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Abstract

Background: Machine learning models can reduce the burden on doctors by converting medical records into International
Classification of Diseases (ICD) codes in real time, thereby enhancing the efficiency of diagnosis and treatment. However, it
faces challenges such as small datasets, diverse writing styles, unstructured records, and the need for semimanual preprocessing.
Existing approaches, such as naive Bayes, Word2Vec, and convolutional neural networks, have limitations in handling missing
values and understanding the context of medical texts, leading to a high error rate. We developed a fully automated pipeline based
on the Key–bidirectional encoder representations from transformers (BERT) approach and large-scale medical records for
continued pretraining, which effectively converts long free text into standard ICD codes. By adjusting parameter settings, such
as mixed templates and soft verbalizers, the model can adapt flexibly to different requirements, enabling task-specific prompt
learning.

Objective: This study aims to propose a prompt learning real-time framework based on pretrained language models that can
automatically label long free-text data with ICD-10 codes for cardiovascular diseases without the need for semiautomatic
preprocessing.

Methods: We integrated 4 components into our framework: a medical pretrained BERT, a keyword filtration BERT in a
functional order, a fine-tuning phase, and task-specific prompt learning utilizing mixed templates and soft verbalizers. This
framework was validated on a multicenter medical dataset for the automated ICD coding of 13 common cardiovascular diseases
(584,969 records). Its performance was compared against robustly optimized BERT pretraining approach, extreme language
network, and various BERT-based fine-tuning pipelines. Additionally, we evaluated the framework’s performance under different
prompt learning and fine-tuning settings. Furthermore, few-shot learning experiments were conducted to assess the feasibility
and efficacy of our framework in scenarios involving small- to mid-sized datasets.

Results: Compared with traditional pretraining and fine-tuning pipelines, our approach achieved a higher micro–F1-score of
0.838 and a macro–area under the receiver operating characteristic curve (macro-AUC) of 0.958, which is 10% higher than other
methods. Among different prompt learning setups, the combination of mixed templates and soft verbalizers yielded the best
performance. Few-shot experiments showed that performance stabilized and the AUC peaked at 500 shots.
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Conclusions: These findings underscore the effectiveness and superior performance of prompt learning and fine-tuning for
subtasks within pretrained language models in medical practice. Our real-time ICD coding pipeline efficiently converts detailed
medical free text into standardized labels, offering promising applications in clinical decision-making. It can assist doctors
unfamiliar with the ICD coding system in organizing medical record information, thereby accelerating the medical process and
enhancing the efficiency of diagnosis and treatment.

(JMIR Med Inform 2025;13:e63020) doi: 10.2196/63020
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Introduction

Background
The International Classification of Diseases, 10th Revision
(ICD-10), is a universally recognized diagnostic categorization
system widely used in medical insurance reimbursements, health
reporting, mortality assessments, and related fields [1]. The
ICD-10’s automatic coding mechanism enables rapid and
accurate classification and statistical analysis of medical data,
offering a scientific foundation for effective hospital
administration and decision-making. In addition, the ICD-10
automatic coding system accelerates disease diagnosis and
treatment planning for medical practitioners, thereby improving
medical efficacy and quality. Compared with the original ICD
code, ICD-10 provides over 14,000 distinct disease codes (in
contrast to the thousands in ICD-9), enabling more detailed
disease classification. This comprehensive system offers
clinicians enhanced patient information, supporting the
development of more precise treatment plans and care programs,
ultimately improving the quality of care and patient satisfaction.
Moreover, as an internationally standardized code, ICD-10 is
essential for global public health surveillance, epidemiological
research, and international medical cooperation. Consequently,
ensuring accurate ICD coding remains a critical priority in
clinical practice.

In hospital settings, the assignment of ICD codes to unstructured
clinical narratives in medical records is a manual task performed
by skilled medical coders based on the attending physician’s
clinical diagnosis. Despite its critical importance, this process
is often hindered by inefficiencies such as time consumption,
susceptibility to errors, and high costs. Additionally, manual
coding cannot always ensure the accuracy of ICD codes due to
the complexity of code assignment, which requires a thorough
consideration of the patient’s overall health condition, including
medical history, coexisting conditions, complications, surgical
interventions, and specialized diagnostic procedures [2,3].

Machine Learning Techniques
The need to enhance efficiency and reduce errors has driven
the development of various machine learning techniques to
automate the medical ICD coding process. These techniques
can be broadly classified into 4 main categories: rule-based
systems [4,5], traditional supervised algorithms [6,7], gate
unit–based deep learning approaches [7-9], and pretrained
language models (PLMs) [9-19].

First, rule-based systems for automatic ICD coding rely on the
creation of explicit rules and knowledge bases to map medical
records to the appropriate ICD codes [4,5]. Although these
approaches have been used for decades and have provided a
foundation for more advanced techniques, they are limited by
their lack of adaptability and scalability.

Second, traditional supervised algorithms, such as
gradient-boosted trees, have been utilized for ICD coding due
to their efficiency in handling large-scale, high-dimensional
datasets. These algorithms rely on semistructured preprocessing,
which involves organizing and refining semistructured data into
a format suitable for analysis [6,7]. For example, Diao et al [6]
developed a light gradient boosting machine–based pipeline for
automatically coding 168 primary diagnosis ICD-10 codes from
discharge records and procedure texts, achieving an accuracy
of 95.2%. Another study integrated long short-term memory
networks with attention mechanisms to predict mortality in ICU
patients using electronic health records, achieving significantly
higher area under the receiver operating characteristic curve
(AUC) scores compared with traditional statistical models and
stand-alone long short-term memory networks [7].

