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Abstract

Background: The prompt and accurate identification of mild cognitive impairment (MCI) is crucial for preventing its progression
into more severe neurodegenerative diseases. However, current diagnostic solutions, such as biomarkers and cognitive screening
tests, prove costly, time-consuming, and invasive, hindering patient compliance and the accessibility of these tests. Therefore,
exploring a more cost-effective, efficient, and noninvasive method to aid clinicians in detecting MCI is necessary.

Objective: This study aims to develop an ensemble learning framework that adaptively integrates multimodal physiological
data collected from wearable wristbands and digital cognitive metrics recorded on tablets, thereby improving the accuracy and
practicality of MCI detection.

Methods: We recruited 843 participants aged 60 years and older from the geriatrics and neurology departments of our collaborating
hospitals, who were randomly divided into a development dataset (674/843 participants) and an internal test dataset (169/843
participants) at a 4:1 ratio. In addition, 226 older adults were recruited from 3 external centers to form an external test dataset.
We measured their physiological signals (eg, electrodermal activity and photoplethysmography) and digital cognitive parameters
(eg, reaction time and test scores) using the clinically certified Empatica 4 wristband and a tablet cognitive screening tool. The
collected data underwent rigorous preprocessing, during which features in the time, frequency, and nonlinear domains were
extracted from individual physiological signals. To address the challenges (eg, the curse of dimensionality and increased model
complexity) posed by high-dimensional features, we developed a dynamic adaptive feature selection optimization algorithm to
identify the most impactful subset of features for classification performance. Finally, the accuracy and efficiency of the classification
model were improved by optimizing the combination of base learners.

Results: The experimental results indicate that the proposed MCI detection framework achieved classification accuracies of
88.4%, 85.5%, and 84.5% on the development, internal test, and external test datasets, respectively. The area under the curve for
the binary classification task was 0.945 (95% CI 0.903-0.986), 0.912 (95% CI 0.859-0.965), and 0.904 (95% CI 0.846-0.962) on
these datasets. Furthermore, a statistical analysis of feature subsets during the iterative modeling process revealed that the decay
time of skin conductance response, the percentage of continuous normal-to-normal intervals exceeding 50 milliseconds, the ratio
of low-frequency to high-frequency (LF/HF) components in heart rate variability, and cognitive time features emerged as the
most prevalent and effective indicators. Specifically, compared with healthy individuals, patients with MCI exhibited a longer
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skin conductance response decay time during cognitive testing (P<.001), a lower percentage of continuous normal-to-normal
intervals exceeding 50 milliseconds (P<.001), and higher LF/HF (P<.001), accompanied by greater variability. Similarly, patients
with MCI took longer to complete cognitive tests than healthy individuals (P<.001).

Conclusions: The developed MCI detection framework has demonstrated exemplary performance and stability in large-scale
validations. It establishes a new benchmark for noninvasive, effective early MCI detection that can be integrated into routine
wearable and tablet-based assessments. Furthermore, the framework enables continuous and convenient self-screening within
home or nonspecialized settings, effectively mitigating underresourced health care and geographic location constraints, making
it an essential tool in the current fight against neurodegenerative diseases.

(JMIR Med Inform 2025;13:e60250) doi: 10.2196/60250
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Introduction

Background
Neurodegenerative conditions such as Alzheimer disease (AD)
and related dementias precipitate accelerated cognitive
deterioration, markedly impacting patients’daily lives and social
engagement [1]. Current estimates suggest that approximately
50 million individuals worldwide suffer from dementia, with
this number expected to soar to 152 million by 2050 [2].
Generally, patients diagnosed with mild cognitive impairment
(MCI) are at a much higher risk of developing dementia [3].
MCI serves as an intermediate stage between normal cognitive
aging and the severe pathological decline of dementia,
influencing individuals’ cognitive functions, social abilities,
and mental health, and may lead to emotional disorders that
disrupt daily life [4]. Epidemiological data reveal that the
incidence of MCI is 6.7% among those aged 60-64 years, 8.4%
for 65- to 69-year-olds, 10.1% for 70- to 74-year-olds, 14.8%
for 75- to 79-year-olds, and 25.2% for 80- to 84-year-olds [5].
The annual transition rate from MCI to dementia or AD is about
10%-15% [6], significantly higher than the 1%-2% annual
incidence of dementia in the general population. Despite various
potential treatments for AD, including enzymes that inhibit the
production of amyloid-β and antibodies that clear amyloid-β
from the brain [7], no current medications can fully cure
dementia or significantly alter its clinical course. Moreover,
studies indicate that early intervention is effective, necessitating
precise and sensitive diagnostic measures for MCI [8]. Thus,
early identification of MCI is crucial as it enables timely
interventions to slow cognitive decline and alleviate the burden
of dementia [9].

Wearable devices provide a near-continuous, passive data
collection method, offering a convenient and minimally invasive
approach for the ongoing monitoring and tracking of cognitive
decline in patients with MCI. Existing studies have demonstrated
that various physiological indicators, such as heart rate
variability [10], electrodermal activity [11], gait variability [12],
skin temperature [13], respiratory rate [14],
electroencephalography [15], eye movement [16], and
electromyography [17], can be effectively used to assess
cognitive function changes, providing an objective basis for the
auxiliary diagnosis of early cognitive impairment. However,

despite the availability of diverse physiological data from
patients with MCI, challenges remain in the effective utilization
of these data due to the complexity of high-dimensional
information (eg, feature redundancy, strong interfeature
correlations, and noise interference) and the technical difficulties
in multimodal data integration (eg, insufficient feature extraction
and dimensionality reduction methods, challenges in aligning
heterogeneous modalities, and limitations in handling noise and
missing data).

In recent years, machine learning techniques have been
increasingly applied to analyzing and processing complex,
high-dimensional physiological data to facilitate the early
detection of cognitive disorders, including MCI. Traditional
algorithms such as naive Bayes [18], k-nearest neighbors (KNN)
[19], support vector machines (SVM) [20], and logistic
regression (LR) [21] have demonstrated a certain degree of
effectiveness in identifying high-risk MCI populations.
However, due to the limitations of single algorithms in modeling
high-dimensional and multimodal data, such as insufficient
representational capacity and unstable generalization
performance, researchers have gradually shifted toward
exploring ensemble methods, including bagging [22], boosting
[23], and stacking [24]. These ensemble learning techniques
integrate predictions from multiple models, effectively
mitigating the limitations of single models and significantly
improving overall predictive accuracy and robustness.

