
Original Paper

Large-Scale Evaluation and Liver Disease Risk Prediction in
Finland’s National Electronic Health Record System: Feasibility
Study Using Real-World Data

Viljami Männikkö1,2, MSc; Janne Tommola1, MSc; Emmi Tikkanen3, PhD; Olli-Pekka Hätinen3, PhD; Fredrik Åberg4,
MD, PhD
1Atostek Oy, Tampere, Finland
2Faculty of Medicine and Health Technology, Tampere University (TUNI), Tampere, Finland
3Pfizer Oy, Helsinki, Finland
4Transplantation and Liver Surgery Unit, Helsinki University Hospital and University of Helsinki, Helsinki, Finland

Corresponding Author:
Viljami Männikkö, MSc
Atostek Oy
Hermiankatu 3 A
Tampere, 33720
Finland
Phone: 358 45 7834 70
Email: viljami.mannikko@tuni.fi

Abstract

Background: Globally, the incidence and mortality of chronic liver disease are escalating. Early detection of liver disease
remains a challenge, often occurring at symptomatic stages when preventative measures are less effective. The Chronic Liver
Disease score (CLivD) is a predictive risk model developed using Finnish health care data, aiming to forecast an individual’s risk
of developing chronic liver disease in subsequent years. The Kanta Service is a national electronic health record system in Finland
that stores comprehensive health care data including patient medical histories, prescriptions, and laboratory results, to facilitate
health care delivery and research.

Objective: This study aimed to evaluate the feasibility of implementing an automatic CLivD score with the current Kanta
platform and identify and suggest improvements for Kanta that would enable accurate automatic risk detection.

Methods: In this study, a real-world data repository (Kanta) was used as a data source for “The ClivD score” risk calculation
model. Our dataset consisted of 96,200 individuals’ whole medical history from Kanta. For real-world data use, we designed
processes to handle missing input in the calculation process.

Results: We found that Kanta currently lacks many CLivD risk model input parameters in the structured format required to
calculate precise risk scores. However, the risk scores can be improved by using the unstructured text in patient reports and by
approximating variables by using other health data–like diagnosis information. Using structured data, we were able to identify
only 33 out of 51,275 individuals in the “low risk” category and 308 out of 51,275 individuals (<1%) in the “moderate risk”
category. By adding diagnosis information approximation and free text use, we were able to identify 18,895 out of 51,275 (37%)
individuals in the “low risk” category and 2125 out of 51,275 (4%) individuals in the “moderate risk” category. In both cases,
we were not able to identify any individuals in the “high-risk” category because of the missing waist-hip ratio measurement. We
evaluated 3 scenarios to improve the coverage of waist-hip ratio data in Kanta and these yielded the most substantial improvement
in prediction accuracy.

Conclusions: We conclude that the current structured Kanta data is not enough for precise risk calculation for CLivD or other
diseases where obesity, smoking, and alcohol use are important risk factors. Our simulations show up to 14% improvement in
risk detection when adding support for missing input variables. Kanta shows the potential for implementing nationwide automated
risk detection models that could result in improved disease prevention and public health.

(JMIR Med Inform 2025;13:e62978) doi: 10.2196/62978
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Introduction

Background
Even though health care risk models have been developed for
a very long time and have been implemented to be available for
individuals, health care still lacks automated health-risk analysis
because of limited real-world data (RWD). The burden of liver
disease increases yearly in Finland because the Finnish
population age average grows, and obesity and overweight are
more common problems in the Finnish population [1]. On
average, there are 1000 deaths caused by alcoholic liver disease
every year [2]. For the early detection of individuals from the
general population at high risk for future severe liver disease,
the CLivD (Chronic Liver Disease score) score was developed.
It can be used to predict severe liver disease incidence in 10
years. The model itself was developed by linking data from
Finnish population–based health examination surveys
“FINRISK” and “Health 2000” with Finnish health care
registries. The model has been validated using data from the
United Kingdom, Denmark, the United States, and China [1,3-5].

