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Abstract
Background: Artificial intelligence (AI)–based diagnostic prediction models could aid primary care (PC) in decision-making
for faster and more accurate diagnoses. AI has the potential to transform electronic health records (EHRs) data into valuable
diagnostic prediction models. Different prediction models based on EHR have been developed. However, there are currently no
systematic reviews that evaluate AI-based diagnostic prediction models for PC using EHR data.
Objective: This study aims to evaluate the content of diagnostic prediction models based on AI and EHRs in PC, including
risk of bias and applicability.
Methods: This systematic review was performed according to the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) guidelines. MEDLINE, Embase, Web of Science, and Cochrane were searched. We included
observational and intervention studies using AI and PC EHRs and developing or testing a diagnostic prediction model for
health conditions. Two independent reviewers (LH and AC) used a standardized data extraction form. Risk of bias and
applicability were assessed using PROBAST (Prediction Model Risk of Bias Assessment Tool).
Results: From 10,657 retrieved records, a total of 15 papers were selected. Most EHR papers focused on 1 chronic health care
condition (n=11, 73%). From the 15 papers, 13 (87%) described a study that developed a diagnostic prediction model and 2
(13%) described a study that externally validated and tested the model in a PC setting. Studies used a variety of AI techniques.
The predictors used to develop the model were all registered in the EHR. We found no papers with a low risk of bias, and high
risk of bias was found in 9 (60%) papers. Biases covered an unjustified small sample size, not excluding predictors from the
outcome definition, and the inappropriate evaluation of the performance measures. The risk of bias was unclear in 6 papers,
as no information was provided on the handling of missing data and no results were reported from the multivariate analysis.
Applicability was unclear in 10 (67%) papers, mainly due to lack of clarity in reporting the time interval between outcomes and
predictors.
Conclusions: Most AI-based diagnostic prediction models based on EHR data in PC focused on 1 chronic condition. Only
2 papers tested the model in a PC setting. The lack of sufficiently described methods led to a high risk of bias. Our findings
highlight that the currently available diagnostic prediction models are not yet ready for clinical implementation in PC.
Trial Registration: PROSPERO CRD42022320002; https://www.crd.york.ac.uk/PROSPERO/view/CRD42022320002
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Introduction
Background
The diagnostic process is a core task of general practitioners
(GPs). However, making a diagnosis may be a challenging
task given the diversity, complexity, and early presentation
of symptoms. Clinical prediction models are intended to
improve the diagnostic process [1]. These models can support
the health care provider by predicting serious illness [2].
In the last years, the interest in artificial intelligence (AI)
techniques for the development of prediction models has
been growing [3,4]. AI-based prediction models could aid
in decision-making for faster and more accurate diagnoses,
with more diagnostic efficiency that can benefit patients’
health [5-8]. Examples are prediction tools that can predict
colorectal cancer in patients [9,10].

Clinical prediction models used to be built on data from
large databases, such as data collected for research purposes,
claim data, or data from electronic health records (EHRs)
[11,12]. EHR data consist of structured data, which are data
in standardized format, and unstructured data, which are
free-text data. Primary care (PC) EHR data provide extensive
and longitudinal data from a patient’s health trajectory and
changes over time. AI might prove to be a valuable method to
extract clinically useful and actionable insight from this vast
and complex source of patient data [13]. For that reason, AI
has the potential to transform EHR data into a valuable tool
for predicting diagnosis in daily PC practice.

Reviews on the value of AI in PC are scarce, and previous
research had different aims. For example, Kueper et al [14]
provided an overview of diagnostic prediction models based
on AI in PC. However, the authors did not assess the quality
of these diagnostic prediction models. Other research in
this field explored AI systems in community-based primary
health care [15] or focused on different machine learning
(ML)–based diagnostic and prognostic models that predic-
ted a health care condition [16]. As AI has the potential
to support and improve the diagnostic process, high-qual-
ity and validated prediction models are crucial in order to
ensure patient safety after clinical implementation. Although
a variety of prediction models for PC have been developed,
to our knowledge, there are currently no systematic reviews
on AI-based diagnostic prediction models for PC using EHR
data.
Objective
Evaluation of the content and quality assessment of AI-
based diagnostic prediction models using EHRs in PC was
largely lacking in current literature. Therefore, we systemat-
ically reviewed the literature in order to critically evaluate
the content of these AI-based diagnostic prediction models,
including risk of bias and applicability.