In addition, various swarm intelligence algorithms have been
introduced for critical tasks such as feature selection and
hyperparameter optimization to enhance the performance of
machine learning models in high-dimensional data analysis.
Swarm intelligence algorithms, including Harmony Search (HS)
[25], Particle Swarm Optimization [26], and Genetic Algorithms
[27], simulate cooperative behaviors observed in nature and
have demonstrated outstanding potential in solving global
optimization problems. The HS algorithm has gained attention
as a metaheuristic optimization technique due to its simplicity,
ease of implementation, and low-parameter adjustment
requirements. Inspired by musical harmony improvisation, the
HS algorithm iteratively adjusts the pitch of each instrument
(analogous to high-dimensional features) to find the optimal
feature combination. This approach offers an effective solution
for feature selection involving physiological data and cognitive
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parameters of MCI patients, showing promising prospects in
improving model prediction accuracy and computational
efficiency.

Objective
We propose a Dynamic Adaptive Ensemble Learning
Framework based on an Improved Harmony Search
(DAELF-HSI), designed to enhance MCI detection by
addressing issues of feature redundancy and the inefficiency of
multimodal data fusion. In contrast to previous studies, this
research integrates multimodal physiological data collected
through wearable wristbands (eg, heart rate variability and
electrodermal activity) with cognitive assessment metrics
recorded on tablet devices (eg, reaction time and test scores),
aiming to exploit the potential value of multisource data
comprehensively, thereby improving the accuracy and clinical
utility of MCI detection. We hypothesize that the DAELF-HSI
framework will not only effectively distinguish between patients
with MCI and healthy individuals but also uncover critical
discriminative information pertinent to MCI.

Methods

Ethical Considerations
The research was reviewed and approved by the Biomedical
Ethics Review Committee of Taiyuan University of Technology
(20240124). All methods were performed following relevant
guidelines and regulations. Written informed consent was
obtained from eligible participants under the principles of the
Declaration of Helsinki. All participants signed an informed
consent form. We provided US $10 to eligible older adults as
compensation for participation.

Overview of the Proposed Detection Framework
Figure 1 illustrates a Dynamic Adaptive Ensemble Learning
Framework for MCI detection, integrating multimodal data that
integrates individual physiological signals with cognitive tasks
derived from serious games. The framework begins with data
collection, followed by time series segmentation, alignment,
and preprocessing. It then progresses to feature extraction and
selection, culminating in constructing a classification model.
Notably, the modules within the framework are interconnected
and sequentially executed, forming a cohesive unit. The
following sections will detail the stages, demonstrating the
adaptability and effectiveness of the proposed MCI detection
framework.

Figure 1. A dynamic adaptive ensemble learning framework for mild cognitive impairment detection. CSI: cardiac sympathetic index; CVI: cardiovascular
index; EDA: electrodermal activity, HF: high frequency; HSI: harmony search improved; IBI: interbeat interval; LF: low frequency; VLF: very low
frequency.

Experimental Participants and Procedures
The dataset used for machine learning modeling involves 843
participants aged 60 and older recruited from partner hospitals.

The participants were randomly divided into a development
dataset (674/843), and an independent testing dataset (169/843)
in a ratio of 4:1. In addition, 226 older adults were recruited
from 3 external centers to constitute an external testing dataset.

JMIR Med Inform 2025 | vol. 13 | e60250 | p. 3https://medinform.jmir.org/2025/1/e60250
(page number not for citation purposes)

Li et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Participants were identified using a purposive sampling method
[28], with the process being meticulously overseen by
experienced neurologists. The inclusion criteria for participants
were (1) age ≥60 years; (2) normal hearing and vision, or
corrected to normal; (3) completion of the Mini-Mental State
Examination (MMSE) test; (4) completion of the Montreal
Cognitive Assessment (MoCA) test; (5) capability to engage in
moderate activity without physical disabilities; (6) absence of
severe depressive symptoms or other neurological disorders
such as stroke or Parkinson disease; (7) ability to effectively
use smart devices such as smartphones and tablets; and (8)
informed consent signed by the participants or their guardians.

Neurologists contacted potential participants during their clinic
visits, explaining the study’s purpose, related procedures, and
the possible impact of the research findings. Once potential
participants expressed interest, neurologists conducted
comprehensive medical evaluations, including detailed medical
history collection, physical examinations, brain imaging
(magnetic resonance imaging or computed tomography scans),

and cognitive function assessments (using the MMSE and
MoCA scales). The MCI group comprised 514 (48.1%)
participants who scored below 26 on the MoCA, while the
healthy control (HC) group included 555 (51.9%) healthy
individuals without symptoms of cognitive decline. Brain
imaging scans revealed no structural abnormalities causing
cognitive impairment. Furthermore, all patients with MCI met
the criteria proposed by the National Institute of Neurological
and Communicative Disorders and Stroke and the Alzheimer’s
Disease and Related Disorders Association [29]. We also
administered the habitual hand questionnaire [30], which
consisted of 13 items, to all participants. The MCI and HC
groups were matched for age, gender, hand preference,
education, average sleep duration (in general), and years of
smart device use. All participants completed cognitive tasks
with the assistance of researchers, and there were no dropouts
during the testing process. Table 1 summarizes the clinical and
demographic characteristics of the 1069 participants enrolled
across the development, internal, and external datasets.

Table 1. Characteristics of the 1069 participants enrolled across the development, internal, and external datasets.

