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Abstract

Background: Identifying neuroinfectious disease (NID) cases using International Classification of Diseases billing codes is
often imprecise, while manual chart reviews are labor-intensive. Machine learning models can leverage unstructured electronic
health records to detect subtle NID indicators, process large data volumes efficiently, and reduce misclassification. While
accurate NID classification is needed for research and clinical decision support, using unstructured notes for this purpose
remains underexplored.

Objective: The objective of this study is to develop and validate a machine learning model to identify NIDs from unstructured
patient notes.

Methods: Clinical notes from patients who had undergone lumbar puncture were obtained using the electronic health record
of an academic hospital network (Mass General Brigham [MGB]), with half associated with NID-related diagnostic codes.
Ground truth was established by chart review with 6 NID-expert physicians. NID keywords were generated with regular
expressions, and extracted texts were converted into bag-of-words representations using n-grams (n=1, 2, 3). Notes were
randomly split into training (80%), 2400 notes out of 3000, and hold-out testing (20%), 600 notes out of 3000, sets. Feature
selection was performed using logistic regression with L1 regularization. An extreme gradient boosting (XGBoost) model
classified NID cases, and performance was evaluated using the area under the receiver operating curve (AUROC) and the
precision-recall curve (AUPRC). The performance of the natural language processing (NLP) model was contrasted with the
Llama 3.2 auto-regressive model on the MGB test set. The NLP model was additionally validated on external data from an
independent hospital (Beth Israel Deaconess Medical Center [BIDMC]).

Results: This study included 3000 patient notes from MGB from January 22, 2010, to September 21, 2023. Of 1284 initial
n-gram features, 342 were selected, with the most significant features being “meningitis,” “ventriculitis,” and “meningoence-
phalitis.” The XGBoost model achieved an AUROC of 0.98 (95% CI 0.96-0.99) and AUPRC of 0.89 (95% CI 0.83-0.94)
on MGB test data. In comparison, NID identification using International Classification of Diseases billing codes showed
high sensitivity (0.97) but poor specificity (0.59), overestimating NID cases. Llama 3.2 improved specificity (0.94) but had
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low sensitivity (0.64) and an AUROC of 0.80. In contrast, our NLP model balanced specificity (0.96) and sensitivity (0.84),
outperforming both methods in accuracy and reliability on MGB data. When tested on external data from BIDMC, the NLP
model maintained an AUROC of 0.98 (95% CI 0.96-0.99), with an AUPRC of 0.78 (95% CI1 0.66-0.89).

Conclusions: The NLP model accurately identifies NID cases from clinical notes. Validated across 2 independent hospi-
tal datasets, the model demonstrates feasibility for large-scale NID research and cohort generation. With further external

validation, our results could be more generalizable to other institutions.

JMIR Med Inform 2025;13:¢63157; doi: 10.2196/63157
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Introduction

Meningitis and encephalitis pose serious threats to the health
of an individual, potentially leading to severe neurologi-
cal compromise or even death [1-7]. Many neuroinvasive
pathogens, including viruses (eg, enterovirus, herpes simplex
virus, West Nile virus, and HIV), bacteria (eg, S. pneumo-
niae, Mycobacterium tuberculosis), and fungi (eg, Crypto-
coccus), are linked to long-term cognitive sequelae [2,8].
Recent population-based studies suggest associations between
pathogen exposures, especially neuroinvasive viruses causing
encephalitis or meningitis, and the subsequent risk of
developing dementia such as Alzheimer disease (AD) [9-12].
The risk of AD appears to increase with longer time since
the first infection, peaking after 12-30 years [9]. Prior viral
encephalitis and bacterial or viral meningitis were found to be
associated with significantly increased hazard ratios for future
AD, with rates of 30.72-fold and 2.81-fold, respectively,
based on the Finnish Biobank, suggesting that exposure to
neuroinvasive pathogens may contribute to lower cognitive
reserve, likely in part due to brain inflammation [10].

These findings underscore the need for comprehensive,
longitudinal studies to elucidate the mechanisms by which
neuroinvasive pathogens might contribute to neurodegenera-
tive diseases. However, such research is severely hampered
by the scarcity of large, well-annotated hospital datasets.
This data gap not only impedes rigorous epidemiological
analyses but also hinders mechanistic investigations that
could reveal how pathogens interact with neural tissues to
potentially trigger or accelerate neurodegenerative processes.
Therefore, to support evidence-based clinical decision-mak-
ing and enable large-scale, high-powered research into the
long-term consequences of neuroinfectious diseases (NIDs),
accurately identifying these conditions in hospital patient
records remains a significant challenge.

