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Abstract

Background: Evidence-based medicine combines scientific research, clinical expertise, and patient preferences to enhance the
patient outcomes and improve health care quality. Clinical data are crucial in aligning medical decisions with evidence-based
practices, whether derived from systematic research or real-world data sources. Quality assurance of clinical data, mainly
through predictive quality algorithms and machine learning, is essential to mitigate risks such as misdiagnosis, inappropriate
treatment, bias, and compromised patient safety. Furthermore, excellent quality of clinical data is a prerequisite for the
replication of research results in order to gain insights from practice and real-world evidence.

Objective: This study aims to demonstrate the varying quality of medical data in primary clinical source systems at a
maximum care university hospital and provide researchers with insights into data reliability through predictive quality
algorithms using machine learning techniques.

Methods: A literature review was conducted to evaluate existing approaches to automated quality prediction. In addition,
embedded in the process of integrating care data into a medical data integration center (MeDIC), metadata relevant to this
clinical data was stored, considering factors such as data granularity and quality metrics. Completed patient cases with
echocardiographic and laboratory findings as well as medication histories were selected from 2001 to 2023. Two authors
manually reviewed the datasets and assigned a quality score for each entry, with O indicating unsatisfactory and 1 satisfactory
quality. Since quality control was considered a binary problem, corresponding classifiers were used for the quality predic-
tion. Logistic regression, k-nearest neighbors, a naive bayes classifier, a decision tree classifier, a random forest classifier,
extreme gradient boosting (XGB), and support vector machines (SVM) were selected as machine learning algorithms. Based
on preprocessing the dataset, training machine learning algorithms on echocardiographic, laboratory, and medication data,
and assessing various prediction models, the most effective algorithms for quality classification were to be identified. The
performance of the predictive quality algorithms was assessed based on accuracy, precision, recall, and scoring.

Results: There were 450 patient cases with complete information extracted from the MeDIC data pool. The laboratory and
medication datasets had to be limited to 4000 data entries each to enable manual review; the echocardiographic datasets
comprised 750 examinations. XGB demonstrated the highest performance for the echocardiographic dataset with an area under
the receiver operating characteristic curve (AUC-ROC) of 84.6%. For laboratory data, SVM achieved an AUC-ROC score of
89.8%, demonstrating superior discrimination performance. Finally, regarding the medication dataset, SVM showed the most
balanced performance, achieving an AUC-ROC of 65.1%, the highest of all tested models.

https://medinform jmir.org/2025/1/e60204 JMIR Med Inform 2025 | vol. 13 160204 | p. 1
(page number not for citation purposes)


https://medinform.jmir.org/2025/1/e60204

JMIR MEDICAL INFORMATICS

Bonisch et al

Conclusions: This proposal presents a template for predicting data quality and incorporating the resulting quality information
into the metadata of a data integration center, a concept not previously implemented. The model was deployed for data
inspection using a hybrid approach that combines the trained model with conventional inspection methods.
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Introduction

Evidence-based medicine combines the best available
evidence from scientific research with clinical expertise and
patient preferences. The goal of applying evidence-based
medicine in health care is to enhance patient outcomes,
improve the quality of care, and minimize ineffective or
harmful treatments [1]. Valid clinical data and the associ-
ated metadata serve as the foundation for evidence-based
medicine through high-quality evidence from systematic
research or as real-world data (RWD) from clinical care [2].
It allows clinicians to align their decisions and treatments
with the best available evidence from research and clin-
ical guidelines, leading to better patient outcomes. More-
over, clinical data plays a crucial role in medical research
and innovation. Researchers use large datasets to identify
patterns, risk factors, and potential treatment approaches for
various medical conditions, resulting in advancements and
breakthroughs in medicine [3]. Without awareness of the
data quality within these datasets, researchers and clinicians
may face significant challenges, such as misdiagnosis and
inappropriate treatment, compromised patient safety, and bias
from confounding factors. In addition, the quality of data can
impact the ability to replicate research results and affect the
efficiency of data integration. To mitigate these risks, it is
essential for clinicians and researchers to be mindful of the
quality of the clinical data they are using [4].