Third, PLMs are neural network models with fixed architectures
trained on large corpora, which can be fine-tuned for specific
downstream tasks such as question answering and entity
recognition [10-13]. A notable example is bidirectional encoder
representations from transformers (BERT), a prominent PLM
designed to learn deep bidirectional representations from
large-scale unlabeled text data. BERT effectively captures
semantic relationships in clinical records and can be easily
adapted to various natural language processing (NLP) tasks
through task-specific layers [13]. Coutinho and Martins [14]
proposed a BERT model with a fine-tuning method for
automatic ICD-10 coding of death certificates based on free-text
descriptions and associated documents. Additionally, Yan et al
[15] introduced RadBERT, an ensemble model combining
BERT-base, Clinical-BERT, the robustly optimized BERT
pretraining approach (RoBERTa), and BioMed-RoBERTa
adapted for radiology. Liu et al [16] evaluated RadBERT across
3 NLP tasks: abnormal sentence classification, report coding,
and report summarization, demonstrating significantly better
performance compared with existing transformer language
models. Unstructured patient-generated health data can be
leveraged to support clinical decision-making, remote
monitoring, and self-care, including medication adherence and
chronic disease management. By applying named entity
recognition and customizable information extraction methods
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based on medical ontologies, NLP models can extract a wide
range of clinical information from unstructured patient-generated
health data, even in low-resource settings with limited patient
notes or training data [17]. Textual analysis presents numerous
opportunities for future medical applications. It can aid in
extracting information from various sources of medical data,
such as clinical reports, nursing notes, scientific literature, and
user-generated content. Additionally, vector-based
representation methods can transform textual data within clinical
documents into formats suitable for machine learning and can
be applied to sequence modeling tasks, including sentiment
analysis [18].

Finally, XLNet is another type of PLM that captures both
forward and backward contexts of text [19]. It combines the
advantages of autoregressive models and autoencoding models
while overcoming their limitations. XLNet utilizes a
permutation-based objective function that maximizes the
expected likelihood of a text across all possible word orderings.
It also incorporates the Transformer-XL
(Transformer-Extra-Long) architecture, which enables long-term
dependency modeling and improved memory efficiency. XLNet
has been shown to outperform BERT and other baseline models
on several natural language understanding tasks.

Prompt Engineering Techniques
By contrast, prompt engineering is a technique that involves
the careful construction of prompts or inputs for artificial
intelligence models to improve their performance on specific
tasks. This technique includes selecting appropriate words,
phrases, symbols, and formats to guide a large language model
in generating high-quality and relevant text. Numerous studies
have used prompts for model tuning to bridge the gap between
pretraining objectives and downstream tasks, demonstrating
that both discrete and continuous prompts can improve
performance in few-shot and zero-shot tasks [20,21].
Furthermore, this technique within PLMs has been shown to
outperform fine-tuning in various clinical decision-making tasks
[22]. It has the advantage of requiring less data and
computational resources, making it especially suitable for
clinical settings.

There are 2 primary categories of prompting methods: hard
prompts and soft prompts [22-25]. Hard prompts involve using
an actual text string as the prompt and include methods that
automatically search for templates within a discrete space, such
as mining-based, paraphrasing-based, and gradient-based
approaches [26-28]. The advantages of hard prompts are
interpretability, portability, flexibility, and simplicity. However,
designing effective prompts for specific tasks requires significant
effort and creativity.

Soft prompts, by contrast, are learnable tensors concatenated
with the input embeddings and can be optimized for a given
dataset. The main advantage of soft prompts is their ability to
achieve better performance than hard prompts by adapting to
the model and the data. However, they are not human-readable
and lack portability across different models.

Prefix tuning and P-tuning are 2 methods of prompt engineering
that can enhance performance beyond traditional fine-tuning

[22-24]. Prefix tuning is a lightweight approach that keeps the
PLM parameters unchanged while optimizing a sequence of
task-specific vectors called the prefix [23]. This prefix is added
to the input and interacts with the model’s hidden states at each
layer. Its success depends on how effectively the prefix is
initialized, particularly when data are limited. P-tuning is another
prompt tuning strategy that performs comparably to fine-tuning
across various tasks [24]. It reduces the number of PLM
parameters through self-adaptive pruning and tunes a small
number of continuous prompts at the beginning of each
transformer layer.

The verbalizer is the final layer that defines the answer space
and maps it to the target output. Typically, verbalizers are
manually created, which can limit their coverage due to personal
vocabulary biases [21,29]. To address this, some studies have
proposed automatic verbalizer search methods to identify more
effective verbalizers, also known as soft verbalizers [20,30-32].

Autonomous ICD Coding in Cardiovascular Disease
Cardiovascular disease (CVD) is currently a leading cause of
death worldwide, posing a significant risk of mortality among
patients [7]. Automatically labeling patients with CVD is
essential for clinical decision-making and resource allocation.
However, existing prediction models have limitations, including
low accuracy, limited generalizability, and an inability to capture
multicenter data. To address these challenges, we propose a
prompt learning real-time framework based on PLMs that can
automatically label long free-text data with ICD-10 codes for
CVDs without the need for semiautomatic preprocessing.