NIDs stem from a diverse array of pathogens and often
present with clinically indistinguishable symptoms such as
fever, headache, and confusion. Physicians often grapple with
challenges in promptly identifying these pathogens, resorting
to less precise shotgun testing methods, leading to delayed or
unconfirmed diagnoses, unnecessary antimicrobial treatments,
and preventable morbidity [13-18]. Most epidemiological
studies linking infectious disease burden to subsequent
dementia rely on health care databases that use International
Classification of Diseases (ICD) codes 9th (ICD-9) and 10th
(ICD-10) revisions (combined as ICD codes) and do not
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validate diagnoses with microbial assays [19]. The limited
reliability of ICD codes in accurately identifying infectious
diseases has been previously reported [20-23], more recently
underscored by the 56%-57% positive predictive value
observed in the Danish National Patient Registry investigat-
ing herpes simplex virus encephalitis [19]. The combination
of ICD miscoding and the potential misclassification of
encephalitis etiology poses significant obstacles to generating
actionable recommendations for preventing AD and other
dementias. This challenge further hinders clinical guidance,
particularly in cases of viral encephalitis with unknown
origins—a subgroup identified in epidemiological studies as
having the highest risk of future dementia [10,11].

Recent efforts to move beyond ICD-based coding have
aimed at improving the timely and accurate diagnosis of
NID etiologies, particularly in differentiating between viral
and bacterial meningitis. These efforts predominantly use
approaches such as decision trees and ensemble methods.
For example, a study using a Brazilian dataset of 12,774
patients described by 19 clinical attributes aimed at distin-
guishing bacterial from aseptic meningitis found that a hybrid
bagging approach with Naive Bayes Trees outperformed 27
other tested models. This model achieved a sensitivity of
96% and a specificity of 82% [24]. While promising, most
other classification studies on NIDs, using techniques like
logistic regression [25-27] or hybrid models [24,27-32], are
primarily in pediatric populations, lack external validation, or
rely on small datasets with limited cross-validation [33]. To
our knowledge, no study has used unstructured data such as
clinical notes, which limits the insights that could be derived.

The 2015 global research priorities for infections that
affect the nervous system underscored the need for accurate
disease burden estimates and improved tools for neurological
and cognitive impairment assessment [2]. Natural language
processing (NLP) tools can leverage the rich informa-
tion present in large-scale comprehensive electronic health
records (EHRs), including unstructured clinical assessments
and notes [34-36]. Therefore, NLP holds the potential to
surpass the accuracy of traditional ICD-based phenotyping
while reducing reliance on semi-structured data formats
[30,35,37,38].

When structured lab data is unavailable, NLP techniques
leveraging unstructured clinical notes can potentially generate
more accurate NID cohorts than ICD codes alone. Many
NLP algorithms are computationally lighter and require less
computing infrastructure compared to more recent large
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language models (LLMs), making them more feasible for
widespread research applications. Building on this advantage,
our goal is to develop a more accurate and efficient method
for classifying NID cases in EHRs. Previous studies have
successfully used NLP to identify patients with epilepsy [38]
or classify neurological outcomes from medical notes [39].

Here, we aim to tackle NID patients by building upon
these studies and detailing our NLP algorithm leveraging
discharge summaries and progress notes to identify NID
patients and investigate the model’s accuracy across 2
independent hospitals. Our NLP algorithm outperforms ICD
codes in identifying NID patients and achieves competitive
performance compared to the Llama 3.2 autoregressive model
(an LLM with 3B parameters) in zero-shot learning tasks,

Singh et al
making it a valuable tool for large-scale EHR-based research

to investigate the relationship between NID exposure and
short- and long-term neurological outcomes.

Methods

Overview

Figure 1 provides a summary overview of the key
steps involved in this study, including data extraction,
note selection, regular expression development, ground-
truth labeling, text preprocessing, feature extraction, model
training, and evaluation.