Data integration centers, which are set up to consolidate
clinical routine data in German university hospitals, can
provide information about the quality of their data, given their
extensive data resources [5]. The Medical Data Integration
Center of the University Medical Center Gottingen (UMG-
MeDIC) securely stores clinical data (eg, laboratory findings
or echocardiography data) and makes it available upon
request to enable as many researchers as possible to access
the data while taking data protection and security into account

[6].

Data originating from clinical care source systems that are
not collected for the intended research use case are often
incomplete, lack necessary information (eg, missing entries),
or exhibit uncertain measurement quality [7]. Therefore,
providing a precise and detailed description of data through
metadata when merging heterogeneous sources enables a
valid and meaningful integration aimed at ensuring traceable
reuse. Metadata assists researchers and users in searching,
categorizing, and interpreting data from a data warehouse.
In addition, metadata ensures data consistency and facilitates
data management [8,9].
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Qualitative predictions using machine learning algorithms
can be used to gather information about the completeness
of data, which includes not only missing values but also
semantic completeness and consistency. Machine learning
and deep learning methodologies offer significant poten-
tial for ensuring quality. Nalbach et al [10] describe data-
driven estimations of data quality as predictive quality. The
extraction of data and its relation to quality metrics—such
as completeness, consistency, correctness, and correspond-
ence [11], enables data-driven quality assessment based on
historical data. These estimations provide a foundation for
decision-making regarding quality enhancement measures,
such as informing data stewards about necessary missing
values that should be added [10].

Based on the predictive quality approach further described
by Tercan et al [12] and Schmitt et al [13], this research
aimed to identify a predictive model-based quality algorithm
for clinical data, including RWD, and provide automated
quality inspection. The goal of this paper is to demonstrate
the varying quality of medical data in primary clinical source
systems and to inform researchers about data reliability using
machine learning techniques. This approach seeks to identify
predictive model-based quality algorithms for clinical data,
including RWD, to facilitate automated quality inspection,
ensuring data completeness and consistency. As a result of
our proposal, we intend to enhance the reliability of clinical
data used in evidence-based medicine and medical research.

Methods

Literature Review

A literature search regarding machine learning algorithms and
data quality was conducted to provide an overview of the
semantic completeness of data, consider previous work to
build on existing knowledge, and classify this work’s results.

The literature review establishes the foundation for
developing innovative approaches and solutions designed to
assess the quality of clinical data within the UMG-MeDIC.
The literature search was conducted in Embase via Ovid and
PubMed and resulted in 118 search records. After remov-
ing duplicates, 104 results were included in the title and
abstract screening. Following the elimination of publica-
tions unsuitable for the goals of this manuscript, 12 results
remained. The full text of the identified articles was carefully
reviewed, and valuable information was integrated into the
introduction and methodology sections of this manuscript.
The search strategy for PubMed and the corresponding
PRISMA Flow Chart of the literature search are provided in
Table 1 and Table 2 of the Multimedia Appendix 1 [1].
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Ethical Considerations

Ethical approval for the anonymized secondary health
data analysis was obtained from the Ethics Review Com-
mittee of the University Medical Center Géttingen with
the Ref. No. 21/9/18. All developments and experiments
were performed in accordance with relevant guidelines and
regulations. Furthermore, informed consent was obtained
from all participants or their legal guardians and the original
informed consent allows the secondary analysis without
additional consent. Regarding the privacy and confidentiality
protection of human participants all study data is deidentified.

Prerequisites at the UMG-MeDIC

In the context of this project, it was decided to store all
metadata linked to the primary clinical data from the source
systems of the UMG in a relational database (MariaDB). This
was considered necessary because the actual clinical data to
which the metadata refers was already stored in the same
relational database.

The meta and metadata were captured during routine care
and originated from different hospital information systems,
including clinical workstation systems, laboratory informa-
tion systems, echocardiography systems, and microbiology
systems.

Information from the specifications of the supplied data
formats was extracted to develop the preparatory work for the
quality assessment of the clinical data.

Moreover, the granularity of metadata extracted from the
primary source systems was taken into account. Metadata
in primary source systems is captured at varying levels
of granularity (eg, metadata date as day-month-year hour-
minute-second vs metadata date as month-year) and must
therefore be included and processed accordingly.

Data quality was introduced as additional metadata in the
relational database structure to quantify the quality of the
UMG-MeDIC data.