Risk Model Application to RWD
The missing input data pose a challenge for the large-scale
implementation of established risk models in real life [1]. To
be able to calculate the exact risk value in many cases, we would
not only require additional RWD sources but also changes in
health care professionals’ practices to ensure they regularly
measure the correct parameters from patients. One problem is
the negation of information, particularly in cases where data on
behaviors, such as a person not smoking or not consuming
alcohol, is missing. This leads to a problem where we cannot
determine whether a person, for example, is a nonsmoker if
there is no record of it. Despite the challenges, health care RWD
enables early identification of individuals at high risk by
analyzing their current characteristics, which is crucial for health
care professionals in planning treatments. The exact risk value
would be easy for everyday people to understand, but for health
care professionals in preventive work and treatment planning,
it is also important to detect potential high-risk cases as early
as possible and identify if the person is a high-risk patient. For
this kind of usage, we introduce a process that helps to detect
high-risk and potential high-risk individuals. Figure 1 describes
that kind of division at the population level.

Figure 1. Case example of population risk categorization based on a personal risk value.

The Finnish National Electronic Health Record System
Kanta Services is the Finnish National Electronic health record
system where data are recorded from almost all Finnish health
care providers including the public and private sectors and
primary and special care [6]. Kanta Services entered production
in Finland in 2010 and it has been used for more than 10 years
in Finland overall [6]. However, Kanta has been developed in
stages, resulting in different data types having different levels
of availability. Kanta Services in general consists of four
different parts: (1) the social health care part, (2) the prescription
center, (3) the patient data repository (PDR), and (4) personal

health records [7]. In this study, we only use data from the Kanta
PDR.

In Finland, the 2019 Act on Secondary Law made it possible
to use health care data for research purposes [8]. Before that,
the data were available only for their primary use, which is
patient care. Kanta is an exceptional RWD source because it
covers almost the whole Finnish population and has recordings
from more than 90% of all Finnish health care service providers.
[6] This makes it possible to analyze previously developed
health care risk models and develop new risk models by using
large data sources that represent the entire national population.
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Since data are continuously generated in Finnish day-to-day
health care and all Finnish health care systems are integrated
into Kanta, developed and tested risk models can also be applied
in actual patient care. Popular well-being service providers have
implemented automated health risk analysis based on data
collected from the person regularly or data obtained from
wearable devices like smartwatches [9]. These types of data
still lack validation from health care professionals. Validation
is a key element for incorporating automated risk analysis results
in everyday patient care and using them as a diagnostic tool.
The Kanta PDR contains only data validated by health care
professionals, as only they are authorized to record information
in the system [10]. Kanta Services also has a personal health
records data repository containing data recorded by the people
themselves. However, it is not used in this research as it is still
under development. In this study, we aim to analyze data
validated by health care professionals [11].

Methods

Overview
In this study, we aim to research the CLivD score risk model
automation possibilities with Kanta PDR. We use Kanta PDR
as the only data source for the risk model to have an overall
picture of the data availability status. We consider four different
scenarios of data usage possibilities: (1) first, we test the risk
model results with the available structured data; (2) next, we
aim to use other structured health care information to
approximate missing information; (3) after that, we analyze the
possibilities of using free text; and (4) finally, we analyze
completely missing input variables. For this research, we have
2 main objectives:

1. To evaluate the feasibility of implementing an automatic
CLivD score with the current Kanta platform.

2. To identify and suggest improvements for Kanta that would
enable accurate automatic risk detection.

Dataset
In this study, we used the dataset consisting of the medical
documents of 192,400 individuals archived in the Kanta PDR
between 2014 and mid-2022. Data in Kanta are recorded using
the Clinical Document Architecture Release 2 (CDA R2) format,
as defined by Health Level 7 (HL7) [12]. CDA R2 documents
are XML documents that follow a defined format [13]. In the
Finnish health care environment, the local Finnish version of
the global HL7 CDA R2 is defined by Health Level 7 Finland,
Kela, and the Finnish Institute for Health and Welfare (THL)
[12].

The dataset was chosen by Kela from Kanta and the study cohort
was randomly selected across the whole Finnish population

without any limitations to specific health care providers or
locations. The dataset included all documents that were recorded
in Kanta PDR after an individual turned 18 years old.
Documents were pseudonymized by Findata and delivered in
the original CDA R2 XML format to the secure Kapseli
environment. Before the analysis was done, the dataset was split
randomly into development and validation datasets. Data were
evenly divided, with both development and validation datasets
containing 96,200 patients. The data were split to accommodate
future plans for using machine learning and other methods
requiring validation in subsequent projects; however, in this
project, only the first half of the data were used. After the data
are split, CDA R2 XML documents must be processed so that
all relevant data are parsed for analysis. For data processing, a
separate data process library and data model were designed.
Data parsing consisted of structured laboratory measurements,
structured diagnosis data, structured physiological
measurements, free-text sections of patients’ongoing treatment
reports, and some basic information about the document and
patient. We did not obtain access to death records because they
are not recorded in Kanta and would have required separate
permission and retrieval from the Digital and Population Data
Services agency. A more detailed analysis of the dataset can be
found in the study by Männikkö et al [14].

