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Abstract

Background: Delirium is common in hospitalized patients and is correlated with increased morbidity and mortality. Despite
this, delirium is underdiagnosed, and many institutions do not have sufficient resources to consistently apply effective screening
and prevention.

Objective: This study aims to develop a machine learning algorithm to identify patients at the highest risk of delirium in the
hospital each day in an automated fashion based on data available in the electronic medical record, reducing the barrier to
large-scale delirium screening.

Methods: We developed and compared multiple machine learning models on a retrospective dataset of all hospitalized adult
patients with recorded Confusion Assessment Method (CAM) screens at a major academic medical center from April 2, 2016,
to January 16, 2019, comprising 23,006 patients. The patient’s age, gender, and all available laboratory values, vital signs, prior
CAM screens, and medication administrations were used as potential predictors. Four machine learning approaches were
investigated: logistic regression with L1-regularization, multilayer perceptrons, random forests, and boosted trees. Model
development used 80% of the patients; the remaining 20% was reserved for testing the final models. Laboratory values, vital
signs, medications, gender, and age were used to predict a positive CAM screen in the next 24 hours.

Results: The boosted tree model achieved the greatest predictive power, with an area under the receiver operator characteristic
curve (AUROC) of 0.92 (95% CI 0.913-9.22), followed by the random forest (AUROC 0.91, 95% CI 0.909-0.918), multilayer
perceptron (AUROC 0.86, 95% CI 0.850-0.861), and logistic regression (AUROC 0.85, 95% CI 0.841-0.852). These AUROCs
decreased to 0.78-0.82 and 0.74-0.80 when limited to patients who currently do not or never have had delirium, respectively.

Conclusions: A boosted tree machine learning model was able to identify hospitalized patients at elevated risk for delirium in
the next 24 hours. This may allow for automated delirium risk screening and more precise targeting of proven and investigational
interventions to prevent delirium.

(JMIR Med Inform 2025;13:e60442) doi: 10.2196/60442
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Introduction

Delirium is a common condition in hospitalized patients and
has been recognized as an independent risk factor for poor
clinical outcomes, including mortality, institutionalization, and
cognitive impairment following hospital discharge [1-3]. The
US annual national costs attributable to delirium have been
estimated to be as high as US $152 billion, rivaling costs
attributable to diabetes and falls [4]. As a result, a basic
assessment for delirium is recommended for all hospitalized
patients aged 65 years or older [5], and formal screening for
delirium is recommended for critically ill patients [6].

Despite these recommendations, delirium frequently remains
undiagnosed [7]. An automated delirium prediction tool could
help address this, by alerting clinicians to at-risk patients so that
they could be more carefully assessed for delirium. Such
screening tools could also help focus interventions aimed at the
prevention of delirium (eg, components of the hospital elder
life program [8]) and provide an enriched patient sample for
future delirium prevention studies.

In particular, we intend to use an automated tool to identify
hospitalized patients at our institution who are at high risk of
delirium in the next 24 hours. These patients will then be visited
by a member of a delirium service for further evaluation and
identification of interventions that may reduce the patient’s risk
of delirium. For this purpose, near-term risk (24-h risk) is more
useful than the risk of delirium at some point during this
hospitalization, and any history of prior or current delirium is
relevant to identifying the patients at risk of ongoing delirium
who should be seen (as reducing the duration of ongoing
delirium is still likely to benefit the patient).

Although multiple prior delirium prediction tools have been
described [9-12] (for a recent systematic review, see [13]) most
have properties that have limited their use as a tool to be applied
daily to every patient in the hospital. Most prediction tools are
designed to allow a risk score to be easily calculated by a
clinician by hand, limiting the model’s performance compared
to larger models with more features and favoring features that
are easy for a human to produce over those easily extracted
from the medical record. In addition, most prior models were
developed using datasets of only a few hundred to a few
thousand patients, limiting the complexity of the models that
could be developed without overfitting.

To address these limitations, we have developed a model that
can provide automated delirium screening based on data readily
available from the electronic health record, emphasizing
predictive power over ease of manual computation or ease of
interpretation. Because current and prior delirium are known
risk factors for future delirium, we also explore the performance
of the model in patients without these risk factors. This tool
achieves state-of-the-art accuracy for delirium prediction in this
automated setting and maintains good performance even when
restricted to patients without current or prior delirium.