Data Preparation

The clinical data, originating from the clinical source systems
of the UMG, is heterogeneous. This data is extracted from
various primary clinical sources, such as the lab information
system and the clinical workstation system, and consolida-
ted within the UMG-MeDIC. The data are pseudonymized
during the consolidation and processing at the data integration
center. Although the work is based on a technical view-
point of the data sources, demographic information was not
addressed separately. Patient cases were selected based on
three criteria: (1) completed patient cases with (2) echocar-
diographic and laboratory findings, as well as medication
histories (3) from 2001 to 2023, excluding data linked to
outdated process configurations. Consequently, 450 distinct
patient cases with clinical findings were extracted from
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the data pool of the UMG-MeDIC. Among these 450 case
reports, each report includes echocardiographic, laboratory,
and medication data as shown in Figure 1.

A total of 750 echocardiographic examinations were
carried out for these 450 patient cases, which means around
1.6 echocardiographic examinations per patient case. In
comparison, there was significantly more laboratory and
medication data for these 450 patient cases, which did not
allow a manual review of the quality of every individual data
item. Hence, the laboratory and medication data subset was
limited to 4000 data points each. On this basis, a dataset with
750 echocardiographic, 4000 laboratory, and 4000 medication
data items was obtained.

Subsequently, 2 authors manually reviewed the echocar-
diographic, laboratory, and medication data, assigning each
data entry a quality score from O to 1, where O indicates
unsatisfactory quality and 1 indicates satisfactory quality.

The criteria for this assignment were based on correspond-
ing preliminary work by the authors to identify quality
measures [14] and further work related to quality metrics
[11,15-17]. The first criterion is the semantic completeness
of the data, a metric that assesses whether all mandatory
data fields are filled with relevant information. Complete-
ness ensures there are no missing values, enabling users
to fully understand and use the data. The second meas-
ure, data consistency, evaluates whether the data complies
with established standards, conventions, or formats. The
third measure, data correctness, assesses the accuracy of the
information. In addition, the linkage of this data to other
datasets checks whether interlinked or interdependent data
elements convey the same information across all instances.
The quality metric data relevance ensures that the meta-
data meets the needs or expectations of its intended users.
For example, if a dataset is designed for clinical research,
including fields like measurement units might enhance its
relevance. The metric semantic specificity considers the
granularity and precision of semantic concepts in the data.
High semantic specificity implies the use of detailed and
well-defined terms to describe the information. Timeliness,
the sixth metric, pertains to evaluating how current the data
is. Timeliness is crucial, especially for dynamic or time-sen-
sitive resources. The seventh metric, accessibility, measures
whether the data is physically available and comprehensi-
ble to users (whether human or machine), while reproduci-
bility of the data, the eighth and final metric, ensures that
data evaluations are consistent and can be independently
verified by different users or systems. After the separate
reviews, the quality mappings were compared, and deviations
were discussed. Ultimately, a uniform quality mapping for
the echocardiographic, laboratory, and medication data was
established.

This process ensures that the models exclusively learn
from consistently occurring patterns and dependencies.
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Figure 1. Outline of the data selection, starting from the data pool of clinical data from the UMG-MeDIC (Medical Data Integration Center of
the University Medical Center Gottingen), where 450 patient case reports were selected manually. These 450 case reports were then divided into
subclasses of echocardiographic data (sample size of 750), laboratory data (sample size of 4000), and medication data (sample size of 4000). Finally,

the samples from each of the three subsets were manually checked for quality by two authors.

Selection of patient case reports

450 distinct

patient case

b

Manual quality check of the samples

Predictive Machine Learning Algorithms

Machine learning is a subfield of artificial intelligence (AI)
that enables information technology systems to recognize
patterns in existing data and develop solutions autonomously.
This research involves classifying data quality variables for
clinical data. The classification requires a training dataset
with examples for each data source entity’s input and output
variables.

All machine learning models and classifiers were
developed in Python (Python Software Foundation) using
scikit-learn libraries. Each machine learning algorithm was
trained separately on echocardiographic, laboratory, and
medication data to identify the best-performing algorithm for
each dataset.

The machine learning algorithms selected include logistic
regression (LR) [18], k-nearest neighbors (KNN) [19], a
Naive Bayes (NB) classifier [20], a decision tree classifier
[21], a random forest classifier [22], XGB [23], and support
vector machines (SVM) [24].

