cluster-randomized,
crossover trial” from a 2023 publication, the tokens are
segmented as follows: [“comparison,” “of,” “different,”
“intervention,” “methods,” “to,”

99 <6

reduce,” “the,” “incidence,”

9 < LEINNT3

“of,” “venous,” “thromboembolism,” “:,” “study,” “proto-
col,” “for,” “a,” “cluster,” “-,” “randomized,” “,”, “cross-
over,” “trial,” “.”]. The tokenization process was carried out

separately for the titles and abstracts of the publications.
In order to maintain computational efficiency and manage
memory constraints, we imposed a length limit on the
tokenized text. Titles were truncated to a maximum length
of 30 tokens, which was the maximum title length in the data,
while abstracts were truncated to 256 tokens from the start
of the text, ensuring that majority of abstracts in our dataset
fit within this allocation. Shorter sequences were padded with
zeros. Based on the length distribution of titles and abstracts,
we adjusted the allocation to align with actual usage patterns,
ensuring that all instances remain within the supported range
while optimizing model efficiency.

Addressing Class Imbalance

An imbalanced dataset refers to any dataset where there is
an unequal distribution among classes, with one or more
classes having significantly fewer instances than others.
When trained on imbalanced datasets, models may exhibit
a bias towards predicting the majority class more fre-
quently, resulting in poor generalization for the minority
class. Therefore, selecting the appropriate evaluation metric
becomes crucial in such scenarios. A model might achieve
high accuracy by predominantly predicting the majority
class while displaying poor performance on the minority
class. Various strategies exist to address class imbalance,
including selecting appropriate performance metrics, such as
precision-recall or the Fj-score, to accurately reflect model
performance. Techniques like undersampling the majority
class, oversampling the minority class, employing synthetic
data generation methods like SMOTE (synthetic minority
over-sampling technique), leveraging algorithms designed to
handle class imbalance robustly, and incorporating cost-sen-
sitive learning by assigning costs to the loss function are
among the approaches commonly employed [26-28]. Given
the observed class imbalance within the dataset, we imple-
mented a customized loss function to mitigate the impact of
this imbalance during the training phase. To achieve this,
inverse class weights were calculated based on the num-
ber of examples in each class within the training dataset.
These weights were then utilized in the weighted categori-
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cal cross-entropy loss function, assigning varying levels of
importance to each class during model training.

The weighted categorical cross-entropy loss function is
defined as follows:

Weighted Categorical Cross-Entropy Loss =

N C
— > 2, wj- i log(Pi))

i=1j=1

where C is the number of classes, N is the number

of samples in the dataset, y; is the true probability
distribution (one-hot encoded vector) for class i, P; is
the predicted probability distribution for class i, and w;
is the weight assigned to class i

The inverse class frequency method is used to assign higher
weights to classes with fewer examples. The rationale is to
give higher weights to classes that are under-represented,
making the model more sensitive to minority classes and
potentially improving performance on imbalanced datasets.

_ Total Number of Examples
~ Number of Examples in class i

W

Hyperparameter Tuning

To evaluate the model’s performance, we split our dataset
into three subsets: a training set, a validation set, and a test
set. The test set comprised 20% of the total dataset and was
created by stratified random sampling from the labeled data.
To assess the generalizability of our model to unseen data
and to ensure a robust and unbiased evaluation of our model,
a stratified k-fold cross-validation technique was used by
splitting the remaining 80% of the dataset into subsets to train
and validate the model iteratively, k times. In this technique,
the dataset is divided into k folds while maintaining the same
class distribution in each fold as the original dataset. We
chose k=5 for a 5-fold cross-validation. Each fold maintained
the proportion of class labels similar to that in the overall
dataset. This helped prevent the model from being biased
toward the majority class [29].

We conducted a series of experiments to determine the
optimal hyperparameters for our model. These included
exploring various values for learning rates, weight decay,
batch sizes, and the number of training epochs [22]. Our
goal was to identify the combination of hyperparameters
that produced the best model performance with the highest
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F1-score. The initial hyperparameters were selected based on
the pretrained BioMedBERT model, and they were changed
during the training process iteratively. The final model
hyperparameters include a batch size of 32 and a learning
rate of 0.00003098.

A regularization term is added to the loss function during
training to penalize large weights and prevent overfitting [29].
The modified loss function with weight decay is calculated as
follows:

Total Loss = Original Loss + %Z l6i”
i

Where original loss is the loss without regularization, A is the

weight decay hyperparameter, and X;||6|° represents the sum
of squared weights across all layers of the model.

The value of the weight decay hyperparameter is a crucial
aspect of training. It determines the strength of the regu-
larization effect. Too small a value may not prevent over-
fitting, while too large a value may penalize weights too
much and stop the learning process. Moreover, early stopping
was applied to the classifier head to prevent overfitting and
improve efficiency with a patience of 5 epochs.

By following these steps, we developed a fine-tuned
BioMedBERT model capable of classifying publications
into the specified categories. This model was rigorously
trained, validated, and optimized to maximize the classifica-
tion accuracy and Fy-score.

Results

To assess each model for generalizability, we evaluated
its performance on the test set containing 20% of the
final dataset that was randomly stratified and had not been
introduced to the model previously.

Baseline Model Performance

After generating features using a FastText model and training
the logistic regression model, we evaluated its performance
across all classes. While the model demonstrated good
performance on the majority class, indicating its efficacy in
capturing prevalent patterns within the dataset, its perform-
ance on the minority class, IRGT, and SWGRT is suboptimal.
Table 1 presents the baseline model’s performance across all
classes, while Table 2 depicts the confusion matrix of the
baseline model. The weighted average for precision, recall or
sensitivity, specificity, and Fy-score is 0.85.