Risk Model Implementation
The original research on the CLivD score introduced 2 risk
calculation models: Modellab and Modelnonlab. Both models
predict the risk of chronic liver disease in people aged 40 years
or older. The difference between models is that Modellab also
considers the person’s gamma glutamyl transferase (GGT)
laboratory test result. Both risk calculators have 4 different
exclusion criteria [1]. If a person meets even 1 of the exclusion
criteria, there is a possibility that the risk calculator may not
function as expected. Exclusion criteria are listed in Textbox
1.

For these risk models and use cases, we introduce a model for
categorizing patients to 4 different categories: “low risk,”
“moderate risk,” “high risk,” and “not specified risk.”
Categorization is based on 2 risk values: “minimum risk” and
“maximum risk.” The risk calculation process itself was
introduced slightly later. This approach is good from the Kanta
development point of view, as future developments and the
addition of more information to Kanta will allow risk
categorization to be easily applied to the new data. The more
data we collect from the person, the more reliable the model
becomes, resulting in a significant reduction in the “Not
Specified” category. Table 1 presents the cutoff values for each
category.
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Textbox 1. Chronic liver disease score risk model exclusion criteria.

Exclusion criteria

• Age: above 40 and under 71 years.

• Liver disease diagnosis: ICD-10 (International Statistical Classification of Diseases and Related Health Problems, 10th Revision): K70-K77,
C22.0; ICD-8 (The International Classification of Diseases, 8th Revision) and ICD-9 (International Classification of Diseases, 9th Revision):
570-573, 155.0.

• Chronic viral hepatitis diagnosis: ICD-10: B18.

• Current alcohol abstainer: previous alcohol use. Can be identified with ICD-10 codes: F10.20 and other F10.2X.

Table 1. Risk categories’ cutoff values for minimum and maximum risk.

Not specified riskHigh riskModerate riskLow riskRisk

<5%≥10%>5% and <10%≤5%Minimum risk

>10%≥10%>5%<5%Maximum risk

The CLivD score risk function was developed and validated
using cohort studies, where the population is sampled, assessed
at a certain time, and then followed for outcomes [1]. Kanta
patient data are distributed over time, with measurements
conducted at different points in time.

We use parameter lifecycles or lifetimes to do this, where we
specify the length of time a measurement or diagnosis is valid,
both before and after it appears in the medical record. In this

work, we used 2 different lifecycles: 1-year lifecycles where
measurements are valid for 1 year after measurement, and
infinite lifecycles where they stay valid until the next
measurement, or until the end of document history. For both
lifecycle types, we used an infinite validity time for diagnoses.
An example of parameter lifecycles is shown in Figure 2 with
a finite (eg, 1 year) lifetime for measurements and an infinite
lifetime for diagnoses.

Figure 2. In real-world data, the validity period of input parameters must be defined, as different measurements remain valid for varying durations
both before and after the measurement.

We implemented the CLivD risk function in Kapseli using
Python (Python Software Foundation). The implementation
flow diagram is described in Figure 3. The timeline is formed
by using all known relevant patient data and applying the
previously discussed parameter lifecycles to it. Due to missing
input variables, we calculate 2 risk values: the minimum and
maximum risk. The minimum risk is obtained by substituting
the missing variables with their lowest values, while the
maximum risk is determined by using their highest value. The
complete list of default values can be found in Table 2. Values

are used in the case where the input value is not available from
an individual’s medical history.

By calculating the minimum risk and maximum risk, we obtain
a risk range. A smaller risk range directly implies a more
accurate risk value. Missing input parameters increase the risk
value range. The goal is to narrow the risk value range toward
the actual risk value in the long term. Possible ways to narrow
the risk range are, for example, getting the exact missing value
from other data sources, asking for information from the patient,
or determining the magnitude of the missing information from
free-text evaluation.
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Figure 3. Risk categorization process flow. CLivD: Chronic Liver Disease; GGT: gamma glutamyl transference.