For the echocardiographic data consisting of 750 samples,
575 samples have been classified. as unsatisfactory quality
(0), while 175 samples are classified as good quality (1).

https://medinform jmir.org/2025/1/e60204

The laboratory data, comprising 4000 samples, revealed
that 17 samples were classified as unsatisfactory (0) and 3983
samples were deemed to be of good quality (1).

The distribution of classes within the medication data
resulted in 1280 samples of unsatisfactory quality (0) and
2720 samples of good data quality (1). Multimedia Appendix
2 provides an overview of the features for the three subsets
and their target distribution. For each feature of the three
subsets, the data are distributed across interval scales (Table

1).

The datasets exhibit an imbalanced target distribution,
which necessitated consideration of the overclassification of
the majority class. During data preprocessing, the Synthetic
Minority Oversampling Technique (SMOTE) was used to
tackle this imbalance. SMOTE generates synthetic data
points by interpolating between minority class samples. The
sampling strategy in SMOTE was set to default (auto), with a
random state of 0 and k-neighbors configured to 5.
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Table 1. Depiction of the features within the three subsets (echocardiography, laboratory and medication) with the data type of the feature and the
number of features listed.

#Numbers Column Data type
Echocardiography
0 untersuchungsalter Int64
1 groesse Float64
2 gewicht Float64
3 aoroot Float64
4 lads Float64
5 ivsd Float64
6 Ivdd Float64
7 Ivpwd Float64
8 tapse Float64
9 Ifev Float64
10 Ivef_vis Float64
11 Ivds Float64
12 Ivedv Float64
13 Ivesv Float64
14 ladslong Float64
15 laflaeche Float64
16 lavolindex Float64
17 mvevmax Float64
18 quality Int64
Laboratory
0 Vorgang_Ref Int64
1 Probe_Ref Int64
2 Ergebnis_ID Int64
3 Analyse_Typ_ID Int64
4 Ergebnis_Wert Float64
5 Ergebnis_Darstellung Float64
6 Ergebnis_Manuell Float64
7 Inaktiv Int64
Medication
0 application_type Int64
1 application_deleted Int64
2 application_bolus_value Float64
3 application_dose_value Float64
4 application_perfusor_volume Float64
5 application_route Int64
6 application_site Float64
7 application_status Int64
8 external_id.1 Int64
9 mid.1 Int64
10 active Int64
11 additional_fee_obligation Int64
12 availability Int64
13 charge_documentation_required Int64
14 out_of_trade Int64
15 recent Int64
https://medinform jmir.org/2025/1/e60204 JMIR Med Inform 2025 | vol. 13 160204 | p. 5
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#Numbers Column Data type
16 reference_value Float64
17 source_id Int64
18 successor_id Float64
19 version Int64
20 external_id.2 Int64
21 amount Float64
22 ingredient_type Float64
23 main_ingredient_id Float64
24 sequence_number Int64
25 meona_substance_id Float64
26 external_id.3 Int64
For input feature extraction, a multilayer perceptron “min_samples_leaf”: randomized range, and criterion: gini or

autoencoder model was used, where each layer of the encoder
uses batch normalization and leaky ReLU activation. The
autoencoder was chosen because it automatically learns
feature representations, which reduces the need for explicit
feature selection methods that involve extensive iterative
training. In addition, the ability to handle nonlinear relation-
ships within the data necessitated the use of an autoencoder.
Finally, the datasets were divided into training and test sets
and validated using 5x10-fold cross-validation.

Since it is not feasible to universally preselect suitable
algorithms in advance, it was necessary to test and evaluate
various learning algorithms tailored to specific scenarios [25].

The LR algorithm was selected as the baseline for
classification tasks because it predicts the probability of
a target variable and is widely used in both binary and
multiclass classifications. The parameters included the solver
(newton-cg, lbfgs, and liblinear), a default penalty, and the
inverse of regularization strength (C) set as loguniform (le-5,
100).

The KNN classifies a data point based on the major-
ity class among its k nearest neighbors. Due to its sim-
plicity and effectiveness for low-dimensional data, it is a
strong candidate for a benchmark. The parameters are as
follows: “n_neighbors” ranges from 1 to 30 in increments
of 5; weights can be uniform; the algorithm options include
"ball_tree, kd_tree, and brute;” "leaf size” can be 1, 10, or
30; and p is 1 for manhattan distance and 2 for euclidean
distance.