Methods
Study Design
We performed a systematic review according to the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines [17] (the PRISMA checklist is
provided in Checklist 1). The protocol for this study
was registered in PROSPERO (nr: CRD42022320002). The
research team included stakeholders such as practicing GPs,
researchers, methodologists, and AI experts in the design,
analysis, and reporting of the study.
Search Strategy and Study Selection
Our search was adapted from the search strategy developed
by Kueper et al [14]. It combines two concepts including
a wide range of different terms used to describe the con-
cepts: (1) artificial intelligence and (2) primary care (for full
search strategy, see Multimedia Appendix 1, part 1 [18-67]).
EHRs were not part of the search strategy, because litera-
ture suggests that we might miss important studies when
including EHRs or related terms in the search strategy [13].
We searched in the following databases: MEDLINE, Embase,
Web of Science, and Cochrane. There were no restrictions
concerning the publication date. The last search update
was conducted on August 28, 2023. We focused on inter-
vention and observational studies. We excluded systematic
reviews, meta-analyses, case studies, editorials, protocols, and
conference posters or abstracts. Full text had to be available
to be selected for screening. The literature had to be written in
English or Dutch. Duplicate publications were removed with
EndNote 20.
Inclusion and Exclusion Criteria
Four inclusion criteria were used to select the papers: (1)
primary care focus: this included PC data, models that were
tested in a PC setting, or PC had to be specifically mentioned
in the aim of the study; (2) diagnostic prediction model:
models had to predict a health condition applicable during a
GP’s consultation; prediction models that identified a disease
in a database, rather than predicting a disease for an individ-
ual, were excluded; (3) AI: this included all ML and deep
learning techniques; we directed our focus to data-driven
prediction models without using medical images as input
data; and (4) EHR-based data: EHR data had to be used
for the development or validation of the model. EHRs were
defined as PC data from EHRs, medical records, or clinical
notes. See Multimedia Appendix 1, part 2 [18-67], for the full
screening guidance.

Title and abstract screening was done in management
software Rayyan (rayyan.ai) by 2 independent reviewers (LH
and LvdH). Conflicts were resolved by a third reviewer
(AU). Full-text screening was done by the same independ-
ent reviewers. Conflicts were resolved by discussion, and if
no consensus was reached, they were resolved by a third
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reviewer (AU). Backward citation searching was conducted
on the included papers and finished on November 7, 2023.
Data Extraction and Quality Assessment
Data extraction of included papers was done by 2 inde-
pendent reviewers (LH and AC). They used a standardized
data extraction form adapted from the Checklist for Criti-
cal Appraisal and Data Extraction for Systematic Reviews
of Prediction Modelling Studies (CHARMS) [68]. Basic
information was extracted from all papers. The extraction
of more detailed information was focused on EHR-based
papers. For all papers (EHR and non-EHR papers), we
extracted general information (first author, year of publica-
tion, title, data source, and country of data source), study
design (retrospective or prospective), and outcome (predic-
ted health condition). For the EHR papers, we addition-
ally extracted dataset information (name of the dataset and
sample size: number of participants used for model train-
ing, testing, or validation), AI technique, and predictors
(the potentially used predictors used to develop the model).
Risk of bias and applicability were assessed using PRO-
BAST (Prediction Model Risk of Bias Assessment Tool).
This tool includes 20 signaling questions divided into 4
domains (participants, predictors, outcome, and analysis)
[69,70]. Overall judgment (ie, low, unclear, or high) of risk
of bias is based on the 4 domains. If 1 domain is consid-
ered to have a high risk of bias, the overall judgment is
scored as a high risk of bias. If at least 1 domain is con-
sidered to have an unclear risk of bias (without a domain
with high risk of bias), the overall judgment is scored as