P valuecExternal (n=226)Testing (n=169)Training (n=674)

HC (n=118)MCI (n=108)HC (n=91)MCI (n=78)HCb (n=346)MCIa (n=328)

.11d; .67e; .73f73.9

(8.613)

74.29 (8.477)69.46 (5.763)69.85 (6.004)69.64 (5.919)70.39 (6.330)Age (years), mean (SD)

.22d; .81e; .64fGender, n (%)

—63 (53.4)61 (56.5)53 (58.2)44 (56.4)207 (59.8)181 (55.2)Women

—55 (46.6)47 (43.5)38 (41.8)34 (43.6)139 (40.2)147 (44.8)Men

.60d; .80e; .88fHand preference, n (%)

—15 (12.7)13 (12.0)8 (7.5)6 (7.7)48 (13.9)41 (12.5)Left

—103 (87.3)95 (88.0)83 (91.2)72 (92.3)298 (86.1)287 (87.5)Right

.08d; .66e;

.79f

5.22 (3.457)5.34 (3.421)6.48 (3.903)6.22 (4.012)6.32 (3.744)5.81 (3.781)Education years, mean
(SD)

.14d; .06e; .51f7.01 (1.362)7.13 (1.421)7.82 (1.060)7.51 (1.066)7.40 (1.115)7.53 (1.165)Hours of sleep, mean (SD)

.53d; .24e; .55f4.90 (2.326)4.71 (2.336)4.79 (2.563)4.32 (2.665)5.07 (1.918)4.97 (2.060)Smart device use (years),
mean (SD)

aMCI: mild cognitive impairment.
bHC: health control.
cP value: 2-tailed t tests (for continuous variables) and chi-square tests (for categorical variables).
dP value: statistical comparisons were performed between the MCI and HC groups within the training dataset.
eP value: statistical comparisons were performed between the MCI and HC groups within the testing dataset.
fP value: statistical comparisons were performed between the MCI and HC groups within the external dataset.

In the experimental setting, a well-trained experimenter
instructed participants to sit on a comfortable chair and wear
the Empatica 4 on their nondominant wrist. The Empatica 4 is
a watch-like multisensor device that measures physiological
data such as electrodermal activity (EDA),
photoplethysmography, skin temperature, and accelerometer
readings. It is compact, lightweight, and comfortable to wear,
making it suitable for unobtrusive continuous monitoring during
cognitive screening of older adults. The participants performed

cognitive tasks on a 2019 iPad using the Brain Nursing mobile
app developed by our team (Multimedia Appendix 1) [31],
completing drawing-related tasks with an Apple Pencil. The
system includes 11 single tasks and 3 dual tasks, each taking
only 1-3 minutes, designed to assess attention; short-term
memory; working memory; scene recall and situational
reconstruction; visual-conceptual and visual-motor tracking;
orientation; executive function; language comprehension and
expression; logical thinking; and fine motor control. To
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minimize interference from the nondominant hand during the
painting tasks, the experimenter provided appropriate assistance,
such as stabilizing the tablet. Upon completion of the testing,
the Empatica 4 wristband was removed from the participant’s
wrist, physiological data were retrieved and downloaded through
the Empatica 4 Connect portal, and cognitive data were exported
from the cloud.

Data Segmentation and Alignment

Overview
For the collected multisource data, such as EDA, interbeat
interval (IBI) for describing heart rate variability (HRV), and
cognitive data, ensuring the integrity, continuity, and temporal
alignment of the data is crucial. As participants perform
cognitive tasks, the tablet automatically records timestamps for
each test, providing a reference for aligning physiological data.
Thus, we align the EDA and IBI data using the start and end
times of each test, as described in the procedures listed below.

EDA Time Series Processing
Considering that the EDA.csv file downloaded from the cloud
only contains information about the start time of the session
and the sampling rate, it lacks the timestamps corresponding to
each second of the signal. To address this deficiency, we
generate a timestamp every 4 data points based on the session
start time and the sensor sampling rate (4 Hz). Subsequently,
we align the timestamps of the cognitive tests with the EDA
series timestamps, thereby extracting the EDA signal segments
corresponding to the specific cognitive tests.

IBI Time Series Processing
Due to the automatic discarding of unidentifiable heartbeats by
the Empatica 4 wristband during measurement, the IBI.csv file
contains discontinuities that do not match the actual measuring
intervals. It is crucial to accurately identify and fill these
measurement gaps to ensure data integrity in the analysis of IBI
time series for various test tasks. Following the suggestions of
Rafi et al [32], this study limits the physiologically feasible
range for IBI to within 2 seconds, and any data beyond the
threshold was automatically labeled as a measurement gap.
Subsequently, cubic spline interpolation [33] is used to estimate
the missing values within these gaps. The overall continuity of
the IBI dataset in the temporal dimension is optimized by using
a curve-fitting method based on available data points. Finally,
new timestamps are added to the IBI data, aligning the
timestamps of cognitive tests with those of the IBI series.

Data Preprocessing

Overview
Commercial wearable devices are prone to artifacts,
measurement gaps, or deviations from the measurement regime

during data recording [34,35]. To ensure reliable information
is extracted from field-collected data, rigorous preprocessing
is required to filter noise and artifacts and restore the original
signal. Considering the differences among EDA, IBI, and digital
parameters, we will detail the preprocessing methods for these
metrics.

EDA Signal Preprocessing
EDA serves as a biosignal, mirroring the individual
physiological and emotional states, and consists mainly of
slowly varying tonic and rapidly fluctuating phasic activities.
Tonic activity, also known as skin conductance level (SCL),
primarily reflects the physiological activity level of an individual
at rest, indicating the continuous regulation of the autonomic
nervous system. In contrast, phasic activity, or SCR, is a rapid
and transient physiological response to specific stimuli,
revealing an individual’s adaptability and reactivity to sudden
events. To enhance EDA signal quality, we propose a multistage
automatic artifact removal method, including artifact correction,
signal decomposition, and overlapping sliding time windows,
as shown in Figure 2. The specific steps involved are:

1. Low-pass filtering: EDA signal is filtered using a first-order
Butterworth low-pass filter with a cutoff frequency of 0.6
Hz [36], which preserves its low-frequency components
and eliminates high-frequency noise.

2. Artifact detection: EDAexplorer [37] is used to detect
artifacts in the filtered signal, identifying and marking
anomalies within the signal to provide a basis for data
repair.

3. Cubic spline interpolation: apply cubic spline interpolation
to the identified artifact segments, using segmented cubic
polynomials to approximate missing data points while
ensuring continuity in function values and their first and
second derivatives, thereby smoothly completing the
missing data.

4. Signal decomposition: by solving the convex optimization
approach, cvxEDA [38] separates the signal into tonic and
phasic components, enabling enhanced analysis and
interpretation of the underlying physiological mechanisms
within the EDA signal.