Methods

Ethical Considerations
This study was reviewed and approved by the Mass General
Brigham institutional review board (approval 2013P001024).
The institutional review board determined that informed consent
was not required for this retrospective study. This study adheres
to the applicable TRIPOD (Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or
Diagnosis) guidelines.

Study Cohort
Data were obtained for all patients who received any variation
of a Confusion Assessment Method (CAM) screen [14] (eg, the
CAM-ICU) [15]) in our hospital between April 2, 2016, and
January 16, 2019, for a total of 23,006 patients. No specific
exclusion criteria were used, as we wished the results to be
applicable to the typical population of the hospital.
Approximately 20% (n=4511) of patients were randomly
selected and set aside for the final evaluation of the model (the
“test dataset”); we remained blind to this dataset until after all
model choices and parameters had been fixed in preparation for
publication. The remaining 80% of patients (the “training
dataset”) were used for model selection, model training, and
hyperparameter tuning.

Model Development Overview
We provide an overview of the model development here;
additional details can be found in Multimedia Appendix 1.

For the outcome to be predicted, we used the presence of at
least one positive CAM screen within a given day where CAM
screens were performed. The CAM screen is a validated and
widely used tool for assessing delirium where an observer
assesses for a change in cognition with an acute onset and
fluctuating course involving inattention and either disorganized
thinking or an altered level of consciousness. [14] For each
patient, we first identified all 24-hour intervals from 5 AM to
5 AM during which at least one CAM screen or CAM screen
variation had been performed. For each such interval, the model
was required to predict whether at least one CAM screen variant
would be positive during that interval (vs all negative CAM
screens).

As model inputs, we used the patient’s age, gender, and all prior
recorded vital signs, laboratory values, medications, and prior
CAM assessments present in the medical record at 5 AM before
the 24 hours in which delirium was to be predicted. Categorical
values were converted to integers (eg, “1” for “Positive,” “0”
for “Negative”). These data were reduced to summary statistics
for each measurement (eg, minimum, maximum, and mean
systolic blood pressure in the past 24 h), which were used to
form fixed-length feature vectors for each prediction interval.
These feature vectors were then normalized by subtracting the
median and dividing by the interquartile interval, with both the
median and the quartiles estimated by the P2 algorithm [16].
Because the P2 algorithm provides only an approximation of
the quantiles, the resulting values were generally not exact
integers even for categorical values (eg, a binary measure that
was mostly negative would have an estimated median that was
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slightly above 0). Features that were missing in more than 95%
of the patients were discarded. The remaining missing values
were imputed to be the (P2-estimated) median value for the
feature. To provide a consistent basis of comparison, we used
these imputed values for all the models, including those (such
as boosted trees) that do not strictly require imputation. Because
of the sparsity of these features, this implies that most features
for a patient will be at the median (imputed) value, especially
for the first patient snapshot. Of note, however, because the
P2-estimated median is a unique value that is otherwise
infrequent in the data, nonlinear models can use this as a marker
for missing data (and this missingness itself may have predictive
value).

In effect, we are asking the model to produce a single prediction
each morning of whether the patient will have delirium later
that day using all of the information available that morning
(including prior CAM screens). In this study, we do not train
or test the performance of the model when used on a rolling
basis throughout the day (eg, to generate a new prediction at 4
PM incorporating data from 3 PM that day).

The XGBoost library [17] was used to fit boosted tree models
[18] for the cleaned and normalized training datasets. For
comparison, random forest models [19] and logistic regression
models using L1 regularization [20] were also fit to the data
using scikit-learn [21]. In addition, a deep neural network model
was developed using TensorFlow (Google) [22]. The final
network had a 32-node rectified linear unit [23] input layer, 2
hidden layers of 16 and 8 rectified linear unit nodes,
respectively, and an output layer with a single sigmoidal node.
All layers were fully connected, and a 50% dropout [24] was
used between layers. For the logistic regression and random
forest models, Platt scaling was used to improve the calibration
of the model. We used 10-fold cross-validation [25] for
hyperparameter tuning to minimize overfitting. Hyperparameters
(such as lambda for L1 regularization) were tuned using a grid
search.