Table 2. Default values for risk calculation when an input parameter is missing.

Default maximum valueDefault minimum valueInput parameter

Always availableAlways availableGender

70 (basically, always available)40 (basically, always available)Age (years)

Use non-GGT modelUse non-GGT modelGGTa

1.30.7WHRb

TrueFalseSmoking

490Alcohol usage

TrueFalseDiabetes

aGGT: gamma glutamyl transferase.
bWHR: waist-hip ratio.

In Figure 4, an illustration and example goal for the risk value
ranges are shown. The line represents an ideal case where all
input variables are known, and an exact risk value with equal
minimum and maximum risk can be calculated. The lower
turquoise triangle represents an area where the maximum risk
is below 5%, and the patient can be considered low risk. The
upper red triangle represents an area where the minimum risk

is above 10%, and the patient is at high risk. The yellow area
is the moderate risk area where patients’ risk value is higher
than 5% but not high enough to determine the person as a
high-risk patient. The gray-colored area represents the “not
specified risk” category, where the risk range between the
minimum risk and maximum risk is too wide to identify the
correct category.

Figure 4. Risk categories in minimum and maximum risk plane.
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In this study, we target these colored areas as a goal, as an exact
risk value is not feasible with the missing data, but a risk range
is still helpful for determining the course of action. The risk
thresholds can be configured for different use cases. The
complete risk calculation formula can be found in Multimedia
Appendix 1.

Ethical Considerations
This study involved pseudonymized health care data produced
in health care services in Finland. Data were collected, delivered,
and pseudonymized under the legislation on secondary use of
health care data in Finland. Finnish authority Findata validates
data requests and project plans before granting permission to
access data (THL/1851/14.02.00/2021). Findata also has the
responsibility to create the data pseudonymization before
delivery. Data were processed and analyzed in an audited secure
computing environment known as “Kapseli” with restricted
access to it. All the results presented in this paper have gone
through the Findata anonymization validation process where
Findata ensures that results taken out of a secure environment
are anonymized. Ethical aspects of the project have been
evaluated by Findata during the data request process.

Results

Overview
Analysis was made in 4 iterations. At first, we analyzed the
structural data and its occurrences. After that, we tried to
improve the model with the diagnosis use to determine the
magnitude of missing input variables. After that, we used
free-text for tobacco and alcohol information, and at last, we
simulated waist-hip ratio (WHR) in cases where it would have
been available from different data sources.

The study initially included 96,200 participants. After applying
the exclusion criteria, only 51,275 eligible individuals remained
for the risk model. A total of 44,925 individuals were left out
of this analysis because they did not match the original criteria.
Almost 50% of the individuals were excluded, with the
age-related criteria being the most common reason for exclusion.

Structural Data
We can analyze the CLivD score risk calculation results using
Kanta PDR structured data as a precise input parameter, without
approximating the parameter magnitude. In Table 3, we describe
the frequency of relevant variables appearing in a patient’s
medical history in a structured format. The occurrence of 1
means that the variable has been measured just once during the
patient’s medical history according to the Kanta data. Age and
gender are registered in every document and are always
available. The table shows that 0 measurements are the most
common, and more than 5 measurements are a very rare case
among risk model input variables.

WHR and alcohol use are not shown in this table as they are
not present in a structured format in the Kanta data. Besides
age and gender, the only input variables with at least 1%
availability are GGT and fasting glucose, with approximately
5% and 13% total occurrence, respectively. As fasting glucose
(7 mmol/L) is only used as an alternative to a diabetes diagnosis,
it is not a required input variable. We interpret a missing
measurement to mean that the patient does not have diabetes,
provided the other criteria are not met. BMI and waist
circumference are not input variables for the risk model but
were investigated as possible alternatives to the missing WHR.
Waist circumference measurements are very rare and will not
considered further, whereas BMI has moderate availability and
will be discussed later.

Table 3. Parameter occurrences in the Kanta patient data repository between 2014 and 2022 (N=96,200).