NB applies Bayes’ theorem under strong independence
assumptions. It is computationally efficient and performs
effectively with high-dimensional data. The smoothing
parameter prevents zero probabilities for unseen data, so it
was set to alpha: 0.01 to 10.0.

Decision trees split data hierarchically based on feature
thresholds to predict target labels. Hyperparameters like depth
and minimum samples help reduce overfitting with this
algorithm. In addition, decision trees are interpretable and
can handle nonlinear relationships. The parameters set were
“max_depth”: 3 or none, “max_features”: randomized range,
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entropy.

While random forests are resilient to overfitting and excel
across various datasets, parameter tuning aims to balance tree
diversity with computational cost. The parameters include
bootstrap: true, “max_depth”: the maximum depth of trees
(10, 20, 50, 100, or None), “max_features”: the number
of features considered (auto or sqrt), “min_samples_leaf”:
options of 1, 2, or 4, “min_samples_split”: the minimum
number of samples needed to split a node (2, 5, or 10), and
“n_estimators”: the total number of trees in the forest (50 or
100).

XGBoost is an optimized gradient-boosting algorithm
that iteratively improves model predictions. It is renowned
for its performance with structured or tabular datasets,
and through hyperparameter tuning, it seeks to minimize
overfitting while boosting prediction accuracy. The parame-
ters include “learning_rate”: 0.05 to 0.30, “max_depth”: the
maximum depth of the trees (3 to 15), “min_child_weight”:
the minimum sum of instance weights in a child node (1 to 7),
gamma: the minimum loss reduction required to make a split
(0.0 to 0.4), and “colsample_bytree”: the fraction of features
sampled for each tree (0.3 to 0.7).

As a large margin classifier, the SVM identifies a
hyperplane that best separates classes in high-dimensional
space. While it is effective for both linear and nonlinear data,
a linear kernel was used here for computational efficiency,
given the dataset size (kernel: linear kernel for simplicity and
interpretability; probability: enabled for AUC-ROC computa-
tion).

Results

Literature Review Overview

The literature search yielded valuable insights into the
relationship between machine learning algorithms and data
quality, specifically focusing on semantic completeness
within clinical datasets. After applying the screening process,
the 12 retained articles provided key perspectives on data
quality assessment, machine learning methodologies, and
their application within clinical environments. A thorough

JMIR Med Inform 2025 | vol. 13 160204 | p. 6
(page number not for citation purposes)


https://medinform.jmir.org/2025/1/e60204

JMIR MEDICAL INFORMATICS

analysis of these studies revealed several recurring themes.
First, a significant portion of the literature addressed the
challenges of ensuring semantic completeness in structured
and unstructured clinical data. Several studies emphasized the
necessity of standard terminologies and ontologies to enhance
data consistency and interoperability. In addition, multiple
sources explored different machine learning techniques, such
as supervised and unsupervised learning approaches, to detect
and mitigate issues related to incomplete or inconsistent
data. Key insights from the literature were incorporated
into the introduction and methodology sections, providing
a solid theoretical foundation for this study. The findings
underscored the importance of leveraging machine learning
models to improve clinical data integrity and supported the
need for robust evaluation metrics to quantify data quality
improvements. The PRISMA (Preferred Reporting Items for
Systematic reviews and Meta-Analyses) Flow Chart and
detailed search strategy, presented in Table S2 of Multimedia
Appendix 1, further outline the systematic approach used in
identifying relevant studies.

Since here we consider quality prediction as a binary
classification problem, we evaluated binary-class classifiers
on the provided datasets. We then compared the results of
each model in a table that included accuracy, precision, recall,
and scoring.

Predictive Machine Learning Algorithms

Multiple machine learning algorithms were evaluated for
predicting the quality of echocardiography data, with LR
serving as the baseline model. LR achieved an accuracy
of 73.0% (0.73/1), precision of 57.1% (0.571/1), recall of
73.0% (0.73/1), Fy-score of 64.1% (0.641/1), and an AUC-
ROC score of 52.4% (0.524/1). While this model provides
a foundational benchmark, other algorithms demonstrated
superior performance across all metrics, suggesting their
greater suitability for this dataset, as shown in Table 2.