unclear risk of bias. Applicability concern was rated based
on 3 domains (participants, predictors, and outcome) and
an overall judgment of applicability (ie, low, unclear, or
high) was also given with the same approach as the risk-of-
bias scoring. Applicability evaluation depends on the review
question [69], and we translated applicability assessment as
usability of the diagnostic prediction model in a PC setting.
Conflicts in data extraction between the 2 reviewers (LH and
AC) were resolved by discussion, and if no consensus was
reached, they were resolved by a third reviewer (TvL).

Results
Description of Included Studies
We retrieved 10,657 records using our search strategy. After
duplicate removal, we conducted title and abstract screening
on 7146 records. A total of 347 records met the eligibility
criteria for full-text screening. After full-text screening, 45
records were included. Backward citation searching yielded
an additional 4 papers. A total of 49 papers were thus
included in the review (Figure 1). Of the included papers,
we identified 15 EHR papers and 34 non-EHR papers. A
detailed description of the 34 non-EHR papers can be found
in Multimedia Appendix 1, part 3 [18-67]. The data used
in these 34 papers were collected from different sources,
including secondary care datasets (n=17), questionnaires
(n=4), and the knowledge of different health care providers
(n=5).
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart of study selection. AI: artificial intelligence;
EHR: electronic health record.

Overview of the EHR-Based Papers
Of the 15 EHR papers, 13 (87%) included the develop-
ment of a prediction model [18-30]. In Table 1, the data
extraction per paper can be found. The included EHR
papers covered various outcomes, mostly chronic condi-
tions (11/15, 73%) [19-28,31]. The most frequent predicted
outcomes were dementia (3/15, 20%) [19,20,23], asthma
(3/15, 20%), or chronic obstructive pulmonary disease
(COPD) (3/15, 20%) [21,26,31]. Other study outcomes are
shown in Table 1. All included papers used predictors
registered in EHRs. Predictors included findings from clinical
examination (n=6) [19,25,26,28,31,32], laboratory results

(n=5) [21,22,25,28,32], and medication (n=4) [19,21,24,29].
All models used structured data.

Two papers externally validated and tested a predic-
tion model in a PC setting [31,32]. One paper had a
prospective approach and tested the diagnostic perform-
ance of a prediction model for asthma and COPD [31].
Ten papers (10/15, 67%) were published after 2020
[18,21-24,26,27,29,31,32]. Most data sources used in the
studies originated from Europe (8/15, 53%) [18-22,24,27,31],
followed by North America (5/15, 33%) [23,25,28,29,31,32]
and Asia (2/15, 13%) [26,30].
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Table 1. Extracted information from electronic health record papers.
Author,
year Country Study type

Study
design Outcome Dataset

Participants and
inclusion criteria Predictors

AI
technique

Barnes et al
(2020) [23]

United
States

Developmen-
tal

Retrospec-
tive cohort
study

To identify
patients at high
risk of
unrecognized
dementia

Data from Kaiser
Permanente Washing-
ton

4330 participants aged
at least 65 years,
community member
with no dementia

Demographics,
diagnosis, vital
signs, health care
usage, medication

LRa

Briggs et al
(2022) [22]

United
Kingdom

Development
al

Nested
case-
control
study

To predict risk
of
esophagogastric
cancer

Data from General
Practice Research
Database

40,348 participants
with esophagus or
gastric cancer (7471
cases and 32,877
matched controls)
diagnosed after 2000
(aged ≥40 years)

Demographics,
symptoms,
laboratory results

RFb, SVMc,
LR, NBd,
XGBooste

Dhanda et al
(2023) [32]

United
States

Development
al +
Validation

Retrospecti
ve cohort
study

To predict urine
culture result
without
microscopy
data to predict
urinary tract
infection

Data from emergency
department
(developmental
phase).
Data from primary
care outpatient family
medicine department
at University of
Kansas Medical
Center (external
validation)