Figure 1. Methods overview: data retrieval and machine learning pipeline for NID classification. AUPRC: area under the precision-recall curve;
AUROC: area under the receiver operating characteristic curve; BIDMC: Beth Israel Deaconess Medical Center; BOW: bag-of-words; EHR:
electronic health record; ICD: International Classification of Diseases; LP: lumbar puncture; n: number of unique patients; N: number of unique

notes; MGB: Mass General Brigham; NID: neuroinfectious diseases.
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Data Extraction and Note Selection

We included 34,556 patients who underwent lumbar
punctures (LP), sourcing medical notes from the EHR
database of the Mass General Brigham (MGB) network of
hospitals. This approach enriched individuals likely to be
evaluated for central nervous system (CNS) infections, with
a total of 4,971,491 notes extracted between 01/22/2010 and
09/21/2023. ICD diagnostic codes billed one calendar day
before and after the notes were extracted and labeled as likely
to be associated with NID. Multimedia Appendix 1 lists the
NIDX ICD 9 and 10 codes.

We excluded notes with fewer than 5000 characters,
as they likely lacked the necessary detail for clinicians to
accurately assess patient status or provide valid training for
models. We categorized notes into two groups: (1) notes
with NID-related ICD codes (969 unique patients, 44,259
notes) and (2) those without NID ICD codes (24,320 unique
patients, 641,063 notes). From these 2 groups, we randomly
selected 3000 notes from 2469 patients at MGB, of which
50%, 1500 out of 3000, were associated with NID-related
ICD codes, and 50% were not. For external validation,
we also extracted 600 inpatient notes from patients in
the Beth Israel Deaconess Medical Center (BIDMC) EHR
system located in the Brain Data Science Platform (bdsp.io)
maintaining a 50:50 split of cases with and without NID-rela-
ted ICD codes to match the MGB test set size.

Ethical Considerations

All procedures involving human participants in this study
were reviewed and approved by the Institutional Review
Board (IRB) of MGB, under protocol #2013P001024. The
research was conducted in accordance with the ethical
standards of the MGB and the principles of the WMA
Declaration of Helsinki.

This study involved analysis of EHR data. The IRB
approved a waiver of informed consent due to the retrospec-
tive nature of the study and minimal risk to participants.
In accordance with the IRB’s requirements, no identifia-
ble personal information is included in the manuscript or
supplementary materials. While the data were not fully
de-identified at the time of analysis, strict procedures for
maintaining privacy and confidentiality were implemented.
Access to identifiable information was restricted to certi-
fied study personnel who have completed training in ethics
and responsible conduct of research. The research team
was committed to upholding high standards of data privacy
and confidentiality throughout the entire study process. No
compensation was provided to participants, as only de-identi-
fied retrospective data were utilized.

Ground-Truth Labeling

In total, 39,245 regular expressions were formulated based
on domain-specific knowledge, categorized as (1) positive
NID (eg, “cerebrospinal fluid (CSF) positive for Epstein-
Barr Virus via polymerase chain reaction,” “ID felt encepha-
litis and seizures triggered by a viral illness,” “Currently
on empiric antibiotics and acyclovir for possible CNS
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infection”); (2) negative NID (eg, “LPs have been negative,”
“no signs of any infectious,” “autoimmune epilepsy/encepha-
litis”); (3) NID drugs (eg, ceftriaxone, acyclovir, trime-
thoprim-sulfamethoxazole, etc); (4) NID-likely keywords
(eg, “headache,” “fever,” “lumbar puncture,” etc). Regular
expressions were developed by listing relevant organisms
based on source materials for infectious diagnoses, antimicro-
bial agents, and symptoms associated with meningitis and
encephalitis. Many terms were combined to create compre-
hensive positive and negative expressions. In addition to
domain expert input, source materials included national
guidelines related to CNS diseases in adults and pathogen
data from global burden of disease studies [4,40-43]. The
positive, negative, and antimicrobial regular expressions are
provided in Multimedia Appendices 2—4.

In total, 6 physicians (AS, CQ, KH, GH, ST, and
SM), all domain experts in neuroimmunology or infectious
diseases, independently classified 500 notes each from the
MGB dataset (3000 notes in total) following a standar-
dized operating procedure. This procedure provided detailed
guidelines for reviewing notes, including assessing symptoms
and evaluating laboratory tests when referenced in the notes.
Ambiguous cases flagged by the physicians were reviewed
by an independent physician who was not involved in the
initial classification. A consensus approach was used to
resolve discrepancies in classification. To facilitate labeling,
a labeling software tool was created to show the notes
while highlighting the keywords (eg, meningitis, encepha-
litis, ceftriaxone, etc) and phrases (eg, “meningitis, likely
bacterial,” “CSF pleocytosis noted”). Domain experts had the
option to recommend additional regular expressions during
the MGB ground-truth labeling phase. Regular expressions
proposed by domain experts were incorporated if proposed on
the training dataset only. External model validation on 600
BIDMC notes was classified by 2 experts (AS and SM) (300
notes each). While the MGB test set was reduced to 445 notes
to address overlap with the training set, the BIDMC dataset
was solely used for external validation and retained its full
size of 600 notes.