Our framework consists of 4 components: a medically oriented
pretrained BERT, a keyword filtration BERT, a fine-tuning
phase, and task-specific prompt learning facilitated by mixed
templates and soft verbalizers. To validate the efficacy of our
framework, we conducted comprehensive evaluations on a
Chinese multicenter cardiovascular dataset that includes data
from 13,000 patients with CVD. This deliberate choice of dataset
ensures the robustness and wide applicability of our framework.
We compared our framework with RoBERTa, XLNet, and
various BERT-based fine-tuning pipelines to highlight its
performance. Additionally, we conducted few-shot experiments
to demonstrate its resilience. This work promises to provide
valuable insights into enhancing medical knowledge extraction
and its effective application, underscoring the need for continued
research and development in this promising area. In future work,
we plan to implement this fully automated ICD coding pipeline
across various clinical applications, including clinical decision
support systems, cohort studies, and disease early warning and
diagnosis systems.

Methods

Ethical Considerations
The study was approved by the Ethics Committee of the Chinese
PLA General Hospital (S2023-325-02). Ethical approval
included a waiver for obtaining informed consent signatures
from participants. The study posed no potential harm to
participants and did not involve any compensation for their
participation. To protect patient privacy, we used regular
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expressions to parse and redact basic identifying information
from the medical records. As these records were created using
a standardized template, we ensured that the excerpts extracted
for this study did not contain patients’ names.

Overview
The overall framework of the model is shown in Figure 1. We
used a corpus dataset of 575,632 clinical notes to continue
training the original BERT model, which we named medical
domain refinement-BERT (MDR-BERT), as the PLM for our
work. For the classification task, we first applied Key-BERT
to filter the discharge summaries. This method extracts keywords
and splits long free-text data into shorter sentences.

We then constructed the input template for fine-tuning and
prompt learning using 3 components: the soft prompt, the
manual prompt, and the mask part. The manual prompt was a
handcrafted text prompt containing discrete tokens. The soft
prompt was a learnable pseudo-token with a few continuous
parameters. The mask part represented the ICD coding label.
Finally, we used a trainable soft verbalizer to compute and apply
the softmax function to the probabilities of the ICD classes,
producing the output. By designing specific prompts, it is
possible to incorporate the knowledge of medical experts into
the model, helping it better understand and perform ICD coding.
These prompts can direct the model to focus on critical sections
of the input text, thereby enhancing performance.

Figure 1. Overall framework of MDR-BERT, Key-BERT, and prompt learning pipeline. BERT: bidirectional encoder representations from transformers;
ICD: International Classification of Diseases; MDR: medical domain refinement.

Dataset Characteristics
The cardiovascular dataset used in this study was obtained from
the Cardiovascular Department of the Chinese PLA General
Hospital’s Medical Big Data Research Center in Beijing, China,
which includes 9 medical centers with data aggregated into a

comprehensive medical big data platform. Additionally, the
hospital is a key center for the treatment of CVDs, with
numerous specialized physicians and detailed medical records,
making its data highly practical and representative. To ensure
privacy, patient names and addresses were desensitized. The
data platform consists of electronic health records aggregated
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from 8 affiliated medical centers. A total of 584,969 clinical
notes with structured ICD labels were extracted from admission
records and discharge summaries in the Cardiovascular
Department. We ensured that each diagnosis included at least

50 cases and adopted a stratified sampling approach to divide
each disease category into training, validation, and test sets in
a 3:1:1 ratio. The detailed distribution and basic statistical
information of the dataset are shown in Figure 2.

Figure 2. Distribution and basic statistical information of the data set. ICD: International Classification of Diseases.

Based on the long-tailed distribution and clinician selection, 13
diseases were chosen for classification. These diseases include
atrial fibrillation, acute myocardial infarction, infective
endocarditis, acute left heart failure, acute coronary syndrome
(ACS), acute aortic dissection, hypertensive emergency, acute
pulmonary embolism, acute myocarditis, ventricular tachycardia,
cardiogenic shock, acute heart failure, and third-degree
atrioventricular block. The corresponding ICD-10 codes and
abbreviations for these diseases are listed in Table 1. Despite
the disparity in the number of cases for different diseases, the
imbalance inherent in medical data accurately reflects real-world
conditions, taking into account the clinical insights of medical
professionals. This imbalance represents the varying frequency
at which different diseases occur in clinical practice. By
preserving the raw data distribution and avoiding artificial
balancing, our training approach aligns more closely with
real-world medical practice. As a result, this enhances the
model’s generalization ability and its applicability in practical
scenarios.

To ensure task independence and prevent data leakage, all
clinical notes were divided into 2 parts: the pretraining corpus
dataset and the ICD coding dataset. The pretraining corpus
consisted of a total of 575,632 notes, while the ICD coding
dataset included 9337 discharge records. The data were stratified
by imbalanced ICD labels and randomly split into training,
validation, and test sets in a 3:1:1 ratio. The sample sizes were
as follows: 5734 in the training set, 1913 in the validation set,
and 2007 in the test set. We applied regularization to truncate
patients’basic information, as this information could negatively
impact the model’s fitting.

As shown in Figure 3, the distribution of the 13 ICD codes was
imbalanced and exhibited a long-tail pattern. The dataset for

ICD classification contains a total of 4.574 × 107 words, with
an average of 490 words per note. The maximum and minimum
lengths of the clinical notes are 5243 and 22 words, respectively.
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Table 1. Overview of target International Classification of Diseases (ICD) codes and disease names.

Disease (abbreviation)International Classification of Diseases code

Atrial fibrillation (AF)I48.0

Acute myocardial infarction (AMI)I21.9

Infective endocarditis (IE)I33.0

Acute left heart failure (ALHF)I50.1

Acute coronary syndrome (ACS)I20.9

Acute aortic dissection (AAD)I71.0

Hypertensive emergency (HE)I10.1

Acute pulmonary embolism (APE)I26.0

Acute myocarditis (AM)I51.4

Ventricular tachycardia (VT)I47.2

Cardiogenic shock (CS)R57.0

Acute heart failure (AHF)I50.2

Third-degree atrioventricular block (TAB)I44.2

Figure 3. Distribution of ICD codes for the triage task. ICD: International Classification of Diseases.