80,859 participants
(80,387 development,
472 external
validation) with an
ordered urinalysis and
urine culture

Demographics,
urine analysis,
vital signs,
symptoms, history
of urinary tract
infection, higher
risk of clinical
features

XGBoost,
RF, NNf

Dros et al
(2022) [24]

Netherlan
ds

Development
al

Nested
case-
control
study

To identify
primary
Sjögren
syndrome

Data from Nivel
Primary Care
Database linked with
Diagnosis Related
Groups Information
System dataset

930,590 participants
(1411 cases, 1411
controls for training
phase and all of the
929,179 controls for
testing phase), with
primary Sjögren
syndrome from 2017

Demographics,
diagnosis,
medication, health
usage

LR, RF

Ellertsson et
al (2021)
[18]

Iceland Development
al

Retrospecti
ve cohort
study

To diagnose
common
clinical
headaches
(cluster
headache,
migraine [with
or without
aura], tension
headache)

Data from 15 primary
Health Care of the
Capital Area clinics

Unknown number of
participants, 800
clinical notes from
patients with 4
headache diagnoses
from 2006 to 2020

Headache
symptoms, sex,
age, family
history

RF

Ford et al
(2019) [19]

United
Kingdom

Development
al

Nested
case-
control
study

To detect
dementia

Data from Clinical
Practice Research
Datalink data

93,120 participants
(46,560 cases with a
dementia diagnosis
code between 2000
and 2012, 46,560
controls)

Symptoms of
physical or
cognitive frailty,
medical history,
health care usage,
ethnicity, family
history of
dementia,
intoxications,
BMI, blood
pressure,
psychological
diagnoses, and
treatment

RF, NB,
SVM, NN

Jammeh et
al (2018)
[20]

United
Kingdom

Development
al

Case-
control
study

To identify
undiagnosed
dementia

NHS Devon dataset
with 18 participating
GPg surgeries

3063 participants (850
cases with a dementia
diagnosis code, 2213
controls)

Demographics,
long-term
conditions, and
consultations

LR, RF,
NB, SVM

Kocks et al
(2023) [31]

Netherlan
ds

Validation Prospective
observation
al study

To diagnose
asthma,
COPDh, or
asthma-COPD
overlap

Data from Nivel
Primary Care
Database

116 cases, tested on
180 specialists from 9
countries (external
validation) from
patients aged ≥40

Symptoms, BMI,
spirometry scores,
smoking,
diagnosis of
chronic or allergic
rhinitis, age at

Multinomial
LR
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Author,
year Country Study type

Study
design Outcome Dataset

Participants and
inclusion criteria Predictors

AI
technique

years, with complete
data file

onset of
respiratory disease

LaFreniere
et al (2016)
[25]

Canada Development
al

Case-
control
study,
nested is
unclear

To predict
hypertension

EHR data from
Canadian Primary
Care Sentinel
Surveillance Network

379,027 participants
(185,371 cases with
hypertension, 193,656
controls with no
hypertension and with
no 8 specific chronic
conditions)

Demographics,
BMI, blood
pressure,
laboratory results

NN

Lin et al
(2023) [26]

China Development
al

Retrospecti
ve cohort
study

To identify
COPD

Public health data
from EHRs and
electronic medical
records of Chinese
residents

1875 participants with
lung symptoms or
chronic lung disease

Demographics,
smoking, BMI,
chronic cough,
shortness of
breath, biofuel
use, and family
history. Based on
the questionnaire
for COPD

18 methods,
including:
Decision
tree, LR,
discriminant
analysis
(linear and
quadratic),
SVM,
gradient
boosting
classifiers,
NN,
Gaussian
process
classifier,
KNNi, NB

Mariani et al
(2021) [21]

Netherlan
ds

Development
al

Retrospecti
ve cohort
study

To diagnose
asthma and
COPD or
asthma-COPD
overlap

Data from Dutch
primary care
laboratory in
Groningen

3659 participants with
asthma or COPD from
2007 to 2017

Demographics,
symptoms,
diagnosis,
medication,
laboratory results,
referrals,
spirometry results