Preparing Text Data for Feature
Extraction

Preprocessing notes to identify model features required (1)
limiting text to regions matching regular expressions with
a 100-character buffer, (2) converting to lowercase letters,
(3) removal of non-alphabetical characters, (4) replacing
consecutive whitespaces with a single whitespace, (5) using
words with more than 2 characters, and (6) removing stop
words (see Multimedia Appendix 5). The remaining text
was lemmatized using WordNetLemmatizer [44]. The text
was transformed into a bag-of-words (BOW) representation,
considering unigrams (1 gram), bigrams (2 grams), and
trigrams (3 grams).

Model Features, Training, and
Performance Evaluation

To reduce the number of features and enhance model
interpretability, we used an iterative approach using logistic

JMIR Med Inform 2025 | vol. 13 163157 I p. 4
(page number not for citation purposes)


https://medinform.jmir.org/2025/1/e63157

JMIR MEDICAL INFORMATICS

regression with L1 regularization, similar to our previous
NLP-based methods on unstructured EHR text in studies
on epilepsy or neurological status following COVID-19
hospitalizations [38,45]. The regularization strength (10)
and maximum iterations (1000) were chosen to balance
between model complexity and computational efficiency. We
addressed class imbalances by incorporating class weights
inversely proportional to the sample size. We used this
process to identify the most common features, resulting
in a set of 1284 features. A manual review by 3 experts
(AS, SM, and MBW) eliminated the remaining irrelevant
features, leading to a reduced set of 342 non-zero features.
For example, terms like “Boston,” “heart rate,” and “primary
care” were removed as they were irrelevant to NID classi-
fication and had no pathophysiological connection to the
condition.

The MGB dataset (3000 notes) was randomly split 80:20
for training (2400 notes) and the hold-out (600 notes) test
set, maintaining the 50/50 ICD code distribution. Since there
were only 969 unique patients with ICD codes for NIDs,
some notes originated from the same patients. To ensure no
patient appeared in both the training and test sets, the initial
hold-out test set of 600 notes was reduced to 445 notes by
excluding notes from patients who were also present in the
training set. To select the optimal model, we used 5-fold
cross-validation on the MGB training dataset. Given the
imbalanced nature of the dataset, with only 16%, 480 out of
3000, of the total observations positive for NID, we compared
logistic regression, random forest, and XGBoost using the
area under the precision-recall curve (AUPRC). AUPRC is

Table 1. Characteristics of the study cohorts.

Singh et al

more informative for imbalanced datasets, as it focuses on
the performance of the model in predicting the positive class,
unlike metrics such as accuracy or the area under the receiver
operating characteristic curve (AUROC) [46-49]. XGBoost
was selected for its AUPRC performance.

We then trained an XGBoost model on the 2400 train-
ing notes and tested its performance on both the hold-out
dataset (445 notes from MGB) and an external dataset
consisting of 600 notes from patients at BIDMC. Model
performance was based on the AUPRC and the AUROC.
We performed bootstrapping with replacement and performed
1000 iterations to estimate the 95% ClIs for these metrics.

Evaluation of Llama 3.2 for Zero-Shot
NID Classification

We assessed the performance of the Llama 3.2 auto-regres-
sive model (3B parameters) as a zero-shot learning approach
for classifying NID from clinical reports in the MGB test
set. Llama was neither fine-tuned nor trained on task-specific
examples and classified the presence or absence of NID from
clinical notes formatted in JavaScript Object Notation.

Results

Cohort Characteristics

The demographic characteristics of the 2469 patients
comprising the 3000 MGB clinical notes are presented in
Table 1 (the linkage between notes and demographic data for
the BIDMC dataset was lost and is therefore not shown).