Pretraining
Our study’s foundational framework is based on BERT, a
multilayer bidirectional transformer encoder known for its
conceptual simplicity and empirical effectiveness [33]. This
architecture consists of 12 layers, a hidden size dimension of
768, and 12 self-attention heads [13]. BERT’s inherent
self-attention mechanism provides the versatility to handle
various downstream tasks by allowing the interchange of
relevant inputs and outputs, making it well-suited for our task
involving ICD classification through clinical records.

To adapt BERT to the specific requirements of our task, we
continued training the PLM using an extensive medical corpus,
resulting in MDR-BERT. During the tuning process, we selected
a batch size of 32, considering the constraint of a maximum
sequence length of 512 tokens. The Adam optimization

algorithm was used with a conservative learning rate of 2 ×

10–5. The training was carried out over 15 epochs, an empirically
determined figure based on the characteristics of the clinical
dataset.

Key-BERT
The Key-BERT method offers a novel self-supervised
framework for extracting keywords and keyphrases from textual
content using deep learning techniques [34]. This approach
leverages the contextual and semantic features provided by
bidirectional transformers, with a particular focus on the
influential BERT model. The method’s architecture is designed
for end-to-end training, utilizing a contextually self-annotated
corpus that enables the model to develop a nuanced
understanding of the complex relationships between words and
their semantic meanings. In the ICD coding task, Key-BERT
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leverages BERT’s context-aware capabilities to extract
keywords from the document, quickly identify the sections
relevant to ICD coding, and reduce the risk of miscoding caused
by misinterpreting or overlooking critical information in the
text.

A distinctive feature of Key-BERT lies in its automated keyword
labeling process. This process effectively utilizes contextual
insights from bidirectional transformers to construct a carefully
curated ground truth dataset. This approach bypasses the
labor-intensive task of manual labeling and eliminates the need
for domain-specific expertise.

The repository of self-labeled data generated by Key-BERT is
partially shared with the NLP community, contributing to a
deeper and more comprehensive understanding of keyword
extraction techniques across various domains. This collaborative
effort enhances the landscape of knowledge and expertise,
driving advancements in the field of NLP and semantic
information extraction.

To extract keywords using Key-BERT, the contextual feature
vector for each word in a sentence is obtained by passing the
sentence through the pretrained BERT model. Let S = [w1, w2,
..., wn] be a sentence consisting of n words, where wi is the ith
word in the sentence and Ei is the contextual feature vector of
the ith word in the sentence. The sentence embedding vector,
denoted as Es, is obtained by averaging the feature vectors of
all the words in the sentence:

Ei = BERT_Embedding(wi) (1)

Es = (E1 + E2 + ···+ En)/(n) (2)

The cosine similarity metric is used to measure the similarity
between the sentence embedding vector and the feature vectors
of candidate keywords or keyphrases.

Cos_SIM(Ei, Es) = (Ei × Es)/(||Ei|| × ||Es||) (3)

The top-scoring keywords or keyphrases are returned as the
most relevant to the document. Additionally, key medical terms
are directly extracted using the medical diagnostic table,
ensuring that essential terminology is accurately identified and
applied.

Fine-Tuning and Prompt Learning
To fully leverage the clinical knowledge embedded within the
dataset, our fine-tuning approach mirrors the unsupervised task
used in the initial pretraining phase, known as masked language
modeling (MLM). MLM involves randomly masking a
predetermined proportion of input tokens, and the model then
attempts to predict these masked tokens based on context. This
process, commonly called a Cloze task, helps the model learn
contextual relationships effectively.

For the fine-tuning phase in this study, we maintained the MLM
framework to align with the pretraining procedure. A consistent
masking rate of 15% was applied across the dataset. In addition
to the fine-tuning process, we introduced prompt learning during
parameter tuning. This approach involved the construction of
a template comprising 4 distinct components: the input text, a
soft prompt, a manual prompt, and a masking component. The
manual prompt included discrete tokens that reflected the

downstream task expected by the PLM. By contrast, the soft
prompt comprised trainable continuous vectors, which enhanced
the model’s adaptability.

Formally, automatic ICD coding, as a text multiclassification
task, can be denoted as (x, y), where x is the set of discharge
summaries and y is the ICD code set of the 17 chosen discharge
diagnoses as labels. Given a clinical record x ∈ X, it can be

annotated with ICD codes of discharge diagnosis yx ∈ Y and a
sequence of discrete input tokens x = (x0, x1, ..., xk), where k is
the number of tokens in the sequence. Prompt learning can be
achieved via modifying the x to a prompt format x = fp(x), where
the template fp(·) will insert a number of extra embeddings to
x along with a masked token, denoted by <[MASK]>. Compared
with hard prompts, soft prompts replace some fixed manual
components with trainable embeddings (continuous vectors) of
the same dimension as the PLM. After that, x is fed into M, to
predict the masked token, which is in accordance with the
objective of M. The output of M will be a distribution over the
fixed vocabulary V of M. The next crucial step is to map tokens

in V to y for the downstream task with a mapping , known
as verbalization. In a word, there are 2 essential components to
be studied, the template of prompt x′ = fp(x) and the mapping

of verbalizer .