5. Component filtering: refilter the decomposed tonic and
phasic components using a low-pass Butterworth filter to
eliminate negative SCR and SCL values, enhancing the
signal quality.

6. Time window segmentation: segment the processed tonic
and phasic components into overlapping time windows of
60 seconds with a step size of 1 second to facilitate
subsequent feature extraction.
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Figure 2. Electrodermal activity signal preprocessing flow.

IBI Signal Preprocessing
Wearable devices commonly use photoplethysmography sensors
to monitor the continuous variations in interbeat or R-R
intervals. However, obtaining raw photoplethysmography data
from the Empatica 4 wristband presents challenges, so we
shifted to analyzing IBI data, which is more readily accessible.
Analyzing IBI data allows for calculating HRV, reflecting the
variations in time between consecutive heartbeats. Although

Empatica 4 offers convenience and noninvasiveness for
recording HRV, it still faces issues such as artifacts or
measurement gaps [39,40]. Therefore, we initially adopted 4
artifact detection rules to identify artifacts, as shown in Textbox
1. Subsequently, detected artifacts were interpolated using cubic
spline interpolation to fill in missing values. Finally, the cleaned
IBI data was segmented into overlapping time windows of 60
seconds with a 1-second step size, creating datasets for
subsequent feature extraction.

Textbox 1. List of interbeat interval artifact detection rules.

Study and rule description

Rafi et al [32]

• Discard any interbeat intervals that do not fall within the physiological range of 250-2000 milliseconds (equivalent to a heart rate of 30-240 beats
per minute).

Malik et al [41]

• Each interbeat interval should be at most 20% from the previous one.

Acar et al [42]

• Calculate the average of the 9 interbeat intervals preceding the current interbeat interval. It should be removed if the current interbeat interval
differs from this average by more than 20%.

Karlsson et al [43]

• Remove any interbeat interval that differs by more than 20% from the average of its immediate preceding and succeeding interbeat intervals.

Cognitive Data Preprocessing
Outlier removal and data consistency checks were performed
manually to preprocess digital cognitive parameters. The specific
steps include (1) format validation: ensuring that all data entries
adhere to the required format specifications (eg, the time
recorded in seconds and scores in numerical format) and
correcting any inconsistencies; (2) range validation: checking
that all data values fall within predefined acceptable ranges,
such as ensuring reaction times are within a reasonable range
of seconds; (3) continuity validation: assessing the continuity
of the data, including verifying that the timestamps for each test
are in sequential order and checking for any missing data points.
Through these steps, we aim to identify and eliminate extreme

outliers caused by user errors or external interference while
ensuring the logical consistency of data format, range, and time
series, thereby improving the overall quality and reliability of
the data.

Multiscale Feature Extraction
In this study, we comprehensively analyzed data collected from
the Empatica 4 wristband and tablet devices to explore
participants’ physiological and cognitive responses to various
cognitive tasks. Specifically, we used the FLIRT toolkit [44]
and NeuroKit2 [45] to extract 39 EDA-related features
(including 17 SCL features and 22 SCR features) from the EDA
signals and 23 features (including HR and HRV) from the IBI
data. Furthermore, we collected several cognitive parameters,
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including time, score, stroke, frequency, and curvature (variance
and the ratio of 0 values) during each test. Detailed information
regarding all these features is available in Multimedia Appendix
1.

Dynamic Adaptive Feature Selection Based on
Improved Harmony Search
Feature selection plays a critical role in handling
high-dimensional datasets, as not all features impact the
outcome. An excessive number of features can result in the
curse of dimensionality and increased model complexity.
Therefore, this study proposes a feature selection algorithm
based on HSI to sift through extracted physiological and
cognitive features. Analogous to musical notes, each feature
represents a note that may or may not be selected into a subset.
Musicians repeatedly adjust the notes to achieve the best
harmony effect until reaching a satisfactory harmony. Similarly,
the feature selection algorithm based on HSI continuously tunes
parameters and modifies the generated feature subset to ensure
diversity and avoid convergence to local optima. In particular,
we integrate Hamming distance into the HSI algorithm to gauge
the disparity between the newly generated harmony vector and
the optimal vector in the harmony memory. The Hamming
distance is used to assess the similarity between these vectors
to fine-tune the search probability. A high Hamming distance
leads to a moderate reduction in the search probability to
promote exploratory efforts, while a low Hamming distance
results in a moderate increase in leveraging known information.
Finally, to evaluate the quality of the harmony effect, we
minimize the average classification error rate of all base learners
and the feature selection rate as optimization objectives. The
detailed algorithm is provided in Multimedia Appendix 2.

Dynamic Adaptive Stacking Classification Based on
Improved Harmony Search
An essential goal of this study is to distinguish between healthy
individuals and patients with MCI effectively. As mentioned,
we opt for a subset of features demonstrating balanced
performance across all base learners during the feature selection
phase. Nevertheless, certain learners continue to demonstrate
suboptimal performance, and merely stacking multiple base
learners increases algorithmic complexity and computational
demands. In essence, the selection of learners, akin to feature
selection, constitutes a combinatorial optimization problem
focused on enhancing classification performance. Thus, this
study proposes using HSI to optimize the stacking of base
learners. Unlike feature selection algorithms that use HSI, it

leverages the accuracy of the current base learners and their
quantity to guide hyperparameter adjustments. The strategy
aims to mitigate the adverse effects of underperforming learners
on the overall model while simultaneously enhancing model
efficiency and minimizing computational costs. Furthermore,
we selected the KNN, decision tree (DT), random forest (RF),
Gaussian naive Bayes, SVM, multilayer perceptron, LR, gradient
boosting DT, and XGBoost as base learners, with LR serving
as the meta-learner. The detailed algorithm is provided in
Multimedia Appendix 2.