MGB (N=2469)

Age (years)
Median (IQR)
Age group, n (%)
<18
18-34
35-49
50-64
65+
Sex, n (%)
Male
Female
Race, n (%)
White
Black
Asian
Other
Ethnicity, n (%)
Hispanic
Not Hispanic
Missing

61.0 (46-73)

101 (4.1%)
254 (10.3%)
403 (16.3%)
718 (29.1%)
993 (40.2%)

1119 (45.3%)
1350 (54.7%)

1911 (77.4%)
174 (7.0%)
86 (3.5%)
298 (12.1%)

252 (10.2%)

2041 (82.7%)
176 (7.1%)
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The median age (IQR) was 61.0 (46-73 y) years, of which
55% (n=1350) were female sex at birth, 77% (n=1911)
reported being of white race, and 83% (n=2041) reported
being of non-Hispanic ethnicity. Out of the 3000 notes, 16%
(479 notes) were labeled as NID based on expert review,
and 97% of these 479 notes had an NID-related ICD code.
Among the 1500 notes with an NID-related ICD code, 465
notes (31%) were confirmed as NID cases by expert review.
Conversely, among the 1500 notes without an NID-related
ICD code, 0.93% (14 notes) were identified as NID cases by
expert review. The sensitivity of detecting NID patients using
the presence of any NID-related ICD code was 97.1%, and
the specificity was 59.1%, suggesting reliance on ICD codes

Singh et al

alone for a patient’s true clinical diagnosis may be more
likely to overestimate, rather than underestimate, the number
of cases with NID.

Performance of EHR NID Classifier

The training set consisted of 2400 notes from MGB, where
16.1% (387/2400) were classified as NID-positive by expert
review. The hold-out testing set from MGB consisted of 445
notes, where 16% (71/445) were classified as NID-positive.

Performance characteristics using XGBoost on the MGB
training set and hold-out test set are shown in Table 2.

Table 2. Average performance for the XGBoost® model on the training set and 2 independent testing sets.

Training set (MGB)

Testing set (MGB) Testing set (BIDMCP)

Metric

(2400 notes)

(445 notes)

(600 notes)

AUROC®, median (95% CI)
AUPRCY, median (95% CI)
F1 score, median (95% CI)
Recall, median (95% CI)

Precision, median (95% CI)
Specificity, median (95% CI)

1.000 (1.000-1.000)
1.000 (0.999-1.000)
0.987 (0.978-0.995)
0.974 (0.957-0.989)

1.000 (1.000-1.000)
1.000 (1.000-1.000)

0.977 (0.964-0.988)
0.894 (0.831-0.943)
0.822 (0.752-0.879)
0.846 (0.753-0.923)

0.802 (0.709-0.889)
0.960 (0.939-0.978)

0.976 (0.961-0.989)
0.779 (0.655-0.885)
0.658 (0.528-0.778)
0.687 (0.538-0.839)

0.637 (0.487-0.795)
0.976 (0.963-0.988)

X GBoost: extreme gradient boosting model.

PBIDMC: Beth Isracl Deaconess Medical Center.

CAUROC: area under the receiver operating characteristic curve.
dAUPRC: area under the precision-recall curve.

The MGB hold-out test set showed good performance metrics
(95% CI), including an AUROC of 0.977 (0.964-0.988),
AUPRC of 0.894 (0.831-0.943), recall of 0.846 (0.753-
0.923), and F1 score of 0.822 (0.752-0.879). The AUROC
and AUPRC curves for the hold-out set are illustrated in
Figure 2.

To assess performance metrics using patient notes
extracted outside the MGB network, we ran the NLP-based
model on 600 notes from BIDMC, of which 5.8% (35/600)
were NID-positive by expert review. Although performance
declined compared to the MGB test set, the model main-
tained a high AUROC of 0.976 (95% CI 0.961-0.989) and
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an AUPRC of 0.779 (95% CI 0.655-0.885). Precision was
0.637 (95% CI 0.487-0.795), and recall was 0.687 (95% CI
0.538-0.839), resulting in an F1 score of 0.658 (95% CI
0.528-0.778).