A mixed template of prompts in this paper is used. For
simplicity, the prompt function x′ = fp(x) is denoted as a
sequence template:

x′ = [P0, P1, …, Pj], x, [Pj+1, Pj+2, …, Pt], [MASK] (4)

where Pi refers to the ith token in the template and t is the
number of prompt tokens beyond x. Pi does not necessarily meet
Pi ∈ V other than manual hard prompt. As x′ is fed to the PLM,
the prompt tokens are also mapped to the embedding space,
where we can assume that the tokens denoted as <[soft]> in the
template can be tuned during training as pseudo-tokens. A
simple example of a prompt template for automatic ICD coding
could be as generated as follows:

x′ = <x><[soft]>be encoded as <[MASK]> (5)

Once these templates were formulated, the model inputs, along
with the established templates, were processed through the
trainable MDR-BERT model. Notably, in the final layer of the
most advanced pipeline, a soft verbalizer mode was used. This
mode manages the mapping process between the predicted
tokens and the final ICD codes. The innovative feature of the
soft verbalizer is its substitution of tokens in the verbalizer with
trainable vectors, each tailored to a specific class. Generally,
the verbalizer maps the probabilities of infrequent words in the
vocabulary to the probabilities of the labels. The set of label
words is denoted as V, the label space is Y, and Vy represents
the subset of label words for label y. The final estimation of the
probability for label y is calculated using equation 5, where g
is utilized to convert the probability of label words to the
probability of the label:

P(y|x_P) = g(PM([MASK] = v|X_P)|v ∈ Vy) (6)

JMIR Med Inform 2025 | vol. 13 | e63020 | p. 7https://medinform.jmir.org/2025/1/e63020
(page number not for citation purposes)

Zhuang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


This strategy enhances the precision and semantic accuracy of
the generated outputs, enabling a more precise alignment
between predicted tokens and the definitive ICD codes.
Consequently, it is unnecessary to manually build an explicit

mapping . for the soft verbalizer, as the trainable vectors
do not have explainable semantic meaning. A matrix operator

can represent the soft verbalizer as [22-25], where n
represents the size of y and m represents the dimension of output
embeddings from M. For the verbalizer, θi denotes the ith row

of as the trainable vector of the ith class. The soft verbalizer
replaces the original decoder head of M by mapping the
embeddings of x′ from M, denoted as e(x′), to the distribution
over the classes of y. We denote the resulting mapping from

to the prediction of the embedding of <[MASK]> as

, where l is the sequence length of x′. And then,
the probability of class y can be calculated as follows:

The loss from the automatic ICD coding task can be
backpropagated to tune only the embeddings for the prompt
template and the verbalizer. The loss function can be expressed
as follows:

Ultimately, the model learns to generate and map the most
appropriate ICD codes to the corresponding discharge record.

The experiments were conducted using the OpenPrompt
framework [22-25]. For prompt learning, we utilized the
Adafactor optimizer for soft and mixed prompt templates, while
the AdamW optimizer was used for the PLMs and soft
verbalizers. In conventional fine-tuning, we applied the AdamW
optimizer to the MLP heads and PLMs. To expedite the
experiments, we used 2 Nvidia TESLA V100 GPUs, each with
16-GB memory, and set the batch size to 32 due to memory
constraints.

The model’s performance is influenced by variations in
hyperparameters. In the comparisons presented, hyperparameters
were carefully optimized for each model. To determine the
optimal configuration, we used a random search strategy. This
approach involves generating multiple random combinations
of parameters, evaluating the performance of each combination,
and selecting the one that yields the best results. Accuracy and
AUC were chosen as the primary optimization objectives during
the random search, as they intuitively reflect the model’s
classification performance. The strategy involved 100 training
runs, each using randomly generated hyperparameters from the
defined search space. To effectively address model overfitting,
we carefully adjusted the dropout rate within a range of 0.1-0.5.
After numerous training iterations, we found that the optimal
dropout rate for the prompt learning phase is 0.382, while for
the prompt tuning phase, it is 0.1563. In the prompt learning
phase, a higher dropout rate contributes to improved
generalization, serving as an effective safeguard against
overfitting. In the subsequent fine-tuning phase, a lower dropout
rate is used to ensure the model retains its learned attributes
while enabling further performance enhancement. The optimal
hyperparameters for the models are detailed in Table 2.

Table 2. The optimal hyperparameters and their search space.

Optimal hyperparameterSearch spaceHyperparameters

Fine-tuningPrompt learning

0.01210.0048log.uniform [1*10-5, 3*10-1]Learning rate

444Batch size

34range[2,10]Gradient accumulation steps

0.15630.382range[0.1,0.5]Dropout

adafactoradamw[adamw, adafactor]Optimizer

—a0.3log.uniform[1*10-5, 3*10-1]Prompt learning rate

—0.007log.uniform[1*10-5, 1*10-1]Verbalizer learning rate

aNot available.

Evaluation Metrics
To thoroughly evaluate and compare the performance of the
models, we used a range of metrics, including micro–F1-score,
macro-AUC, and accuracy. The definitions for micro-averaged
precision and micro–F1-score are provided in equations 9-11,
while the macro-AUC is defined in equations 12 and 13.

Micro–F1-score = [2 × (micro-P) × (micro-R)]/[(micro-P) +
(micro-R)] (11)

where TPi, FPi, and FNi represent true positives (correctly
assigned instances), false positives (incorrect assignments by
automated methods), and false negatives (correct instances
omitted by automated methods), respectively, of code i, and l
is the size of the sample space. The micro–F1-score is the
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harmonic mean of micro-P and micro-R, and a bigger value of
micro–F1-score indicates a better performance.

where n is the number of thresholds and K is the number of
classes.

Data and Code Availability
Data acquisition requests can be made by contacting the
corresponding author (KH). Given the sensitive nature of the
hospital data, it cannot be released publicly. However, part of
the downstream subtask data is currently undergoing
desensitization and approval processes. The source code for this
study is publicly available on GitHub [35].