Smoking, n (%)Gamma glutamyl
transferase, n (%)

Waist circumfer-
ence, n (%)

BMI, n (%)Weight, n (%)Height, n (%)Fasting glucose,
n (%)

Occurrence during
patient history, n

96,193 (99)91,891 (95)95,812 (99)80,651 (83)78,003 (81)76,815 (79)84,521 (87)0

7 (<1)3144 (3)349 (<1)8482 (9)9007 (9)10923 (11)9141 (10)1

0 (0)1067 (1)39 (<1)6393 (6)7311 (8)7752 (8)2460 (2)2-5

0 (0)77 (<1)0 (0)567 (1)1364 (1)608 (1)64 (<1)6-10

0 (0)12 (<1)0 (0)85 (<1)329 (<1)82 (<1)8 (<1)11-15

0 (0)9 (<1)0 (0)22 (<1)186 (<1)20 (<1)6 (<1)>15

Diagnosis Use
Because the Kanta PDR is missing WHR data, and alcohol
usage data and tobacco usage information are quite rarely found
in a structured format, we need to use other health care
information found in the Kanta PDR. For alcohol and tobacco
usage, there are some ICD-10 (International Statistical
Classification of Diseases and Related Health Problems, 10th
Revision) and ICPC-2 (International Classification of Primary
Care version 2) diagnosis codes that can be used for risk
calculation. With the smoking diagnosis codes, we get the
information that an individual smokes. This serves as the exact

value for the CLivD score model, as it does not consider the
number of cigarettes a person smokes per week.

For alcohol usage, the CLivD score model uses the number of
servings as an input. Consequently, by using diagnosis codes,
we aim to estimate the magnitude of alcohol usage and narrow
the risk range. For alcohol usage, we use diagnosis codes that
relate to heavy consumption of alcohol. Based on those
diagnosis codes, we can say that the person has consumed
alcohol at above-average levels for some time before getting
the diagnosis. The largest ICD-10 group that will be used is F10
“Mental and behavioral disorders due to the use of alcohol” and
from the ICPC-2 codes we will use P15 “Chronic alcohol abuse”
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and P16 “Acute alcohol abuse.” For high-risk alcohol users, we
use the “23 alcohol servings per week” approximation for men
and the “12 alcohol servings per week” approximation for
women [15]. The complete list of diagnosis code mappings to

risk model input parameters can be found in Multimedia
Appendix 2. Table 4 shows the statistics from diagnosis
occurrences in our dataset.

Table 4. Alcohol and smoking-related diagnosis occurrences in the Kanta patient data repository between 2014 and 2022 (N=96,200).

Number of diagnoses, nDisplay nameDiagnosis code

Alcohol-related

2158Unspecified alcohol intoxicationF10.09

18,141Alcohol abuseF10.1

3697Alcohol dependence uncomplicatedF10.20

3251Alcohol dependence with alcohol-induced mood disorderF10.24

3921Alcohol dependence with alcohol-induced psychotic disorderF10.25

3328Alcohol dependence with alcohol-induced persisting amnestic disorderF10.26

3268Alcohol dependence with unspecified alcohol-induced disorderF10.29

1690Alcohol withdrawal symptoms unspecifiedF10.39

4494Alcohol abuse (chronic)P15

2417Alcohol abuse (acute)P16

Smoking-related

1102Tobacco useZ72.0

465Tobacco abuseP17

Free-Text Analysis
Kanta PDR contains a lot of free text in patients’ ongoing
treatment reports that describe the patient’s overall health status
and living habits. As a result, the free text can be used to find
information concerning alcohol usage habits and tobacco use.
Due to the limitations on available resources, such as the lack
of a graphics card in a secure “Kapseli” environment, we had
limited options for free-text analysis. We were not able to use
advanced machine learning models or any generic artificial
intelligence for text analysis. Instead of those methods, we used
a simple regex-based keyword search and converted found text
phrases into usage categories. With this analysis, we aimed to
understand how often tobacco- or alcohol-related texts appear
in ongoing treatment reports and how it would improve the
CLivD score model. For more precise free-text analysis, more
advanced tools should be used to gain more reliable results.

Tobacco usage is simpler because we can find texts that indicate
whether a person is a smoker or a nonsmoker. There are cases
where the texts might state, “person has smoked 10 years ago,”
making it difficult to determine whether the person currently
smokes without additional context. However, in most cases, we
can get quite good results by finding sentences related to
smoking status.