All development was done using the Ubuntu 18.04 distribution
of Gnu-Linux. Data processing and analysis were performed
using the Python [26] and Julia [27] programming languages.
The code used to generate the models and figures is publicly
available [28]. The datasets used to develop and test the model
contain personally identifiable health information, and thus, are
not publicly available; the authors can be contacted for more
information.

Statistical Analysis
We provide an overview of the statistical analysis here;
additional details can be found in Multimedia Appendix 2. The
receiver operator characteristic curve and the area underneath
the receiver operating characteristic curve (AUROC) were used
to evaluate the performance of each model. To capture the
effects of population prevalence on performance, we also used
precision-recall curves and the area under the precision-recall
curves (AUPRC). Calibration curves were used to qualitatively
evaluate model calibration, and the expected calibration error
(ECE) and maximum calibration error (MCE) were used to

quantify the degree of calibration. CIs were calculated in Python
using bootstrapping with 1000 rounds, and resampling by
prediction day. To interpret the final behavior of the models,
we used Shapley Additive Explanations (SHAP) value
estimation methods as described by Lundberg et al [29,30].

The final models were trained on the full training dataset (80%
of patients). Once the final models were trained, the test dataset
was unblinded and the model performance was measured on
the test dataset. The performance of the cross-validated version
of the models on the training dataset was similar to the
performance of the final models on the test dataset and is not
reported here.

Although current and prior delirium are useful predictors for
our intended use of the model, these are well-known risk factors
for delirium and it is thus useful to explore how the model
performs on patients without these risk factors. To test the model
performance of these populations with a lower initial probability
of delirium, versions of the final models were trained and tested
on only snapshots of patients who did not have delirium (ie, no
positive CAM screens in the past 24 h) or never had delirium
(no prior positive CAM screens). Conceptually, all patients start
in the “never delirious” state, and then potentially transition to
a “currently delirious” state and then potentially between this
state and a “previously but not currently delirious” state. For a
summary of the assignment of patient snapshots to these groups,
please see Multimedia Appendix 3.

Results

Of the 20,006 patients in the dataset, 4583 (19.9%) patients had
at least one positive CAM screen (Table 1). The average age of
the patients was 65 (SD 17) years and slightly higher in patients
with a positive CAM screen (mean 70, SD 16 years).
Approximately, 54% (n=12,502) of patients were male and 46%
(n=10,500) of patients were female; no other genders were
recorded in this dataset. The fraction of male patients was
slightly higher (2614/4582, 57%) in patients with a positive
CAM screen. An average of 12.6 (SD 17.9) CAM screens were
recorded per patient, with more (mean 24.8, SD 29) recorded
for patients with a positive CAM screen than for patients with
no positive CAM screens (mean 9.5, SD 12). An average of
8.3% (SD 22%) of CAM screens per patient were positive,
which rose to an average of 42% (SD 33%) of CAM screens
per patient that were positive in patients who had at least one
positive CAM screen. CAM screens were performed on an
average of 8.1 (SD 11) days per patient, of which 8.1% (SD
21%) of days with CAM screens had at least one positive CAM
screen.

All models provided significant predictive power for delirium
(a positive CAM screen in the next 24 h) when applied to all
hospitalized patients in the dataset (Figure 1). The boosted tree
model had the highest AUROC (0.92, 95% CI 0.913-9.22). This
was followed by the random forest model, the multilayer
perceptron, and the logistic regression model with
L1-regularization (AUROC 0.85, 95% CI 0.841-0.852).
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Table 1. Patient demographics.

All CAM negative
(n=18,423)

One or more positive

CAMa (n=4583)
Testing set
(n=4511)

Training set
(n=18,495)

All patients
(n=23,006)Measure

64.4 (17.4)69.8 (16.1)65.5 (17.2)65.5 (17.3)65.5 (17.3)Age (years), mean (SD)

9888 (53.7)2614 (57)2465 (54.6)10,037 (54.3)12,502 (54.3)Male, n (%)

8532 (46.3)1968 (42.9)2045 (45.3)8455 (45.7)10,500 (45.6)Female, n (%)

0 (0)4583 (100)927 (20.5)3656 (19.8)4583 (19.9)Patients with at least one positive CAM screen, n (%)