Results

Performance of Different Pipelines
To evaluate the performance of different methods, we
implemented 4 state-of-the-art algorithms: BERT [15], XLNet
[18], RoBERTa [19,36], and prompt learning [22]. These PLMs
were integrated with various algorithms to create 6 main
pipelines: BERT with fine-tuning, XLNet with fine-tuning,
RoBERTa with fine-tuning, BERT with prompt learning,
MDR-BERT with prompt learning, and MDR-BERT with both
fine-tuning and prompt learning. MDR-BERT is a PLM
developed by further pretraining BERT on our medical corpus.

As shown in Figure 4, MDR-BERT with fine-tuning and prompt
learning achieved the highest performance across all evaluation
metrics, with a micro–F1-score of 0.838, a macro-AUC of 0.958,
and an accuracy of 0.838. MDR-BERT with prompt learning

alone performed slightly worse than the combined fine-tuning
and prompt learning approach, but both outperformed the other
pipelines by a significant margin. This suggests that continued
pretraining on clinical records can significantly enhance the
performance of the PLM for the task, while freezing parameters
may hinder the adaptation of smaller PLMs to the task.

Among the other pipelines, BERT with prompt learning
achieved the highest accuracy (0.67) and the highest
micro–F1-score (0.64), though its macro-AUC (0.79) was
slightly lower than that of RoBERTa with fine-tuning. This
suggests that prompt learning, as a lightweight tuning approach,
can match or even surpass traditional fine-tuning methods,
aligning with the findings of Taylor et al [22].

We also conducted a comparison with state-of-the-art methods
and selected 2 prominent models: mt5-xxl (11B) and
Qwen2.5-72B-Instruct. Among these, mt5-xxl demonstrated
the best performance in text classification, while
Qwen2.5-72B-Instruct excelled as a large language model. For
mt5-xxl, we fine-tuned the model using the training and
validation sets from our fine-tuning dataset, setting the
“prefix_text” to “Classify the following text:”. For
Qwen2.5-72B-Instruct, we conducted experiments using both
zero-shot and retrieval augmented generation methods. In the
zero-shot setting, we used prompts to constrain the diagnostic
scope, allowing the model to make inferences based on the input
information. For the retrieval augmented generation approach,
we first encoded the training set using BGE-M3 (BAAI general
embedding multilinguality, multigranularity, and
multifunctionality) and stored it in a Faiss vector database.
During the testing phase, we retrieved cases and classification
results relevant to the input content and concatenated them with
the prompt to enhance model performance.

Figure 4. The optimal hyperparameters and their search space. AUC: area under the receiver operating characteristic curve; BERT: bidirectional encoder
representations from transformers; MDR: medical domain refinement; RoBERTa: robustly optimized BERT pretraining approach; XLNet: extreme
language network.

The experimental results indicate that the micro–F1-score for
the mt5-xxl method is 0.846, and the AUC value is 0.945. In
comparison, the micro–F1-score for the Qwen2.5-72B-Instruct

method was 0.822, and the AUC value was 0.848. However,
the accuracy of both methods does not surpass that of our
MDR-BERT model (Figure 5). After a series of strategic
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optimizations, our MDR-BERT model achieved results
comparable to the fine-tuned mt5-xxl on specific tasks. This is
primarily due to the specific structure of the medical records,

which can be effectively captured by models with fewer
parameters, meaning that overly complex models are not
necessary to achieve good performance.

Figure 5. Micro-F1-score and AUC values for the MDR-BERT model versus the QWEN2.5 and mt5-xxl models. AUC: area under the receiver operating
characteristic curve; MDR: medical domain refinement; BERT: bidirectional encoder representations from transformers.

Performance of Different Prompt Learning Modes
We evaluated the performance of MDR-BERT under various
settings of prompt learning and fine-tuning, using 3 types of
templates (manual, soft, and mixed) and 2 types of verbalizers
(manual and soft) as hyperparameters.

For templates, both scripted and self-adaptive patterns performed
well independently, and their combination had a cumulative
positive effect on performance. For verbalizers, the self-adaptive
type outperformed the traditional manual vectors and had a
greater impact on overall performance. As shown in Figure 6,
the combination of mixed templates and the soft verbalizer
achieved the best results.

Figure 6. Comparison among different prompt combinations in verbalizer and template. AUC: area under the receiver operating characteristic curve.

Take the following prompt template as an example:

Mixed template: {“placeholder”: “text_a”} patient {“soft”:“
can be diagnosed as ”} {“mask”}.

For the following case:

The patient was discovered to have bradycardia and
unconscious disturbance 7 days ago as a result of
physical examination. After consultation with the
director, lipid-lowering drugs were added. No
diarrhea was detected, and no medication was
administered at home. Permanent cardiac pacemaker
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implantation under local anesthesia was carried out,
and after the surgery, cephalosporin for injection was
utilized to prevent infection.

The classification result by our model is as follows: “The patient
can be diagnosed as {third-degree atrioventricular block}.”

For the mixed template, the patient’s bradycardia requires
management through the implantation of a permanent
pacemaker, indicating that bradycardia is a major medical
concern. By applying soft verbalizers, we can guide the correct
diagnosis by emphasizing both the reason for the pacemaker

implantation and the underlying cause of bradycardia: “The
patient can be diagnosed with third-degree atrioventricular
block.”

Performance of MDR-BERT With Fine-Tuning and
Prompt Learning
We evaluated the performance of the MDR-BERT pipeline,
incorporating both fine-tuning and prompt learning, for each
ICD code using precision, recall, and micro–F1-score. Figure
7 presents the results for these metrics across the 13 ICD classes.