SVM, RF,
KNN

Nemlander
et al (2023)
[27]

Sweden Development
al

Nested
case-
control
study

To identify
nonmetastatic
colorectal
cancer

Regional
administrative health
care database from
Västra Götaland
Region

2681 participants (542
cases with a cancer
diagnosis, 2139
controls)

Nonmetastatic
colorectal cancer
stage, number of
GP consultations,
diagnosis codes

Stochastic
gradient
boosting

Perveen et
al (2016)
[28]

Canada Development
al

Retrospecti
ve cohort
study

To classify
diabetes
mellitus in 3
adult age
groups

EHR data from
Canadian Primary
Care Sentinel
Surveillance Network

4678 participants (377
cases of diabetes,
4301 controls with no
diabetes) with all
documented risk
factors

Demographics
blood pressure,
laboratory results

Decision
tree,
bagging,
ADAboost

Singh et al
(2022) [29]

United
States

Development
al

Retrospecti
ve cohort
study

To predict
anterior
segment vision-
threatening
disease
(asVTD)

EHRs of the
University of
Michigan

2942 participants with
anterior segment eye
complaint (133 cases
with asVTD, 2809
controls) with PC
notes with
ophthalmologist visit

Demographics,
history of eye
problems,
symptoms,
medication

Elastic net
LR

Su et al
(2019) [30]

China Developmen-
tal

Retrospec-
tive cohort
study

Top 100
diagnoses
(within general
diagnoses)

National Hospital
Ambulatory Medical
Care Survey and the
National Ambulatory
Medical Care Survey

Unknown number of
participants, top 100
diagnosis selected
from 2,000,000
records

Demographics,
symptoms, past
medical history

NN

aLR: logistic regression.
bRF: random forest.
cSVM: support vector machine.
dNB: naïve Bayes.
eXGBoost: extreme gradient boosting.
fNN: neural network.
gGP: general practitioner.
hCOPD: chronic obstructive pulmonary disease.
iKNN: K-nearest neighbors.
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AI Technique
All of the included studies performed at least 1 supervised
AI technique (Table 1). The most used AI techniques were
random forest (9 papers), logistic regression (7 papers),
support vector machines (5 papers), boosting algorithms (5
papers), neural networks (5 papers), and naïve Bayes (4
papers).

Quality Assessment: Risk of Bias
None of the studies assessed by the PROBAST tool had a low
risk of bias. We found a high risk of bias in 9 studies (9/15,
60%) and an unclear risk of bias in 6 studies (6/15, 40%;
Table 2). In Multimedia Appendix 1, part 4 [18-67], the full
assessment of the PROBAST tool can be found.

Table 2. Risk of bias per domain using the Prediction model Risk Of Bias ASsessment Tool.
Participants Predictors Outcome Analysis Overall

Barnes [23] Low Low Low Unclear Unclear
Briggs et al [22] Low Unclear Unclear Unclear Unclear
Dhanda et al [32] High Low Unclear Unclear High
Dros et al [24] Low Low Unclear High High
Ellertsson et al [18] Low Unclear Low High High
Ford et al [19] Unclear Low Low Unclear Unclear
Jammeh et al [20] High Unclear Unclear Unclear High
Kocks et al [31] Low Low High High High
LaFreniere et al [25] Unclear Low Unclear Unclear Unclear
Lin et al [26] Unclear Low Unclear High High
Mariani et al [21] Unclear Low Unclear Unclear Unclear
Nemlander et al [27] High Low Unclear Unclear High
Perveen et al [28] Low Unclear High High High
Singh et al [29] Low Low Unclear High High
Su et al [30] Unclear Unclear Unclear Unclear Unclear

The most significant source of bias was found in the
analysis domain. The main reasons for the high risk of
bias in this domain were the insufficient number of partic-
ipants with the outcome (5/15, 33%) [18,24,26,29,31] and
irrelevant model performance measures that were used to
evaluate the model (2/15, 13%) [28,31]. The main reasons
for an unclear risk of bias in the analysis domain were
lack of clarity on how missing data were handled (10/15,
67%) [18-20,22,23,27-30,32], and on how the predictors
and their assigned weights in the final model correspond to
results from the reported multivariate analysis (9/15, 60%)
[18,20,21,25-30]. Although measures of calibration are not
part of the signaling questions of the PROBAST, we noticed
that only 4 papers (4/15, 27%) [22,23,29,32] used calibration
to assess the performance of the model.