9.5 (12.0)24.8 (29.0)12.9 (17.6)12.5 (18.0)12.6 (17.9)CAM evaluations per patient, mean (SD)

0 (0)42 (33)8.3 (22)8.3 (22)8.3 (22)Percent of positive CAM screens per patient, mean
(SD)

6.2 (7.6)15.6 (18.0)8.3 (10.5)8.1 (11.3)8.1 (11.1)CAM evaluation days per patient, mean (SD)

0 (0)40.8 (31)8.2 (21)8.1 (21)8.1 (21)Percent positive CAM days, mean (SD)

aCAM: Confusion Assessment Method.

Figure 1. Receiver operator characteristic curves for different model types (rows) and patient subsets (columns) showing the true positive rate (ie,
recall) as a function of the false positive rate. The thin light gray region around the line shows the bootstrap 95% CI. AUROC: area under the receiver
operator characteristic curve.
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The models were then retrained and evaluated with patients
who did not currently have delirium (most recent CAM screen
was negative) and with patients who had no history of delirium
(no prior positive CAM screens). Although the models did not
perform as well on these more difficult subsets, they still
provided good predictive power. The boosted tree model
declined from an AUROC of 0.92 to an AUROC of 0.82 (95%
CI 0.815-0.834) and 0.80 (95% CI 0.79-0.81) when limited to
patients who did not currently have delirium and patients with
no prior delirium, respectively. The other models showed a
similar decrement, with the AUROC decreasing to 0.77-0.81
and 0.74-0.77 when limited to patients who do not currently
have delirium and those who never have had delirium,
respectively. The boosted tree model outperformed the other
models in all three patient groups.

The models significantly varied in their ability to maintain a
high positive predictive value as sensitivity was increased

(Figure 2). The boosted tree model performed well (AUPRC
0.73, 95% CI 0.72-0.75), its performance declining significantly
(AUPRC 0.32, 95% CI 0.30-0.34) for patients who do not
currently have delirium and (0.22, 95% CI 0.20-0.25) those
with no prior delirium. The incidence of delirium in all patients
was 13%, those with no current delirium 6%, and those who
never have had delirium 4%; thus, the decrement in AUPRC
appears to be largely driven by the decreased incidence in these
subgroups. While the random forest model performs relatively
(AUPRC 0.70, 95% CI 0.68-0.71), it also experiences significant
decrements in performance with patients who do not currently
have delirium (AUPRC 0.25) or have no history of delirium
(AUPRC 0.14). The multilayer perceptron models perform
somewhat worse than the tree-based models, with AUPRCs of
0.50, 0.23, and 0.15 in all patients, those who do not currently
have delirium, and those with no prior delirium groups. Logistic
regression performed similarly to the multilayer perceptron with
AUPRCs of 0.48, 0.22, and 0.17.

Figure 2. Precision-recall curves for different model types (rows) and patient subsets (columns) showing precision (ie, positive predictive value) as a
function of recall (ie, true positive rate). The gray region indicates the bootstrap 95% CI.

We next investigated the calibration of the prediction models.
All the models were well calibrated (ECE≤0.02; MCE≤0.11)

when applied to all hospitalized patients (Figure 3), with the
exception of the logistic regression model which overestimated
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the risk of delirium in the highest-scored group (ECE 0.03;
MCE 0.28). The boosted tree model and the random forest
model both identified a larger number of high-risk patients while
still maintaining good calibration in this higher-risk group.
When restricted to patients who do not currently have delirium

or to patients with no prior delirium, all models classified very
few patients as high risk (consistent with the earlier
precision-recall curves), and the random forest did not assign
higher probabilities to any patients in these subgroups.

Figure 3. Reliability diagrams for different model types (rows) and patient subsets (columns) showing the actual fraction of patient snapshots with
delirium for groups with a given predicted risk of delirium (blue squares, left y-axis). Error bars show the bootstrap 95% CI. The gray bars in the
background show the number of patient snapshots in each predicted probability bin (y-axis on the right). ECE and MCE are with a 95% CI. ECE:
expected calibration error; MCE: maximum calibration error.