Alcohol usage is different than tobacco use. Because alcohol
servings are defined in a weekly servings format in the CLivD
Score model, we must define alcohol usage categories also for
free-text analysis. Based on the analysis, we converted phrases
into alcohol usage categories. Category mappings are defined
in Multimedia Appendix 3 and are based on the THL alcohol
risk table [15]. We noticed that alcohol usage was described in

free text using various ways and words. We also noticed that
the amount descriptions were, in many cases, abstract, and the
conversion to the alcohol usage category was not reliable.
However, we managed to find clear and reliable cases of alcohol
usage from the free text and managed to use them. For the text
finding, we used keywords like “käytä alkohol,”
“ei\s*\w*\s*alkohol,” “runsa\w*\s*alcohol,” and
“vieroitus|vierotus|päihtymys|putki|katkaisu.” Multimedia
Appendix 3 defines the alcohol usage categories used in free-text
analysis. The categories are based on THL definitions for
alcohol usage risk groups defined as alcohol servings per week.
In each category, there is minimum and maximum alcohol usage.
In the risk model when calculating the minimum risk, the alcohol
usage category minimum value is used and vice versa. A
complete list of alcohol usage and tobacco use text analysis
keywords and mappings can be found in Multimedia Appendix
4.

Risk Calculation Results
We apply the risk function to the patient’s timelines and attempt
to assign their risks to the colored areas shown in Figure 4.
These risk areas would be enough to classify patients into low-
and high-risk groups, with the uncolored area representing gray
area where no definite conclusions can be made.

The average risk difference from our test runs is presented in
Figures 5 and 6, with Figure 5 representing cases where an
infinite timeline was used and Figure 6 representing cases where
a 1-year lifetime was used. Risk difference is calculated by
subtracting the minimum risk value from the maximum risk
value. Smaller differences imply a more precise risk value. As
we can see from the figures, the average risk difference has
decreased as the data have been developed in Kanta. If we look
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at the case where structural data, diagnosis, and free text all
have been used, the risk difference has been reduced by almost
20% points. We can also see that the free text use and the high
availability simulation of WHR have had the largest impact on
the risk difference.

In the test run, we calculated the most precise risk value for
each person throughout their history in Kanta and categorized
them by that risk value. Results can be seen in Multimedia
Appendix 5.

Figure 5. Average risk difference development between 2014 and 2021 with eternal parameter lifetime. WHR: waist-hip ratio.

Figure 6. Average risk difference development between 2014 and 2021 with one year parameter lifetime. WHR: waist-hip ratio.
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As we can see, based on the results with only structural data,
we can only categorize 341 out of 51,275 (<1%) individuals
into any category. By adding diagnosis use for approximation,
we did not achieve notable improvement in categorization.
When adding the free-text analysis, we were able to categorize
21,020 out of 51,275 people (41%). Even though we did not
manage to categorize any person into the high-risk category,
we managed to identify individuals who were not at high risk.
Due to the high availability of WHR information, we can
categorize 38,279 out of 51,275 people (75%). A small number
of individuals may be incorrectly placed in the high-risk
category in the WHR simulation due to an inaccurate WHR
value relative to their overall health status. However, this does
not affect the overall categorization percentage, as it represents
the proportion of individuals successfully categorized rather
than the distribution across specific categories. At the original
CLivD score research, fewer than 2% of individuals were
identified as high-risk from a cohort of 25,760 individuals.
Approximately 3% were identified as being at moderate risk in
the original research. In our categorization, 2125 out of 51,275
individuals (4%) were classified into that category [8]. Based
on these results, we can say that the results match because the
CLivD score development dataset was from before 2012, while
our dataset was from after 2014, and the risk for chronic liver
disease has increased in the overall population in Finland.

WHR Data
The WHR is among the most important variables for the CLivD
risk score. Unfortunately, it cannot currently be obtained from
Kanta data, as it is not supported in a structured format, and we
were also unable to find it in the texts as well. As an alternative,
we considered BMI, waist circumference, or hip circumference
to predict the WHR. Of these, only BMI has meaningful
availability in Kanta, so waist and hip circumferences were not
considered further. BMI has been measured for 15,359 out of
51,275 (17%) individuals.

While associations between BMI and WHR can be found in the
literature [16,17], the suitability of BMI as a predictor for severe
liver disease has recently been disputed [18-21], with its
suitability affected by gender and potentially other factors. Due
to the seemingly complex and unclear nature of BMI and WHR
interaction, we decided not to pursue WHR prediction for now.

For the analysis purpose, we simulated WHR data effect on the
CLivD score risk model results in a few different scenarios. The
first scenario involved obtaining the exact WHR data from the
Kanta PDR, the second scenario involved the individual
requesting their WHR data using the WHR groups, and the last
scenario involved the individual measuring their exact WHR.
These 3 scenarios were created because they serve as use case
scenarios of the risk model differently.