The second significant source of bias was found in the
outcome domain. The main reasons for the high risk of
bias in this domain were the determination of the predictors
with a prior knowledge of the outcome (1/15, 7%) [31]
and not excluding the predictors from the outcome defini-
tion (2/15, 13%). For example, Perveen et al [28] included
fasting glucose levels to predict diabetes and Kocks et al [31]
included spirometry findings to predict asthma and COPD.
The 2 main reasons for an unclear risk of bias in the outcome
domain were lack of clarity on the time interval between the
outcome and the predictors (9/15, 60%) [20,24-30,32] and

the lack of clarity on the outcome definition (7/15, 47%)
[20-22,24,26,28,30].

The third domain with risk of bias was the participants
domain. A high risk of bias in the participants domain
was found because inclusion and exclusion criteria were not
appropriate in 2 studies (2/15, 13%) as both studies excluded
participants at high risk of the outcome [27,32]. Another
reason for the high risk of bias was a nonappropriate data
source that was used in 1 study [20] because the authors
described the study as a case-control study although the study
was not nested as recommended in the PROBAST guidelines
[69,70]. The predictors domain was the domain with the
lowest risk of bias. The lack of clarity that resulted in an
unclear risk of bias covered mainly insufficient information
on whether the predictors were defined and assessed in a
similar way for all participants (4/15, 27%) [18,20,22,30].
Applicability
Overall, we found an unclear concern for applicability in
10 papers (10/15, 67%) and a low concern for applicability
in 5 papers (5/15, 33%; Table 3). The unclear concern for
applicability to our research question was mainly noticed in
the outcome domain due to a lack of clarity in reporting
the time interval between the outcomes and predictors (8/15,
53%) [20,25-30,32].
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Table 3. Applicability per domain using the Prediction model Risk Of Bias Assessment Tool.
Participants Predictors Outcome Overall

Barnes et al [23] Low Low Low Low
Briggs et al [22] Low Unclear Unclear Unclear
Dhanda et al [32] Low Low Unclear Unclear
Dros et al [24] Low Low Low Low
Ellertsson et al [18] Low Unclear Low Unclear
Ford et al [19] Low Low Low Low
Jammeh et al [20] Low Unclear Unclear Unclear
Kocks et al [31] Low Low Low Low
LaFreniere et al [25] Unclear Low Unclear Unclear
Lin et al [26] Unclear Low Unclear Unclear
Mariani et al [21] Low Low Low Low
Nemlander et al [27] Low Low Unclear Unclear
Perveen et al [28] Low Unclear Unclear Unclear
Singh et al [29] Low Low Unclear Unclear
Su et al [30] Unclear Unclear Unclear Unclear

In the predictors domain we also found an unclear concern
for applicability due to the lack of clarity in the definition
of the included predictors (5/15, 33%) [18,20,22,28,30]. For
example, 1 paper lacked information on how notes were
annotated before they were used as predictors in the model
[18]. The unclear concern for applicability in the participants'
domain was mainly due to lack of information on inclusion
and exclusion criteria (3/15, 20%) [25,26,30].