We finally turn to an examination of the features influencing
the predictions of the most successful model (the boosted tree

model). Ordering the features by average SHAP magnitude
(Figure 4 [29,30]), we first note that the range of SHAP values
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for any of the top 40 features is smaller than the range of SHAP
values for the sum of the remaining 1901 features; thus, the
predictions of the model across cannot easily be simplified to
a small number of driving features that are the same for all
patients. The features with the highest average SHAP magnitude
appear to fall into several known risk factors for delirium.
Current and prior delirium is a known predictor of future
delirium, and 6 of the top 40 features relate to the prior CAM
screen (including 4 of the top 5 features). Of note, the model
considers a patient with no prior CAM screens to be at higher
risk than a patient with prior negative CAM screens, and this

feature remains important even for the “no prior delirium” case
(not shown). Antipsychotic administration is also as expected
a risk-predicting feature, as it is often used to convert
hyperactive delirium to hypoactive delirium. The majority of
the top 40 risk features fall into other categories, however, which
include known risk factors such as age, liver failure (eg,
aspartate transferase levels, ammonia levels, and hepatitis C
virus levels), infection (eg, white blood cells, monocytes, and
cefepime [which is also neurotoxic]), and malnutrition or frailty
(amino acid supplementation, albumin levels).

Figure 4. SHAP beeswarm plots [28,29] of the 40 features with the highest SHAP magnitude for patients in the holdout dataset. Each dot shows a
single prediction for a patient, the color of the dot indicates how high (red) or low (blue) the feature was for this patient, and the horizontal position of
the dot indicates the relative effect of this feature on the predicted risk for the given patient.

Of note, many of the top features had missing values in the
majority of patients (Multimedia Appendix 4). These
often-included values such as neutrophil counts from
cerebrospinal fluid, where the presence of the measurement
itself suggests a high risk of delirium. This is again consistent
with what is seen with the SHAP plot, where the models are
able to use a constellation of low-frequency features of each
patient to determine delirium risk (eg, laboratories reflecting

concern for meningitis) rather than being limited to a few broad
risk factors such as age.

To explore the dynamics of delirium predictions in individual
patients over time, we examine the predicted risk and actual
occurrence of positive CAM screens over time for a small
number of patients with an elevated initial risk of delirium using
delirium predictions from the boosted tree model (Figure 5).
Of note, the prediction for the next day was strongly correlated
with the delirium status of the previous day (as expected), but
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the first day without delirium usually had a lower predicted risk
of delirium than the last day with delirium, suggesting that the

model had identified changes correlated with resolution of the
delirium.

Figure 5. Predicted versus actual delirium incidence for ten patients with elevated (>30%) initial risk of delirium using predictions from the boosted
tree model. Each patient is plotted in a different color, with a large dot reflecting at least one positive CAM screen that day and a small dot reflecting
all negative CAM screens that day. The vertical axis shows the predicted risk for delirium that day (ie, for a perfect predictor, all large dots would be
at the top of the plot and all small dots at the bottom). The horizontal axis shows the time (in days) from the first delirium screen, with day 0 being the
day of the first delirium screen. CAM: Confusion Assessment Method.

Discussion

Principal Results
We have described the development of a prediction model that
can provide automated daily predictions of the risk of delirium
for a general population of hospitalized patients. We found that
a boosted tree model performed best for this dataset and was
able to identify a group of high-risk patients even when limited
to patients who did not have delirium or had no prior history of
delirium. However, the random forest, multilayer perceptron,
and logistic regression models, while less effective, still
provided substantial predictive power. All of the models showed
good calibration on the full dataset but showed poorer MCE
when applied to subsets of the data where delirium was less
common—patients who did not currently have delirium and
patients with no prior history of delirium.

The relative performance of the various models may reflect the
relative match between the flexibility of each of the types of
models and the size of the dataset we used. Although the L1
regularization used for the logistic regression model allowed
for some tuning of flexibility by adjusting how many features
were used, the logistic model can only capture monotonic
relationships. Both boosted tree models and random forest

models can better capitalize on nonmonotonic relationships
which likely underlies their better performance on this dataset.
In contrast, it was difficult to prevent overfitting with the
multilayer perceptron model; preventing this overfitting would
likely require either a larger dataset or additional methods of
regularization.