The simulation was done by populating the timelines with WHR
data. In the first case, 0.5% of all documents recorded in Kanta
contained the WHR data, while in the second case, 10% of
documents recorded in Kanta would have contained the WHR
data. The first case represents the condition where WHR data
would have the same kind of availability as all other basic
physiological measurements currently in Kanta. The second
case represents the condition where the WHR data would be
highly available for individuals, for example, from other data
sources. For the simulation, WHR values were generated using
a normal distribution, with a mean of 0.96 for men, a mean of
0.84 for women, and a variance of 0.07. These values are found
to be representative of the Finnish population based on research
[22].

WHR as a measurement is slightly complicated for individuals
to assess on their own, which raises the bar for using it in the
CLivD score risk model. Because of this, we tested the cases
to see if the simpler WHR categorization would give good
results for risk categorization. The WHR categorization for a
person could be easily implemented by displaying images of
different body types and using these types to represent a WHR
range. For the person, it would be easy to answer which image
matches their own body. In this simulation, the exact WHR
values were changed to the corresponding WHR category. After
that, the average risk differences for the population were
calculated for the cases, using 3 categories and 5 categories.
WHR categorization definitions can be seen in Multimedia
Appendix 3.

The results of the test run with the WHR simulation can be
found in Figure 7. As we can see from the graph, there is no
big change between the 3 categorical WHR data simulations
and the exact WHR data simulation. If the WHR were requested
by the individual, it would be simpler to assess body type using
3 categorical questionnaires rather than obtaining the exact
WHR value.
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Figure 7. Waist-hip ratio (WHR) categorization impact to risk difference development between 2014 and 2021.

Discussion

Principal Findings
We conclude that the current Kanta PDR data are not enough
for precise risk calculation for the CLivD score or other risk
models where obesity, smoking, and alcohol information are
important risk factors. Our simulations show up to 14%
improvement in risk detection when additional data sources are
considered for obesity. Kanta shows excellent potential for
implementing nationwide automated risk detection models that
could result in improved disease prevention and public health.

Based on the results of this study, it is not possible to calculate
precise risk scores using the CLivD risk model with the current
data in Kanta PDR. However, risk categorization enables the
possibility to use the CLivD risk model with Kanta PDR data
so that it considers missing input parameters and enables future
data development in Kanta. We noticed that risk categorization
improved when the magnitude of input parameters was
approximated using diagnosis information, and free text from
the patient’s ongoing treatment report was used for input
parameter parsing. When using the structured data from Kanta
PDR as an input, we were able to identify only 33 out of 51,275
(<1%) individuals in the “low-risk” category and 308 out of
51,275 (<1%) individuals in “moderate-risk” category. When
diagnosis use and free-text analysis were added to the model,
we were able to identify 18,895 out of 51,275 (37%) individuals
in the “low risk” category and 2125 out of 51,275 (4%)
individuals in the “moderate risk” category. In both cases, we
were not able to identify any individuals in the “high-risk”
category, because of the missing WHR data. When we added
the WHR simulation to the risk model, we started to identify
“high-risk” individuals. We evaluated 3 scenarios to improve

the coverage of WHR data in Kanta and these yielded the most
substantial improvement in prediction accuracy.

Comparison With Previous Work
In Finland, there is no systematic screening or automated risk
assessment for chronic liver disease implemented in everyday
health care. Diagnostics are quite random, and, in many cases,
incidents are noticed during the treatment of other symptoms.
Based on studies in Great Britain and Denmark, 70%-75% of
cases of cirrhosis are only diagnosed when the patient ends up
in the hospital’s emergency room with a serious complication
of cirrhosis. In this case, the mortality rate is very high.
Although similar research has not been conducted in Finland,
the situation is presumed to be equally concerning.

There are automated methodologies implemented to diagnose
liver fibrosis, but large-scale systematic analysis and screening
are still yet to be implemented because of missing nationwide
data. One randomized controlled study developed a care pathway
for identifying advanced liver disease in patients with type 2
diabetes in Hong Kong and Malaysia. In that study, the results
show that automation can lead to an increase in the number of
referrals for patients with type 2 diabetes and abnormal fibrosis
scores [23]. Another study showed that nationwide screening
helps the early detection of liver cirrhosis [24]. Both of these
studies have shown that screening and automated risk
assessment can improve liver disease detection and it would be
beneficial to implement nationwide health care analysis.