Discussion
Principal Results
We systematically reviewed the literature for studies about
AI-based diagnostic prediction models for PC. These models
were developed with different data sources, such as question-
naire data, secondary care data, or EHR data. Only 15 out
of 49 models were developed using data from EHRs. Most
of the models using EHR data focused on just 1 chronic
condition. Merely 2 papers tested the model in a PC setting.
All of the included studies performed at least 1 supervised
AI technique, most often with random forest or logistic
regression. Evaluation with the PROBAST guidelines showed
an unclear to high risk of bias for all EHR papers. In most of
the papers, we found unclear concerns about the applicability
to our research question.
Comparison With Prior Work
To the best of our knowledge, only 2 reviews evaluated the
risk of bias in clinical prediction models on a wide range of
diseases in PC studies [15,16]. Most of the included studies
in these reviews showed a high to unclear risk of bias, which
is in line with our findings [15,16]. However, there appear
to be differences in grading compared with Abdulazeem
et al [16]. They considered incomplete reporting and the
absence of external validation a high risk of bias, whereas
in our systematic review, these points were considered as an
unclear risk of bias and no risk of bias, respectively. The

study by Abbasgholizadeh et al [15] did not report details on
the reasons they coded subdomains as high or unclear risk
of bias, for which reason we are unable to make a formal
comparison with our results.

Systematic reviews evaluating AI-based clinical predic-
tion models in other medical fields have followed the same
grading criteria as we did and found similar flaws in the
analysis domain as we did in our systematic review [71,72].
These similarities include the unjustified small sample size
in EHR studies, inappropriate evaluation in the performance
measures, and flaws in handling of missing data [71-73].

The most used AI techniques were random forest, logistic
regression, support vector machines, boosting algorithms, and
neural networks. In previous systematic reviews, random
forest and support vector machines are also more often
found as most used methodology [16,71,73-75]. This might
be explained by the well-described strong performance and
ease of interpretability of random forests and support vector
machines, particularly when working with lower-quality
structured data. Most PC EHRs are primarily used for clinical
purposes, with secondary purposes for research [69]. Thus,
the challenges associated with using such EHRs to develop
prediction models have been widely documented and include
missing values and inconsistencies in data entry [13]. These
challenges are inherent to the data and should be addressed
at the preprocessing stage. We did not find papers that used
generative AI methods (such as large language models). Our
retrieved papers developed or validated tools based only
on structured data (numbers or codes such as laboratory
results, vital signs, and diagnosis codes from International
Classification of Primary Care or ICD-10 [International
Statistical Classification of Diseases, Tenth Revision]) rather
than unstructured data or written text, where large language
models work well on. Literature found it valuable for the
performance of the model to use unstructured data together
with structured data for prognostic prediction models [76,77].

JMIR MEDICAL INFORMATICS Hunik et al

https://medinform.jmir.org/2025/1/e62862 JMIR Med Inform 2025 | vol. 13 | e62862 | p. 8
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e62862


We think that future studies about diagnostic prediction tools
will increasingly use generative AI methods, although it is
still difficult to integrate them into clinical workflows [78].

In general, studies analyzing EHRs are subject to a high
risk of bias, because these data are collected for clinical
rather than research purposes [69]. Hence, clinical prediction
models developed on EHRs are more difficult to reproduce
and generalize, given the heterogeneity of coding systems and
database infrastructures [16]. In line with models analyzed
in previous studies [15,16,73], most of the clinical prediction
models were not externally validated. Most of the studies
developed in PC were performed in high-income countries
and may not have taken into account regional or global
differences in the availability of certain predictors [14-16].
For example, some predictors may not be easy to obtain in
PC settings in low-income countries (eg, spirometry results
for the prediction of asthma or COPD). Furthermore, the lack
of stratified analyses in most studies implies that we cannot
draw conclusions about how diagnostic models perform
across different equity groups. Together, all these factors limit
the generalizability of the clinical prediction models.
Strengths and Limitations
The main strength of the study is the extensive search strategy
with no date limit in a large and diverse range of studies
on AI prediction models in PC. Not including “EHR” in the
search strategy added rigor to our study as a recent review
suggests that important papers could have been missed when
we included EHRs in the search strategy [13]. A second
strength is that the findings on the risk of bias were care-
fully assessed by 2 independent reviewers (LH and AC) with
experience in clinical PC, and the conflicts were discussed
with other experts in the field of PC and AI. Unlike previous
systematic reviews that found a high proportion of studies
with a high concern of applicability to the research question
[72], we noticed no high concern for applicability in any
study. We believe that the findings shared in our review
are highly reliable in highlighting the current situation of AI
studies in PC using EHRs.