Statistical Analysis and Machine Learning Model
This study analyzed demographic characteristics, cognitive
parameters, and physiological features using the Statistical
Package for the Social Sciences (SPSS, version 22.0 for
Windows, IBM). Initially, the Kolmogorov-Smirnov test was
used to assess whether continuous variables such as age, years
of education, hours of sleep, years of smart device usage, and
cognitive data conformed to a normal distribution. Descriptive
statistics were described using means (SD) for normally
distributed variables. Subsequently, the t test was used for
between-group comparisons to determine if there were
significant differences between the HC group and the MCI
group. In contrast, we used the nonparametric Mann-Whitney
U test for nonnormally distributed variables to assess intergroup
differences. For categorical variables such as gender and hand
preference, data were described in terms of counts (percentages),
and the chi-square test was used for group comparisons. The
significance level for all statistical analyses was set at P<.05.
Furthermore, to validate the performance of the proposed
detection framework, experiments were conducted using a 5-fold
cross-validation approach, using 4 evaluation metrics (accuracy,
precision, recall, and F1-score) to assess the classification
outcomes. All learners used the HSI for feature selection, and
the average values were used as the final classification results.

Results

Statistical Comparison of EDA, HRV, and Cognitive
Features Between Groups
We conducted statistical analyses on features extracted from
EDA, HRV, and cognitive tasks to identify the key features
distinguishing between healthy individuals and patients with
MCI. As shown in Figure 3, red squares indicate significant
differences (P<.05) between the 2 groups on specific features
during certain cognitive tasks, and the depth of the color reflects
the degree of significance of these differences.
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Figure 3. Results of the t tests performed on features extracted from electrodermal activity, heart rate variability, and cognitive tasks between groups.
HRV: heart rate variability; SCL: skin conductance level; SCR: skin conductance response.

Based on observations from Figure 3A, relatively few SCL
features distinguish between patients with MCI and healthy
individuals, including the SD, median, root mean square, and
SD of spectral power. Conversely, Figure 3B reveals more
significant differences in SCR features, including mean, energy,
amplitude, rise time, delay time, and width in the time domain
and mean in the frequency domain. These findings highlight
several key points: (1) the SD and root mean square of SCL
indicate variability and instability in physiological responses,
with differences between patients with MCI and healthy
individuals reflecting disparate levels of physiological
variability; (2) statistical differences in the SD of SCL spectral
power between the groups indicate that patients with MCI
exhibit significantly different physiological responses within
specific frequency ranges, possibly related to impaired cognition
associated with MCI; (3) statistical differences in SCR time
domain features between groups indicate that patients with MCI
exhibit variations in the intensity and timing of physiological
responses, suggesting impaired regulatory capabilities of their
nervous systems; and (4) variations in the mean values in the

SCR frequency domain indicate that patients with MCI have
different physiological response frequency distributions when
processing stimuli compared with healthy individuals.

Figure 3C depicts the statistical analysis results applied to
features extracted from HRV between patients with MCI and
healthy controls. The analysis indicates statistically significant
distinctions in HRV indices such as SDNN (SD of N-N
intervals), RMSSD (root mean square of successive differences),
PNN50 (percentage of successive R-R intervals > 50 ms), LF/HF
(low-frequency to high-frequency ratio) ratio, SD2/SD1 (ratio
of the SD2 and SD1 of Poincaré plot), and SampEn (sample
entropy). These results highlight several key aspects which are
(1) SDNN, RMSSD, and PNN50, which quantify overall and
short-term heart rate variations, reveal disparities in autonomic
nervous system functioning between the groups; (2) the LF/HF
ratio reflects imbalances between sympathetic and
parasympathetic nervous activities, indicating autonomic
dysregulation in patients with MCI relative to controls; and (3)
SD2/SD1 and SampEn focus on balance between long-term and
short-term variability, as well as the complexity and irregularity
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of HRV, illustrating differences in autonomic nervous system
adaptability and complexity between groups. Finally,
observations from Figure 3D reveal that (1) multiple cognitive
tests using time and scores as indicators can significantly
distinguish between healthy individuals and patients with MCI,
and (2) features such as handwriting, frequency, and curvature
show varying degrees of significant differences across different
drawing tasks.

Performance of the DAELF-HSI in Mild Cognitive
Impairment Detection
Table 2 lists the classification outcomes of the DAELF-HSI
compared with 6 machine learning models and the application
of HSI for feature selection in these models. Following a
thorough assessment involving 100 iterations of 5-fold
cross-validation, the DAELF-HSI demonstrated an average
accuracy of 88.5%, surpassing the performance of other

algorithms significantly. Moreover, it exhibited superior
precision, recall, and F1-score metrics, achieving 89.1%, 88.7%,
and 88.9%, respectively, all at notably high levels. When
HSI-based feature selection was not employed, the SVM model
outperformed other machine learning algorithms with an
accuracy of 79.6%. However, after integrating HSI feature
selection, models like KNN-HSI and multilayer perceptron-HSI
displayed improved performance, surpassing that of SVM-HSI.
Noteworthy is the consistent enhancement in performance
observed across all machine learning models upon the
introduction of HSI feature selection, with accuracy
improvements ranging from 3% to 5%, resulting in all models
achieving accuracy levels exceeding 81%. It highlights the
efficacy of the feature selection algorithm based on HSI in
identifying crucial features that enhance the predictive
capabilities of the machine learning models under investigation.

Table 2. Performance comparison of Dynamic Adaptive Ensemble Learning Framework based on an Improved Harmony Search with 6 machine
learning models and applying Improved Harmony Search to model feature selection.

F1-score, mean (SD)Recall, mean (SD)Precision, mean (SD)Accuracy, mean (SD)Methods

0.790 (0.019)0.806 (0.029)0.775 (0.023)0.792 (0.018)KNNa

0.794 (0.027)0.800 (0.020)0.788 (0.025)0.796 (0.024)SVMb

0.791 (0.025)0.796 (0.022)0.787 (0.019)0.771 (0.022)GNBc

0.787 (0.033)0.783 (0.025)0.791 (0.033)0.786 (0.025)DTd

0.800 (0.019)0.794 (0.026)0.807 (0.025)0.790 (0.017)MLPe

0.790 (0.038)0.791 (0.028)0.789 (0.034)0.784 (0.020)LRf

0.839 (0.024)0.830 (0.027)0.848 (0.018)0.842 (0.017)KNN-HSIg

0.825 (0.027)0.839 (0.030)0.833 (0.023)0.831 (0.022)SVM-HSI

0.807 (0.027)0.800 (0.025)0.815 (0.030)0.815 (0.023)GNB-HSI

0.821 (0.031)0.809 (0.028)0.833 (0.022)0.827 (0.019)DT-HSI

0.840 (0.018)0.842 (0.025)0.839 (0.024)0.836 (0.022)MLP-HSI

0.819 (0.035)0.823 (0.031)0.815 (0.027)0.817 (0.025)LR-HSI

0.889 (0.025)0.887 (0.024)0.891 (0.021)0.885 (0.020)DAELF-HSIh (ours)

aKNN: k-nearest neighbors.
bSVM: support vector machines.
cGNB: Gaussian naive Bayes.
dDT: decision tree.
eMLP: multilayer perceptron.
fLR: logistic regression.
gHSI: Improved Harmony Search.
hDAELF-HSI: Dynamic Adaptive Ensemble Learning Framework based on an Improved Harmony Search.