Limitations
All of the models showed a decrement in performance when
restricted to patients who did not currently have delirium and
a further decrement when restricted without prior delirium.
Except for the multilayer perceptron in the no prior delirium
case; however, the AUROC of all of the models remained
greater than 0.75, which many would consider the threshold for
“good” performance of a clinical test [31]. The boosted tree
model, in particular, maintained an AUROC of 0.80, which
compares very favorably to commonly used diagnostic tests
such as D-dimer levels in the setting of a suspected pulmonary
embolism (with a reported AUROC of 0.71 [32]). The decrement
of performance in these subgroups likely reflects the increased
difficulty of the task—those patients with significant risk factors
are likely to have had delirium on prior days or hospitalizations
and most of those who remain are relatively unlikely to become
delirious in the next 24 hours. Even within the patients with no
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prior delirium, however, the boosted tree model was able to
identify high-risk patients who would likely warrant further
evaluation and interventions—for example, from the
precision-recall curves (Figure 2), we can see that even if one
were to demand a 50% true-positive threshold for an
intervention, the model would correctly identify over 10% of
the patients who have never had delirium who would become
delirious as candidates for that intervention.

An additional limitation is the potential selection bias of the
training and evaluation dataset used by this study. During the
time period used, CAM screening was used universally on some
inpatient units in the study hospital (eg, orthopedics) but not
others (eg, general surgery), and thus, the study population is
more reflective of these units than of the hospital as a whole.
Thus, the generalizability of these results to other institutions
will depend on how similar their patient population is to these
units, rather than to the patient population of the study hospital.
In addition, the results reported reflect this population where
serial screens are performed and prior delirium screens are often
present, which may not be applicable in many settings. One
would expect the model’s performance to be worse in this setting
(similar to what is seen in the results reported for patients with
no prior delirium).

As with many machine learning models, more complex models
such as the boosted tree model may trade accuracy for
interpretability, for example, for a clinician trying to understand
why a particular patient is at risk for delirium. While this can
be partially addressed by including the relative contributions
of each input to the model to a given patient’s risk (eg, using
Shapley values [29,30]) as part of the delirium risk report for
each patient, this still can hide complex interactions between
risk factors that may be important.

We have chosen to leave the predictions of the model in the
form of a percentage risk, rather than simplifying the result to
a binary prediction as is more familiar for many clinical tests.
To the limits of calibration of the model, the predicted
percentage of delirium can be interpreted as the positive
predictive value of the test for that particular patient (and 100%
minus the predicted percentage as the negative predictive value).
For given interventions, it may make sense to set a threshold
predicted risk based on a cost or benefit analysis of the
intervention (thus reducing the prediction to a binary value with
a single positive predictive value and negative predictive value
for all patients); examinations of specific thresholds for specific
interventions may be addressed in future work.

While we have included many potential input features in our
prediction model, there are many additional features in the
medical record that we have not attempted to use, such as
flowsheet data, length of stay, and unstructured data such as
clinical notes. In addition, we have not exhaustively explored
the types of models available in the literature, including many
regularization techniques (such as early stopping and L2
normalization). While future models incorporating these
predictors and techniques may perform even better than the
models described here, this work provides a lower bound for
their performance.

Comparison With Prior Work
Multiple prior prediction models for delirium have been
developed for use in intensive care unit patients [11,12,33] and
in hospitalized older patients [9]. In general, these models use
a small number of predictors (4-11) identified using logistic
regression, including such predictors as age, history of cognitive
impairment, history of alcohol abuse, respiratory failure, blood
urea nitrogen, mean arterial pressure, use of corticosteroids,
admission category, admission urgency, and vision impairment.
Our prediction goal (predicting a positive CAM screen within
the next 24 h) is somewhat different than the existing models
we are aware of, as it is aimed at the specific task of helping
determine which hospitalized patients should be seen by a
delirium service that day. With that caveat, the performance of
our model appears to compare well with other models on similar
tasks. Chua et al [13] provide a good review of similar models;
reported AUROCs in this review range from 0.71 to 0.91
(compared to 0.92 for the boosted tree model we report). As
delirium is an infrequent event, however, the AUPRC may
provide a better estimate of the model’s performance as a
screening tool. Comparing our model to the best-performing
models in the review by Chua et al [13], only the model
described by Corradi et al [34] (one of the two models with an
AUROC of 0.91) reported an AUPRC, which was 0.60
(compared to 0.73 for the boosted tree model we report).