Figure 7. Precision, recall, and micro-F1 scores of every ICD code in the MDR-BERT pipeline with fine-tuning and prompt learning. BERT: bidirectional
encoder representations from transformers; ICD: International Classification of Diseases; MDR: medical domain refinement.

The pipeline achieved high scores for most ICD codes, although
the scores varied depending on the data distribution and sample
size for each code. We observed a weak positive correlation
between sample size and model performance, suggesting that
larger samples enhanced the model’s learning capability.
Conversely, smaller samples tended to have lower
micro–F1-scores, with a trade-off between precision and recall
for certain classes. Although our prediction accuracy for ACSs
is relatively low, further analysis revealed that in actual clinical
settings, ACS was frequently misdiagnosed as cardiac edema
(hypertensive emergency) and pulmonary embolism (acute
pulmonary embolism). These diseases exhibit similar clinical
manifestations and, therefore, require meticulous differential
diagnosis to rule out other possibilities. We believe that the
overlap of symptoms is a major cause of the difficulty in
classifying the model and that inconsistencies in medical
histories recorded by physicians further complicate the model’s
ability to differentiate similar pathologies. Despite these
variations, our pipeline demonstrated satisfactory performance
across the different ICD codes.

Few-Shot Learning
We conducted few-shot experiments to evaluate the performance
of the fine-tuned MDR-BERT with the prompt learning pipeline
using different sample sizes from the training set. We randomly

selected samples ranging from 1 to 4000 and evaluated the
models on the test set. Figure 8 shows the accuracy,
micro–F1-score, and macro-AUC scores for each sample size.

The objective of small-sample learning is to develop models
that can learn effectively and make accurate predictions with
only a small number of samples, such as 500 or fewer. As shown
in Figure 8, when the sample size reaches 500, the model’s
accuracy, AUC score, and other indicators not only achieve
relatively high scores but also reach an inflection point and
plateau. At this point, the model produces a relatively
satisfactory outcome. This indicates that for the task of ICD
coding using medical records, 500 samples may be sufficient
for the model to learn the key features needed to distinguish
between different diagnoses. It suggests that the model has
captured enough information to make effective predictions.
Additionally, the workload involved in annotating 500 medical
texts is manageable and feasible. This number strikes a balance
between the effort required for data preparation and the
performance gains achieved by the model. Given the complexity
and specialized nature of medical records, annotating 500
examples provides a comprehensive representation of the dataset
while staying within practical limits. This makes it a reasonable
and efficient choice for training the model to achieve satisfactory
performance in ICD coding tasks.
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Figure 8. Few shots experiments on MDR-BERT with fine-tuning and prompt learning. AUC: area under the receiver operating characteristic curve;
BERT: bidirectional encoder representations from transformers; MDR: medical domain refinement.

Discussion

Principal Findings
An automated ICD coding system for long free-text data is a
fundamental platform for clinical research and practice,
including clinical trials and pharmacoeconomic management.
In this study, we developed a framework based on Key-BERT,
a continuously trained and tunable PLM, combined with
task-specific prompt learning. We collected a total of 584,969
clinical notes from admission records and discharge summaries
in the cardiovascular departments of 8 medical centers.

We used most of the data to continue pretraining a medical
corpus and used an independent set of 9337 discharge records
with 13 ICD codes for CVDs in the ICD classification subtask.
Although the MDR-BERT model has some limitations, such as
restricted generalization capacity and constraints on the length
of context it can effectively process, it is important to note that
medical texts often have a consistent structure and are generally
less dependent on extensive contextual information. Given these
characteristics of medical literature, our model is designed to
avoid the errors commonly associated with the inherent
limitations of BERT’s methodology. The structured nature of
medical documents enables the MDR-BERT model to function
effectively within its designed parameters, mitigating potential
issues that could arise from the broader weaknesses of the BERT
framework when applied to more contextually complex or varied
text types. To remove irrelevant information and limit the input
token size, we filtered and truncated all the data for the ICD
task into keyword-based segments using Key-BERT. The data
were then stratified and split into training, validation, and test
sets, with the test set used independently for final evaluation.

This study primarily focused on transformer-based algorithms,
which have been widely applied and shown superior
performance in large-scale medical long free-text tasks
[4,11,16,17]. These algorithms can leverage PLMs that capture
the semantic and syntactic information of natural language from
extensive corpora, leading to significant performance
improvements through multicenter datasets.

We compared 6 pipelines for the classification downstream
task: BERT with fine-tuning, XLNet with fine-tuning, RoBERTa
with fine-tuning, frozen BERT with prompt learning, frozen
MDR-BERT with prompt learning, and tunable MDR-BERT
with prompt learning. The prompt learning setup included 3
types of templates and 2 types of verbalizers. Among these
pipelines, MDR-BERT with fine-tuning and prompt learning
achieved the best performance on the test set, attaining a
micro–F1-score of 0.838, a macro-AUC of 0.958, and an
accuracy of 0.838.