Similarly, Table 3 presents the effectiveness of DAELF-HSI in
classification compared with 5 ensemble learning models,
augmented by HSI feature selection. In line with the findings
in Table 2, DAELF-HSI maintains its superior performance.
Noteworthy is that the ensemble learning techniques outperform
the individual machine learning models discussed earlier, with
XGBoost achieving a commendable average accuracy of 81.9%.

The Bagging model, which uses KNN as a base learner,
demonstrates improved performance compared with the
stand-alone KNN model. However, the bagging model using
ensemble SVM as a base learner falls short of expectations,
slightly underperforming compared with the stand-alone SVM
model, possibly due to the inherent instability advantages
associated with SVM.
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Table 3. Performance comparison of Dynamic Adaptive Ensemble Learning Framework based on an Improved Harmony Search with 5 ensemble
learning models and applying HSI to model feature selection.

F1-score, mean (SD)Recall, mean (SD)Precision, mean (SD)Accuracy, mean (SD)Methods

0.792 (0.027)0.794 (0.026)0.791 (0.031)0.794 (0.022)Bag (KNNa)

0.784 (0.021)0.780 (0.017)0.788 (0.021)0.779 (0.011)Bag (SVMb)

0.809 (0.025)0.816 (0.027)0.802 (0.037)0.804 (0.015)RFc

0.814 (0.019)0.813 (0.027)0.816 (0.028)0.813 (0.019)GBDTd

0.817 (0.024)0.810 (0.026)0.825 (0.024)0.819 (0.015)XGBoost

0.831 (0.036)0.821 (0.034)0.842 (0.029)0.833 (0.024)Bag (KNN)-HSIe

0.815 (0.024)0.819 (0.027)0.812 (0.024)0.811 (0.016)Bag (SVM)-HSI

0.852 (0.024)0.847 (0.021)0.858 (0.018)0.854 (0.017)RF-HSI

0.845 (0.016)0.852 (0.023)0.839 (0.025)0.848 (0.027)GBDT-HSI

0.854 (0.029)0.849 (0.028)0.860 (0.020)0.854 (0.022)XGBoost-HSI

0.889 (0.025)0.887 (0.024)0.891 (0.021)0.885 (0.020)DAELF-HSIf (ours)

aKNN: k-nearest neighbors.
bSVM: support vector machines.
cRF: random forest.
dGBDT: gradient boosting decision tree.
eHSI: Improved Harmony Search.
fDAELF-HSI: Dynamic Adaptive Ensemble Learning Framework based on an Improved Harmony Search.

Figure 4 illustrates the box plots of 12 algorithms after 100
independent experiments across 4 evaluation metrics. The
quartiles within each box plot depict algorithmic performance,
while the red numbers above each box plot represent the mean
values for the respective metrics. DAELF-HSI outstrips
competing models across all metrics, demonstrating superior
stability and an absence of significant outliers. Conversely,
SVM-HSI and GNB-HSI exhibit more outliers, indicating

challenges in achieving precise model fits for specific data
distributions, leading to notable performance fluctuations.
Although LR-HSI and Bag (KNN)-HSI do not display outliers,
their wide IQR suggests instability across diverse feature
distributions. Notably, RF-HSI demonstrates significant outliers
in the F1-score, highlighting the model’s vulnerability to certain
data distributions or feature sets.
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Figure 4. Comparison of evaluation metrics between Dynamic Adaptive Ensemble Learning Framework based on an Improved Harmony Search and
various machine learning models applying harmony search improved feature selection. DT: decision tree; GBDT-HSI: gradient boosting decision
tree-harmony search improved; GNB: Gaussian naïve Bayes; LR: logistic regression; KNN: k-nearest neighbors; RF-HSI: random forest-harmony
search improved; SVM: support vector machines.

Analysis of the Optimization Module of the
DAELF-HSI
Figure 5 presents the frequency analysis of physiological
features (including SCL, SCR, and HRV) and digital cognitive
parameters during 100 iterations of the DAELF-HSI model.
Notably, SCR decay time (SCR feature set), PNN50, LF/HF
(HRV feature set), and time (cognitive feature set) are
highlighted for their importance in distinguishing between the
2 groups, appearing in over 80% of the selections. However,

certain SCR features (eg, SCR amplitude, SCR width, and mean
band) and HRV features (eg, SDNN, RMSSD, and mean HR),
despite showing statistically significant differences (P<.05;
Figure 3) in group differentiation, were infrequently chosen.
This infrequency suggests that these parameters are highly
correlated with features previously selected, leading the HSI
feature selection algorithm to deem them redundant. Overall,
the proposed HSI feature selection optimization algorithm can
identify critical features, address redundancy, and accurately
detect patients with MCI with limited features.
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Figure 5. The number of times each skin conductance level, skin conductance response, heart rate variability, and cognitive feature was selected for
mild cognitive impairment detection.

In addition, Figure 6 illustrates the frequency distribution of
various base learners across 100 iterations within the
DAELF-HSI model. Specifically, RF-HSI and XGBoost-HSI
are the predominant selections, highlighting their substantial
contributions to model efficacy and demonstrating the model’s
proficiency in selecting optimal learners. Conversely, GNB-HSI,
Bag (SVM)-HSI, and GBDT-HSI are chosen less frequently.
This bias in selection can be primarily attributed to 2 factors:

first, these base learners inherently exhibit lower accuracy,
leading the adaptive hyperparameter strategy of the DAELF-HSI
to assign them reduced weights; second, a high level of
correlation exists between these learners and other
high-performing ensemble members, making their inclusion
less impactful due to redundant error distributions and
similarities in learner characteristics with more effective
alternatives.
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Figure 6. The number of times each base learner was selected for mild cognitive impairment detection. DT: decision tree; GBDT-HSI: gradient boosting
decision tree-harmony search improved; GNB: Gaussian naïve Bayes; LR: logistic regression; KNN: k-nearest neighbors; RF-HSI: random forest-harmony
search improved; SVM: support vector machines.