One of the challenges machine learning has faced in medicine
is translating predictions into improvements in patient outcomes
[35]. We plan to use this model to screen all of the patients in
a 1000-bed hospital (which would be prohibitively
labor-intensive to do by hand) and identify a set of high-risk
patients to be visited by a delirium service. The members of
this delirium service will then evaluate patients and provide
recommendations to the team caring for the patient on how to
reduce that patient’s risk of delirium. By focusing this additional
clinical effort and possible interventions on the patients who
would most likely benefit from them, we hope to use this tool
to improve care at a lower cost per patient than providing the
same interventions to every patient (including those at much
lower risk of delirium).

Because of this intended use, we have made trade-offs that may
limit the use of this model in other contexts. For example, our
focus was on maximizing the ability of the model to identify
high-risk hospitalized patients rather than on identifying the
causal mechanism for a given patient’s delirium. Thus, for
example, an arterial blood gas showing mild hyperoxia might
be used for prediction by the model because it is correlated with
intubation, sedation, and critical illness rather than because it
is directly increasing the patient’s risk for delirium, and blindly
attempting to correct this laboratory value may not decrease the
patient’s risk of delirium. In addition, some features, such as
administering an antipsychotic medication, may happen to treat
an agitated delirium that has not been documented in the medical
record; while this may still be quite useful for a delirium service,
it may be less useful for a responding clinician who is treating
the agitation who likely already knows he or she is treating a
symptom of delirium. This is an example of a “shortcut feature”
as described by Bellamy et al [36], where a causal connection
is present in the training data (eg, the use of an antipsychotic
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for a patient the clinician has already decided has delirium) may
not be present in a desired use-case of the model (eg, a clinician
trying to decide whether a patient is at risk of delirium). Thus,
while the model works well for finding high-risk patients,
interpreting these risk factors and identifying appropriate
interventions will still require clinical expertise.

Although our model can be applied in its current form, there
are limitations that a user will need to be mindful of. For some
machine learning models, such as logistic regression, it can be
relatively easy to understand a prediction from the model in
terms of the individual features contributing to the prediction.
For many others, however, including boosted tree models such
as our best-performing model, the nonlinear interaction of many
features can make it difficult to understand why a given patient
was assigned a high or low-risk score. Providing interpretability
for these more complex, nonlinear models is an active area of
research in machine learning, and while tools such as SHAP
can provide some insight into a model, for some uses, a less
accurate but more interpretable model (such as logistic
regression) may be preferred.

Another limitation of our model is that many of the risk factors
such as sleep disruption may only be documented in clinical
notes and not in the structured data we have used, and thus
high-risk patients may be missed by the model. We hope to
address this in future work by integrating natural language
processing techniques into the model.

The dataset used for the development and validation of the
model is another potential source of bias in this study. Because

the patients from this study are only those patients from a single
academic medical center who received delirium screens, they
may not be reflective of patients in other settings, and potentially
not even representative of patients at the same institution who
did not receive delirium screens. Although this could raise
concerns that this would bias our dataset toward patients with
delirium, this does not appear to have been the case. Only 4583
of the 23,006 patients (Table 1), or about 20%, of the patients
in our dataset had one or more positive CAM screens. This is
consistent with the 23% (95% CI 19%-26%) incidence of
delirium reported in the meta-analysis of estimates of delirium
occurrence reported by Gibb et al [37]. Although this is
reassuring, future studies will be needed to provide external
validation of the model at other institutions and on other patient
populations.

Conclusions
In this paper, we have described a method for predicting
delirium in hospitalized patients given the information already
present in the electronic medical record. A large dataset of over
23,000 patients allowed us to consider a larger number of
candidate features while still allowing for rigorous validation
with a blinded test dataset. The resulting model provides both
good accuracy and good calibration and can be run in an
automated fashion on data in the electronic patient record
without requiring additional human effort. We believe this model
can be of use in guiding clinicians and researchers in focusing
on patients at greatest risk of delirium in hopes of mitigating
the morbidity and mortality associated with this disease.
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