The main limitation of this study is the broad defini-
tion of the terminology for the search strategy, which may
have prevented us from capturing all relevant studies. For
example, we included all studies that used ML and deep
learning techniques. Given the lack of a widely accepted
definition of AI, other reviews use other criteria for AI or
ML [71,73,75]. Similarly, given our definition of diagnos-
tic prediction models, we considered a diagnostic prediction
model to be a model that predicts a health condition during a
GP’s consultation. As a result, multiple prediction models that
identified a disease in a database were excluded. The second
limitation is the use of the PROBAST guidelines to determine
the risk of bias and applicability in evaluating AI predic-
tion models. Although the PROBAST guidelines are highly
detailed and reliable in evaluating clinical prediction models
[33], PROBAST has been criticized for being less specific
and less applicable for AI-based models than traditional
statistical methods. Considering this criticism, a protocol
on the extension of PROBAST into PROBAST-Artificial

Intelligence (PROBAST-AI) has been published with the aim
to develop a PROBAST-AI tool to better support evaluation
of prediction model studies that applied AI [3]. The PRO-
BAST-AI tool has not yet been published.
Future Research and Practical
Implications
The relevance of the applicability of prediction models in
clinical practice should be the priority when developing
clinical prediction models, as stated in a number of stand-
ardized frameworks designed for prediction model develop-
ers [79,80]. We found that only 2 models were tested in
PC settings. Moreover, most studies included in this review
predict chronic conditions. This is also seen in previous
reviews evaluating clinical prediction models in PC [14,16].
However, in general, chronic conditions are not known to
be difficult to diagnose in PC. Two examples from our
included papers are the diagnosis of hypertension predic-
ted on the variable high blood pressure [25] and the diag-
nosis of diabetes predicted on the variable high glucose
levels [28]. These predictions might not be as useful in
clinical practice, even if the model performance metrics
are excellent. Nevertheless, chronic conditions are highly
prevalent in PC and for conditions that are influenced by
several and complex factors, prediction models may facilitate
the diagnostic process for the GP. As most tools focused
on predicting 1 condition, GPs would have to use many
prediction tools side by side to predict the correct diagnosis
in daily practice. All these findings highlight that involving
more practicing GPs and asking what they need are important
in developing clinical prediction models with a higher success
rate of clinical implementation. We recommend involving
relevant stakeholders in the early stages of the development
of a new model.

To improve the methodology in future studies, our
findings suggest that a special focus is required on reporting
areas such as methods for internal validation, appropriate
inclusion of participants, and a proper sample size calcula-
tion. A high risk of bias mainly found in the analysis and
outcome domains should be alarming as this questions the
methodology of the included papers. We found an unclear
risk of bias and unclear concern for applicability in more than
half of the included studies, mainly related to poor reporting,
for example, about missing data. Missing data is known as
a large challenge for EHR data [13], and extra attention
should therefore be paid to reporting this. Researchers can
benefit from the use of the TRIPOD (Transparent Reporting
of a Multivariable Prediction Model for Individual Progno-
sis or Diagnosis) statement [81] and PROBAST guidelines
in communicating their findings [3], particularly now that
the TRIPOD-AI extension is released [82]. To enhance
the applicability of the prediction model, we highlight the
importance of clear reporting on the time interval between
predictors and outcome, a clear definition of the outcome
and predictors, and a clear description of the inclusion and
exclusion criteria. Differences in recording between EHRs
might lower the performance of the model in the external
validation step, and external validation is a crucial step for
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generalizable and reliable models [76]. However, we found
only 2 papers that performed external validation.
Conclusions
AI-based prediction models using EHR data are not yet ready
for implementation into PC daily practice. The number of

studies found was limited, and reproducibility and generaliza-
bility were insufficient. For a diagnostic prediction model to
be used in PC, it is important that GPs and relevant stake-
holders are involved in the development, that the model is
externally validated, and that it is appropriately recorded.
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