Finally, we substantiate the importance of feature selection and
stacking optimization stages within the DAELF-HSI through
ablation experiments. As delineated in Table 4, a total of 3
experimental models were structured to assess the impact of
omitting 1 or both optimization stages, where “✓” denotes the
inclusion of that stage. The models are configured as follows:

1. Model A uses 11 machine learning models as base learners
and LR as the meta-learner, incorporating all features.

2. Model B uses 11 machine learning models as base learners
with LR as the meta-learner, but only includes features
selected through the HSI algorithm.

3. Model C integrates the HSI for stacking with 11 machine
learning models, incorporating all features.

Table 4. Performance comparison of different ablation modules applied to the DAELF-HSIa.

F1-score, mean
(SD)

Recall, mean (SD)Precision, mean
(SD)

Accuracy, mean
(SD)

HSI learners stack-
ing

HSIb features selec-
tion

Methods

0.825 (0.029)0.831 (0.024)0.819 (0.026)0.826 (0.023)Model A

0.835 (0.035)0.839 (0.030)0.831 (0.028)0.837 (0.027)✓Model B

0.853 (0.025)0.849 (0.022)0.858 (0.019)0.854 (0.025)✓Model C

0.889 (0.025)0.887 (0.024)0.891 (0.021)0.885 (0.020)✓✓DAELF-HSI

aDAELF-HSI: Dynamic Adaptive Ensemble Learning Framework based on an Improved Harmony Search.
bHSI: Improved Harmony Search.

According to the results in Table 4, model A shows lackluster
classification performance in the absence of the 2 optimization
stages, primarily due to the poor performance of certain base
learners and the inclusion of numerous redundant features during
training. Model B, which incorporates HSI-selected features,

demonstrates a slight performance improvement of around 1%,
suggesting that merely reducing feature redundancy is
insufficient to enhance the output of underperforming base
learners significantly. Furthermore, Model C, which solely
incorporates the base learner stacking optimization stage,
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improves performance by nearly 3%, underscoring the
importance of high-quality base learners in stacking algorithms.
Notably, the simultaneous implementation of both optimization
stages substantially enhances the model’s performance,
highlighting the essential contribution of each stage to the
overall efficacy of the algorithm.

Performance Evaluation of DAELF-HSI Across
Different Datasets
As shown in Table 5, we also used 4 metrics (including
accuracy, sensitivity, specificity, and area under the curve
[AUC]) to evaluate the binary classification performance of the
classification model for patients with MCI versus healthy
individuals in internal and external test datasets. Specifically,
the model demonstrated excellent performance in the
development dataset, with accuracy, sensitivity, and specificity
at 88.4%, 86.1%, and 90.9%, respectively. In the internal test
dataset, the model’s accuracy slightly decreased to 85.5%, while
sensitivity remained unchanged at 86.1%, and specificity

dropped to 84.9%, suggesting that a small number of healthy
individuals were misclassified as patients with MCI, but overall
performance remained satisfactory. However, in the external
test dataset, the model’s accuracy, sensitivity, and specificity
decreased by 3.9%, 0.4%, and 8.1%, respectively. Nevertheless,
these results demonstrate the model’s effectiveness, especially
when evaluated on new and diverse samples. Furthermore, the
AUC, which serves as an indicator of the model’s validity, was
recorded at 0.945 (95% CI 0.903-0.986), 0.912 (95% CI
0.859-0.965), and 0.904 (95% CI 0.846-0.962) across the 3
datasets, as illustrated in Figure 7. The AUC value reflects the
classification performance of the model on different datasets.
The DAELF-HSI model has an AUC value above the threshold
of 0.9 on these datasets, demonstrating excellent sensitivity and
specificity in detecting patients with MCI. In other words, the
model cannot only effectively identify patients with MCI but
also reduce the probability of misjudgment, enhancing reliability
in clinical applications.

Table 5. The diagnostic value of the classification model in differentiating between healthy older adults and patients with mild cognitive impairment
was assessed using internal and external testing datasets.

P valueArea under the curve (95% CI)SpecificitySensitivityAccuracyDataset

<.0010.945 (0.903-0.986)0.9090.8610.884Development dataset

<.0010.912 (0.859-0.965)0.8480.8610.855Internal testing dataset

<.0010.904 (0.846-0.962)0.8280.8570.845External testing dataset

Figure 7. The receiver operating characteristic curve of our model across different datasets.

Clinical Utility Analysis
To assess the practical clinical value of the proposed model, we
performed decision curve analysis (DCA) on the development,
internal testing, and external testing sets, presenting the model’s

decision curve along with the “Treat all” and “Treat none”
strategies, as shown in Figure 8. Specifically, the model’s
decision curve demonstrated clear clinical benefits in the
development set, with its net benefit consistently exceeding that
of the “Treat all” and “Treat none” strategies. Notably, in the
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0 to 0.85 threshold range, the model’s net benefit declined from
1 to 0.75 and further decreased to 0.3 in the higher threshold
range, indicating that the model effectively avoids overtreatment
in low-risk patient groups. In the internal testing set, the decision
curve remained stable, with a gradual decline in net benefit that
aligned with expectations, suggesting that as the threshold
increased, the model opted for fewer treatment decisions, and
validated the model’s effectiveness in high-risk patient
populations and its alignment with the clinical need to reduce
unnecessary treatments. However, the model’s decision curve
showed slight variations in the external testing set compared
with the other sets. The net benefit decreased from 1 to 0.2 in

the 0-0.8 threshold range, indicating reduced efficacy in this
range. However, in the 0.8-0.9 range, the net benefit rose from
0 to 0.4, suggesting that adjusting the threshold appropriately
enhanced the model’s predictive accuracy. In the 0.9-1 threshold
range, the net benefit dropped again to 0.2, which may indicate
cautious predictions in the high-risk zone, thus limiting its
clinical utility. In conclusion, the model demonstrated a net
benefit consistently higher than both the “Treat all” and “Treat
none” strategies across the 3 sets, particularly in the mid-to-low
threshold ranges, highlighting that the model can effectively
guide clinical decision-making, reduce unnecessary treatments,
and improve early disease detection and intervention efficiency.