Compared with the pretraining models of RoBERTa and XLNet,
our model achieved superior performance in terms of final
accuracy and micro–F1-score. This improvement was primarily
due to the targeted optimization of the methods and the medical
data we selected, which substantially enhanced the model’s
performance. Although RoBERTa and XLNet have larger
pretraining corpora compared with BERT, our approach
benefited more from using a continuation training corpus built
from real electronic health records. This specialized data,
tailored to our specific requirements, provided a greater
enhancement to the model than more general pretraining data.
This is why MDR-BERT performs comparably to, or better
than, these alternatives in our settings. The favorable outcome
of this pipeline can be attributed to the use of a large-scale
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corpus-based PLM and the task-specific enhancements from
the combination of fine-tuning and prompt learning
[16,20,22-25]. Fine-tuning acts as a model adapter, aligning the
model distribution with the task distribution and addressing
domain shift and task mismatch issues inherent in PLMs. Prompt
learning, with its compact prefix representation and sparse
attention mechanism, augments the training data with diverse
and natural examples. This augmentation helps mitigate data
scarcity and label noise issues in small-sized datasets for
downstream tasks.

The combination of fine-tuning and prompt learning acts as a
regularization term that balances model complexity with data
quality, ultimately enhancing overall performance. This
integrated approach highlights the potential of leveraging
advanced transformer-based models and customized learning
strategies to improve automated medical coding and other
clinical tasks.

Among the different prompt learning setups, the mixed template
and soft verbalizer achieved the best performance. The soft
template method outperformed the manual templates method,
which can be attributed to the greater semantic and syntactic
information, broader search space, and reduced trial-and-error
process associated with the soft template method, making it
more effective and less time-consuming [23,24].

The mixed template method is a hybrid approach that combines
the advantages of both soft and manual templates. It uses a
manual template as a base prompt to provide human-readable
instructions and natural language labels, while a soft template
serves as an auxiliary prompt to provide tunable embeddings
that can adapt to specific downstream tasks. This way, the
manual template leverages existing knowledge, while the soft
template enhances expressiveness and flexibility.

For the verbalizer, the self-adaptive type had a significantly
greater impact on overall performance compared with traditional
manual vectors. The soft verbalizer adjusts to the optimal label
space for each task and the scale of the pretrained model, rather
than being limited by a fixed set of tokens [22,24]. This
enhances the accuracy and robustness of the predictions, as well
as the diversity and naturalness of the labels. Additionally, by
tuning the verbalizer alongside other continuous prompts, it
retains the benefits of prompt tuning over fine-tuning,
eliminating the need to maintain a separate copy of model
parameters for each task during inference.

To explore the influence of sample size on the performance of
our pipeline, we conducted few-shot experiments with a range
from 1 to 4000 shots. The results showed unsatisfactory
evaluation metrics for small-scale shots, but performance
improved rapidly and stabilized at around 500 shots. This
suggests that for mid-sized language models, such as BERT,
the semantic understanding and representation capabilities may
not be strong enough. Therefore, tuning the parameters of the
PLM with an appropriate sample size is necessary to achieve
better performance on specific tasks.

Our research confirms that ICD classification tasks can be
effectively accomplished by continuously optimizing the BERT
model. Although this study used cardiology data for training,

our model development strategy is not limited to this specific
dataset; substituting the training data with data from other
departments would also yield the expected outcomes. Therefore,
our model demonstrates remarkable generalization capability.
We firmly believe that the model we have developed, combined
with the expertise of professional physicians, can effectively
address the challenges of ICD classification for various diseases.

Limitations
Despite the reasonable performance of our pipeline, this study
has certain limitations. First, we trained both the corpus part
and the classification task of the framework solely in the
cardiovascular department. As a result, the conclusions of this
paper may not be generalizable to other medical fields. Second,
the ICD classification subtask only involved 13 CVD codes,
which is not comprehensive enough for clinical practice. Future
research could expand to explore the automatic encoding of
additional critical heart diseases or even extend to the entire
clinical field. This could potentially enhance the applicability
and effectiveness of the proposed approach for a broader range
of clinical tasks. Third, our model aims to establish an automated
analysis system using medical text. However, medical data are
inherently multimodal, and modality augmentation can lead to
improvements in accuracy. In this context, models such as label
alignment for multimodal prompt learning [37] and multimodal
equivalent transformer [38] are designed to handle multimodal
data, demonstrating the greater potential for future
advancements.

Conclusions
We proposed a real-time framework for ICD coding from long
medical field–related text to ICD labels, eliminating the need
for semistructured preprocessing. This framework incorporates
Key-BERT, a continuously trained and tunable PLM, and
task-specific prompt learning with mixed templates and soft
verbalizers. We evaluated our model on a multicenter
cardiovascular dataset and applied it to predict 13 ICD codes
for CVDs, achieving high performance. Our model also
demonstrated transferability and generalization across different
centers.

Furthermore, we conducted few-shot experiments to investigate
the impact of data size on model performance. The results
showed that while the framework was effective on smaller
datasets, a certain sample size was necessary to achieve a
relatively stable performance level. This study serves as a
benchmark for exploring the feasibility and performance of
prompt learning in the subtask of large language models or
PLMs. Using a multicenter dataset, the approach demonstrated
robust performance across hospitals, highlighting its potential
for broad deployment.

Few-shot learning experiments demonstrated feasibility with
small-scale datasets, enabling applications for local training on
single centers or various single-disease databases. The real-time
model identifies ICD codes directly, accelerating automated
coding compared with semiautomatic approaches that require
segment preprocessing. This is particularly impactful for clinical
decision support systems that rely on real-time ICD coding data.
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Overall, the prompt learning paradigm achieved cutting-edge
ICD assignment accuracy while offering deployability, few-shot
learning capacity, and low latency—advantages that are highly
beneficial for health care applications. This automated ICD

coding pipeline could be further implemented in various clinical
applications, such as clinical decision support systems, cohort
studies, and disease early warning and diagnosis systems.
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RoBERTa: robustly optimized BERT pretraining approach
Transformer-XL: Transformer-Extra-Long
XLNet: extreme language network
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