Strengths and Limitations
The applied risk model used in this study has built-in flexibility
for different availabilities of input data. This supports data
quality development and enables flexible adaptation of different
formats of input data. With this approach to risk assessment,
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we do not obtain the exact risk value from the model. However,
this provides flexibility, as the risk categories offer valuable
information as the exact risk value.

Approximation of smoking status and alcohol usage can be
extracted using free text or various ICD-10 or ICPC-2 diagnosis
codes. These are still approximations and have the possibility
for errors. In particular, it is unusual to have exact values from
free text for alcohol usage, as it can be described using various
words. As we were not able to use modern models for text
analysis, such as generative large language models, we were
still able to identify texts that refer to alcohol usage and smoking
status. This means that although multiple texts refer to that
information in free text, a consistent model is needed to analyze
the data and achieve more reliable results. For that, the modern
and more developed models would be a better option. To
mitigate the analysis risk, we should target to convert alcohol
usage free text into predefined categories, which would decrease
the magnitude of errors in the analysis results.

Defining the new measurement type in the Kanta structural data
does not require much work, but transferring the measurement
results to Kanta can be time-consuming since the changes need
to be implemented across all patient management systems that
record actual data. In addition to changes to the actual systems
to support the new measurements, changes in health care
professional’s everyday patient care practices are also necessary
to perform the actual measurement.

Future Directions
To enhance the accuracy of risk model results, WHR data would
be required. There are several possible ways to obtain WHR
information, and their effectiveness depends on the use case.
For example, Kanta PDR could have a new measurement type
and WHR measurement could be added to general measurements
in health care visits. It would take several years for Kanta to
achieve broader population coverage since data are recorded
only from individuals who use health care services. The other
possible way would be to ask for information from the individual
and use that in the risk model. There are a few ways to request
a value from an individual; an exact value, a categorical
question, or a camera measurement. The exact value asking is
beneficial for the risk model because it will give the best results,
but the measurement is quite difficult for individuals to perform
on their own. Categorical questioning is easier to answer for
the individual and can be implemented by showing photos of
different body types, allowing the person to select the one that
resembles them the most. This method would have the most
errors, but it would be the easiest way for individuals. The last
option would be to use a smartphone to measure WHR through

the camera. The body can be identified using artificial
intelligence, and the ratio can be calculated accurately based
on an image. This requires a little bit of effort from the person
but gives a precise risk value as a result.

As an alternative, we could show the WHR ranges assigning a
patient to the low- or high-risk category, or we may consider
developing a new risk function using BMI instead of WHR. As
a potential future development, we may consider using Kanta
PHR where patients themselves could record their WHR or ask
categorized questions from the patient about the WHR.

Even though the risk model could not identify any high-risk
patients with current Kanta data, it would still be important to
implement this kind of risk model to use in everyday health
care, because it would give real-time feedback about Kanta data
quality development and guide health care professionals to make
correct measurements for the patient. Patient management
systems could inform health care professionals during patient
visits about the exact measurements missing from the Kanta,
preventing the calculation of the risk.

One option for finding missing data is using local data sources
or mobile wellness apps. Both cases have their strengths and
weaknesses. Local data sources for each patient management
system may contain richer data than what is stored in Kanta,
but integrating them into each local system requires a lot of
work and maintenance. The National Electronic Health Record
system in this case offers greater flexibility and simplifies data
use. Changes should be made so that local data sources record
all key values to Kanta. On the other hand, mobile wellness
apps like Apple Health, Google Fit, and so on, store a lot of
valuable data from personal health perspectives. The problem
is that with the current legislation, nonmedical device data
cannot be used in health care. This means that this offers
possibilities only for personal health risk assessments and not
for health care professional use cases.

In future work, the time dimension could be further used to
track a patient’s risk over their whole patient history by plotting
a graph of their minimum and maximum risk at each point in
their timeline. This could help determine, for example, whether
a change in their risk warrants an intervention or highlight a
period of missing data in their history where the risk value is
more uncertain.

In conclusion, the Finnish national electronic health record
system has the potential to support automated risk detection
models across the nation. However, capturing key chronic
disease risk factors such as obesity, smoking, and alcohol use
requires improvement.
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