Table 1. Performance metrics of logistic regression model across all classes.

Class Accuracy Precision Recall or sensitivity Specificity F|-score
Negative 0.85 0.87 0.93 0.90 0.90
GRT? 0.83 0.81 0.90 0.82
IRGT® 0.65 045 0.96 0.53
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Class Accuracy Precision Recall or sensitivity Specificity F|-score
SWGRT® 1 0.70 0.98 0.82

4GRT: group- or cluster-randomized trial.

PIGRT: individually randomized group-treatment.

°SWGRT: stepped wedge group or cluster-randomized trial.

Table 2. Confusion matrix.

Actual Predicted

Classes Negative GRT IRGT SWGRT
Negative 508 27 12 0

GRT? 60 269 2 2
IRGTP 17 15 26 0
SWGRT¢ 2 14 0 37

3GRT: group- or cluster-randomized trial.
YIGRT: individually randomized group-treatment.
“SWGRT: stepped wedge group or cluster-randomized trial.

Pretrained Versus Fine-Tuned
Performance

The low performance of the pretrained BioMedBERT
classifier on all classes justifies the fine-tuning of the
transformer-based model. Following the fine-tuning process
using a training set that was curated by domain experts
iteratively, the model’s performance exhibited noticeable
enhancement in all performance metrics. The inclusion of
domain expertise in the data curation process contributed

to refining the model’s understanding and, consequently,
improving its predictive capabilities.

Table 3 shows the performance of the latest version of the
fine-tuned model on our test set, which was not seen by the
model during training and validation. The confusion matrix,
depicted in Table 4, provides a breakdown of the model’s
predictions against the actual values. The weighted average
for precision, recall or sensitivity, specificity, and Fi-score
are 0.94.

Table 3. Performance metrics of fine-tuned BioMedBERT across all classes.

Class Accuracy Precision Recall or sensitivity Specificity Fi-score
Negative 0.94 0.96 0.95 0.93 0.95
GRT? 0.95 0.94 0.90 0.94
IRGT® 0.69 0.81 0.97 0.75
SWGRT¢ 0.96 0.96 0.99 0.96

3GRT: group- or cluster-randomized trial.

bIGRT: individually randomized group-treatment.

°SWGRT: stepped wedge group or cluster-randomized trial.

Table 4. Confusion matrix.
Actual Predicted
Classes Negative GRT IRGT SWGRT
Negative 518 12 17 0
GRT? 14 311 4 2
IRGTP 8 3 47 0
SWGRT* 0 2 0 51

AGRT: group- or cluster-randomized trial.
YIGRT: individually randomized group-treatment.
°SWGRT: stepped wedge group or cluster-randomized trial.

Discussion

Principal Results

The model developed in this research used data provided by
the Office of Disease Prevention at the National Institute of

https://medinform.jmir.org/2025/1/e63267

Health and leveraged a transformer-based pretrained language
model, BioMedBERT, to identify publications of clinical
trials that used one of three nested designs. The model
outperformed the baseline model developed using features
generated by BioWordVec and logistic regression. Compared
to our baseline model, the recall and specificity for each
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class demonstrated improvements as follows: 2 points for
recall and 3 points for specificity in non-randomized class;
13 points for recall and O points for specificity in GRT;
36 points for recall and 1 point for specificity in IRGT;
26 points for recall and 1 point for specificity in SWGRT.
The IRGT class exhibited the lowest sensitivity compared
to other classes, due to fewer examples in the training data
and the inherent difficulty in identifying such publications by
only processing titles and abstracts. Even for human curators,
labeling these publications is challenging, often necessitating
meticulous examination of the whole paper’s content. Since
the fine-tuned model was trained solely on titles and abstracts,
it had limited information available for predicting IRGT
publications.

Comparison With Prior Work

While machine learning and natural language processing
techniques have been utilized to identify RCTs in the medical
literature [15], there have been fewer models specifically
designed to identify special categories of group random-
ized clinical trials. Existing models for biomedical docu-
ment classification predominantly rely on static embedding
techniques, such as Word2Vec or FastText, although recent
approaches have increasingly adopted nonstatic embedding
methods, particularly transformer-based models like BERT
and BioBERT, for more dynamic and context-aware text
representations [30-32]. Our model leverages attention
mechanisms and dynamic embedding techniques to capture
the varying importance of words within the context of
each document. By dynamically adjusting the embedding
representations based on the context of the input sequence,
our model can better capture the nuances and semantic
relationships within the text, leading to improved classifica-
tion performance.

Aghaarabi & Murray

Future Work

Moving forward, future research endeavors may focus on
refining the model to distinguish between subcategories
within each main category, such as the method, protocol, and
results [33]. Tailoring the model to address these distinctions
could further enhance its utility in biomedical text classifi-
cation tasks, facilitating more precise and comprehensive
literature analysis.

Conclusions

Our study presents a robust framework leveraging trans-
former-based language models to effectively identify
distinct categories of clinical trial publications within the
biomedical literature. Through fine-tuning the pretrained
BioMedBERT model, we achieved high accuracy and
F|-score metrics across three categories: GRTs, IRGTs, and
SWGRTSs. The developed framework outperforms conven-
tional search queries, providing advanced language under-
standing capabilities for discerning a broader spectrum of
publications.

Our findings underscore the significance of transformer-
based models in biomedical text classification, offering
improved performance compared to traditional machine
learning approaches and static embedding techniques. By
continually updating and refining our model with new
training data, we anticipate ongoing improvements in
performance and adaptability over time. This iterative
approach ensures the model remains up to date on the
latest developments in the biomedical field, contributing to
more efficient literature exploration, information retrieval,
and knowledge discovery.
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Python code
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