Additionally, we assessed the performance of Llama 3.2,
a zero-shot learning model, for classifying NID as present
or absent using clinical notes on the MGB test set. The
model achieved an AUROC of 0.800 and a balanced F1 score
of 0.799, demonstrating high specificity (0.940) but lower
recall (0.640). These results highlight notable performance
differences between the Llama model and the NLP-based
approach, particularly in recall and overall F1 score.
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Figure 2. XGBoost model performance on 2 sets of unseen notes, as evaluated by AUROC and AUPRC. 95% Cls were estimated using 1000
bootstrapping iterations. (A) AUROC and (B) AUPRC on notes from MGB and (C) AUROC and (D) AUPRC on notes from BIDMC. AUROC: area
under the receiver operating characteristic (ROC) curve; AUPRC: area under the precision recall curve; CI: confidence interval.
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Significant Features for NID Prediction

The feature selection steps reduced the initial training feature
sets by 73.36% (342/1284). The top 20 features selected by
XGBoost to identify individuals with NIDs are plotted in
Figure 3.

The importance of these features was assessed based
on their average gain across all decision points within
the model, providing a measure of their contribution to
predictive accuracy. These features primarily consist of
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clinical indicators and diagnostic markers essential for
identifying NIDs. Prominently featured are direct markers of
CNS inflammation, such as “meningitis,” “ventriculitis,” and
“meningoencephalitis.” Other features included diagnostic
tests such as “cytology,” “viral load,” and “polymerase chain
reaction”; cell types (“lymphocytic”), specific pathogens,
and medical conditions associated with NID were identified,
suggesting identified NID-associated features used in the
NLP classifier were clinically relevant and interpretable.
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Figure 3. Top 20 features ranked by the feature importance (information gain measured by entropy), arranged in descending order (from top to
bottom). The x-axis is the feature importance. It does not differentiate the association directions, ie, positive or negative association with the NID

label.
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Error Analysis

In our analysis of cases where the model’s predictions
differed from the manually assigned labels, we discovered
a few common factors that led to incorrect positive and
negative classifications across both the internal (MGB) and
external (BIDMC) datasets.

A common reason for false positives was the presence of
prior NID mentions in patient notes. Another frequent issue
was cases where patients were awaiting LP results, leading to
a manual negative label, but the notes suggested a possible
positive. False positives were also caused by notes indicating
symptoms suggestive of NID but lacking confirmatory LP
results. Additionally, specific pathogens or conditions, like JC
virus neurocysticercosis and neurosyphilis, mentioned in the
notes but not confirmed as active NID, added to the error rate.
False negatives were often due to notes that did not discuss
NID in detail.

The type of clinical note played a significant role; physical
therapy and psychiatric notes were less likely to contain
detailed clinical information relevant to NID, leading to both
false positives and false negatives.

Discussion

In this study, we developed and evaluated an automated
NLP-based model in 2 independent datasets that classifies
people with NID using unstructured notes to generate an
NID cohort, with the intention that these cohorts could be
used for predictions of susceptibility risk and short- and
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long-term medical outcomes. The NLP model demonstrated
high specificity (0.96), outperforming the specificity observed
using NID-specific ICD codes (0.59), suggesting that relying
on ICD codes alone may overestimate cases of infectious
meningitis or encephalitis. These findings align with recent
literature reporting low precision (0.58, 95% CI 0.53-0.63)
for the ICD-10 codes associated with herpesviral (herpes
simplex) encephalitis, herpesviral (herpes simplex) menin-
goencephalitis, and herpesviral encephalitis, common causes
of NID, in the well-established Danish National Patient
Registry [19]. The lack of specificity underscores the risk
of false positives when using ICD coding alone, posing
challenges for accurately identifying clinical research cohorts,
particularly for rare disorders like NID [50,51].

To contextualize our findings, prior studies in meningitis
and encephalitis largely focused on structured data, includ-
ing lab results, imaging, and other EHR data, to classify
meningitis etiology or distinguish subtypes [24,31,32,52-58].
In comparison, alternative machine learning models applied
to a Brazilian dataset of 22,602 suspected meningitis cases,
including J48, Alternating Decision Tree, and Support Vector
Machine, demonstrated varying levels of performance. One
model, based solely on observable symptoms, achieved
an AUROC of 0.869 for differentiating meningitis from
non-meningitis cases [31], while a combined ensemble and
decision tree method integrating observable symptoms with
rapid CSF analysis attained an AUROC of 0.95 in distin-
guishing bacterial from viral meningitis in a dataset of known
infectious meningitis cases [34]. However, the best model
for classifying NID cases (sensitivity 97.0%-97.6%) was at
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the expense of specificity (24.0%-43.0%), limiting utility
in reducing false positives in clinical decision-making [59].
In the context of HIV and cognitive disorders, machine
learning models leveraging clinical data reported AUROCs
of 0.83-0.87, though most relied on structured cohort data,
not data in the EHR, with limited validation in independent
datasets [60-62]. These comparisons underscore the value
of our NLP-based method as a more precise phenotyping
tool, offering an improved balance between sensitivity and
specificity for identifying NID cases.