Figure 8. Decision curve analysis on different datasets, showing the model’s decision curves for the binary classification task, along with the “Treat
all” and “Treat none” strategies. (A) Development set, (B) internal testing set, and (C) external testing set.

Discussion

Interpretability of Physiological Features
Previous studies demonstrate that HRV is an essential
physiological assessment indicator that could differentiate
physiological responses between patients with MCI and HCs
under diverse stressors and conditions [46,47]. In this study,
compared with healthy counterparts, patients with MCI exhibited
decreased HR, prolonged N-N intervals, and an increased ratio
of low to high-frequency components, consistent with trends
observed in past research [10,48]. Moreover, higher levels of
HRV have been associated with improved cognitive function,
whereas lower HRV correlates with cognitive impairment [49].
During cognitive tasks, abnormal responses in the autonomic
nervous system of patients with MCI were observed through
monitoring HRV, highlighting the efficacy of HRV as a sensitive
physiological indicator during cognitive engagement.

On the other hand, this research assessed the applicability of
EDA features for identifying MCI, advancing upon sparse
existing research in this field. Specifically, the EDA signal was
segregated into tonic and phasic components, from which 39
features encompassing time, frequency, and SCR time domains
were derived. Comparative statistical analysis revealed that,
during cognitive tasks, patients with MCI exhibited significantly
enhanced SCR amplitudes, elongated SCR widths, and
protracted SCR decay time relative to healthy counterparts,
indicating a more intense or unexpectedly elevated physiological
response to stimuli. These pronounced variations in SCR
parameters effectively discriminate between patients with MCI
and healthy individuals, highlighting the sensitivity of EDA

features in detecting autonomic nervous system dysfunctions,
a common correlate of cognitive impairments [50].

Predictive Accuracy of the Proposed Model
A challenge in enhancing the classification accuracy for
discriminating patients with MCI involves identifying the most
discriminative feature set. Thus, we proposed a feature selection
algorithm based on HSI to mitigate the presence of redundant
features and alleviate the adverse effects of high-dimensional
data on classification learning, as high dimensionality can
impede effective target classification [11]. Furthermore, we
explored how to balance the diversity of base learners and
classification quality in stacking for a specific dataset, treating
the selection of appropriate base learners as a combinatorial
optimization problem and solving it using heuristic algorithms.
The superior performance of the DAELF-HSI model has been
validated on development, internal testing, and external testing
datasets, achieving accuracy of 88.4%, 85.5%, and 84.5%.
Furthermore, the model demonstrated excellent sensitivity and
specificity in detecting patients with MCI, with corresponding
AUC of 0.945 (95% CI 0.903-0.986), 0.912 (95% CI
0.859-0.965), and 0.904 (95% CI 0.846-0.962) for these datasets.

Clinical Implications
The proposed framework offers significant clinical potential
for the early detection of MCI through a noninvasive and
cost-effective approach, providing a viable solution for
widespread screening, particularly in home settings. Heart rate
variability, a sensitive marker of autonomic nervous system
dysfunction, can serve as a reliable indicator of cognitive
impairment, helping clinicians identify at-risk individuals early
in the progression of MCI. Similarly, electrodermal activity
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features, such as skin conductance responses, effectively
differentiate patients with MCI from healthy individuals, further
highlighting the potential of autonomic measures in cognitive
health assessments. Furthermore, the framework enables more
convenient and personalized MCI screening, especially in
remote or underserved areas with limited access to specialized
medical expertise. Its adaptability allows seamless integration
into various health care environments without significant
infrastructural changes, reducing the cost and logistical barriers
typically associated with traditional diagnostic methods.
Moreover, the model’s high sensitivity and specificity, as
demonstrated by its AUC performance, indicate its reliability
in identifying patients with MCI, which is critical for timely
intervention and monitoring the progression of dementia to
more severe stages. In conclusion, it provides clinicians with a
powerful tool for early detection, improving patient outcomes
and ultimately alleviating the burden of cognitive disorders on
health care systems.

Limitations and Future Work
For our study, it is important to acknowledge several potential
limitations and proposed solutions. First, the developed detection
model relies on data from electrodermal activity,
photoplethysmography, and cognitive parameters and untested
generalizability across different datasets, such as
electroencephalogram and eye-tracking data. Future research
plans to expand the dataset under laboratory conditions through
electroencephalogram and eye-tracking tests to enhance the
algorithm’s adaptability to various data modalities. In addition,
the clinical applicability of the Empatica 4 wristband is limited
by its high cost, which may impede its widespread adoption for

household use. Subsequent studies will explore the potential
and accuracy of more cost-effective commercial wearables (such
as Xiaomi Mi Bands, Huawei Bands, and Garmin Smart 5) in
screening for MCI.

Conclusion
In this study, we proposed a Dynamic Adaptive Ensemble
Learning Framework based on Improved Harmony Search,
designed to consolidate data collected from wearable wristbands
and tablet devices to establish a comprehensive and reliable
method for auxiliary diagnosis of MCI. The framework uses
the Empatica 4 wristband to collect EDA and
photoplethysmography from participants, optimizing these
physiological signals through a designed multistage automatic
artifact removal algorithm. In addition, based on Improved
Harmony Search, a dynamic adaptive feature selection algorithm
deepens the analysis of the time, frequency, and nonlinear
domain features, enhancing the model’s predictive performance.
An experimental study involving 1069 participants aged 60 and
above demonstrated that DAELF-HSI achieved classification
accuracies of 88.4%, 85.5%, and 84.5% on development,
internal testing, and external testing datasets, respectively,
proving its effectiveness in identifying discriminative
information related to MCI. In summary, this study combines
an iPad-based cognitive assessment tool with wearable devices,
providing an innovative solution for developing a portable,
home-friendly early detection and screening system for MCI,
offering vital support to clinicians in early detection, improving
patient outcomes, and alleviating the burden of cognitive
impairments on health care systems.
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