We also evaluated LLMs, focusing on the Llama3.2
model applied in the MGB test set. This method yielded an
AUROC of 0.800 and a balanced F1 score of 0.799, with
high specificity (0.940) but lower recall (0.640). In con-
trast, the proposed BOW NLP approach achieved balanced
results, with an AUROC of 0.977, an AUPRC of 0.894,
and an F1 score of 0.822, with high recall (0.846). On the
BIDMC validation set, the NLP model achieved an AUROC
of 098, and while the performance declined (AUPRC
reduced from 0.894 (0.831-0.943) to 0.779 (0.655-0.885))
likely due to variations in documentation styles, differences
in clinical terminology, and institutional biases in diagnos-
ing rare conditions, the model maintained good discrimina-
tive ability. These results demonstrate potential for broader
application with further fine-tuning, with enhanced precision
and interpretability offering significant advantages for NID
phenotyping in clinical research.

In our clinical experience, we have observed that
unstructured clinical notes serve as a rich source of infor-
mation crucial for ensuring clinical accuracy and care for
NID patients. Here, using only clinical notes, we achieved
consistent AUROC exceeding 0.95 across 2 different EHR
systems, with a modest decrease in AUPRC, underscoring the
importance of developing classifiers that effectively leverage
the information embedded within these notes. Compared
to Llama, the BOW approach offers advantages such as
reduced computational overhead, faster inference, and ease of
deployment in settings with predictable patterns and resource
limitations. These attributes make it particularly suitable for
time-sensitive applications and adaptable to diverse health
care settings. Most importantly, the proposed method’s
balanced performance, particularly in the context of NID
classification, highlights its utility in both clinical research
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and practice. The model’s reliance on unstructured notes
reduces dependency on specific EHR system designs for
structured data, broadening its applicability. By identifying
clinically interpretable features such as specific markers of
CNS inflammation and diagnostic tests, the model enhances
both accuracy and clinical relevance, making it a valuable
tool for improving care and outcomes for NID patients.

Our study had several limitations. First, the model was
developed and validated using unstructured EHR notes from
Massachusetts, impacting its relevance in other regions
due to regional variations in medical terminology and
disease incidence. For example, region-specific diseases like
“Powassan,” found predominantly in northeastern states and
the Great Lakes region of the United States, were a feature
selected in the XGBoost model and may not generalize to
other regions. Second, while notes were enriched for NIDs
by considering patients who had an LP procedure, the timing
of the procedure in relation to the analyzed notes was not
considered when developing the model. This approach aimed
to enrich the dataset with relevant LP-related language and
details from patient notes while avoiding overfitting the
model narrowly to notes from a specific temporal context
like the post-procedural period. While this approach prevents
overfitting to unique details concentrated in the post-LP
notes, it could limit broader applicability. Future work could
explore incorporating the temporal relationship between the
LP and the notes, which may provide additional context for
classification performance. Third, lab results from CSF cell
counts or microbial assays were not specifically considered in
our analysis. The availability of lab data for each patient is
inconsistent due to factors such as its assessment at another
institution prior to transfer to a tertiary center, safety concerns
regarding CSF retrieval, or delays due to logistical consider-
ations. This NLP-based model, operating independently of
lab results, resulted in high AUROC and AUPRC, suggesting
that in settings where structured lab data is not available,
the tool could potentially generate an NID cohort. Our study
focused on broad NID classification and did not subtype
into encephalitis or meningitis. We anticipate that future
model development will involve training on unstructured
EHR notes from diverse sources across the United States and
may explore incorporating microbial data and antimicrobial
therapy details as features.
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Abbreviation

AD: Alzheimer disease

AUPRC: area under the precision-recall curve
AUROC: area under the receiver operating curve
BIDMC: Beth Israel Deaconess Medical Center
BOW: bag-of-words

CNS: central nervous system

CSF: cerebrospinal fluid

EHR: electronic health record

ICD: International Classification of Diseases
LLM: large language model

LP: lumbar punctures

MGB: Mass General Brigham

NID: neuroinfectious diseases

NLP: natural language processing
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