KNN demonstrated improvements over LR, achieving an
accuracy of 76.6% (0.766/1) and an AUC-ROC score of
70.3% (0.703/1). The improved precision (0.744/1, 74.4%)

Bonisch et al

and Fi-score (0.684/1, 68.4%) emphasize its more effective
balance of false positives and false negatives compared to the
baseline.

NB attained a recall rate of 75.9% (0.759/1), comparable
to KNN, but exhibited relatively lower precision at 57.6%
(0.576/1) and an AUC-ROC score of 51.0%. This suggests a
trade-off in its predictive performance.

The decision tree classifier slightly outperformed LR,
reaching an accuracy of 73.7% (0.737/1) and an AUC-ROC
score of 71.3% (0.713/1). The Fj-score of 73.7% (0.737/1)
emphasizes its ability to maintain a balanced level of
precision and recall.

The random forest classifier delivered a notable improve-
ment, achieving an accuracy of 82.5% (0.825/1) and
an AUC-ROC score of 85.3% (0.853/1). These metrics,
alongside an Fi-score of 81.0% (0.81/1), highlight its robust
performance and effectiveness in capturing complex patterns
in the data.

XGB achieved the highest overall performance, with an
accuracy of 84.7% and an AUC-ROC score of 84.6%. Its
Fi-score of 84.0% and precision of 83.9% demonstrate its
ability to consistently deliver high-accuracy predictions while
minimizing false positives.

The SVM achieved an accuracy of 73.0%, comparable
to that of LR, but it demonstrated an improvement in the
AUC-ROC score of 65.7%. Its Fj-score of 67.1% reflects a
slight enhancement in predictive balance.

The laboratory dataset consisted of 4000 data items.
The performance of the machine learning algorithms was
evaluated on the laboratory dataset, again using LR as the
baseline model (refer to Table 3). LR achieved an accuracy of
99.8%, a precision of 99.5%, a recall of 99.8%, an F;-score
of 99.6%, and an AUC-ROC score of 33.1%. Although LR
demonstrated strong results in accuracy, precision, and recall,
its relatively low AUC-ROC score indicates limitations in its
ability to effectively discriminate between classes.

Table 2. Scoring of the prediction classifiers (in percent) evaluated for the echocardiographic data set with Logistic Regression, K-Nearest
Neighbors, Bayes Classifier, Decision Tree, Random Forest, Extreme Gradient Boosting, and SVM. While XGB’s accuracy is 84.7, the AUC-ROC
score is 84.6. In comparison, the accuracy of the RF is 82.5, but the AUC-ROC score is 85.3.

Accuracy Precision Recall F|-score AUC-ROC? score
Logistic regression 730 57.1 730 64.1 524
K nearest neighbors 76.6 744 76.6 68.4 70.3
Naive Bayes classifier 759 57.6 759 65.5 510
Decision tree classifier 73.7 73.7 73.7 73.7 71.3
Random forest classifier 82.5 813 82.5 81.0 853
Extreme gradient boosting 84.7 839 84.7 84.0 84.6
Support vector machine 73.0 65.2 73.0 67.1 65.7

2AUC-ROC: area under the receiver operating characteristic curve.
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Table 3. Scoring of the prediction classifiers (in percent) evaluated for the laboratory data set with Logistic Regression, K-Nearest Neighbors, Bayes

Classifier, Decision Tree, Random Forest, Extreme Gradient Boosting, and SVM. While the accuracy of all classifiers is nearly the same, SVM

outperforms with the highest AUC-ROC score of 89.8.

Accuracy Precision Recall F1-score AUC-ROC? score
Logistic regression 99.8 99.5 99.8 99.6 33.1
K nearest neighbors 99.9 99.9 99.9 99.9 74.6
Naive Bayes classifier 99.8 99.5 99.8 99.6 50.0
Decision tree classifier 99.8 99.5 99.8 99.6 792
Random forest classifier 99.9 99.9 99.9 99.9 742
Extreme gradient boosting 99.5 99.7 99.5 99.6 59.3
Support vector machine 99.8 99.5 99.8 99.6 89.8

2AUC-ROC: area under the receiver operating characteristic curve.

KNN slightly outperformed LR in accuracy (0.999/1, 99.9%)
and recall ( 99.9%). Its AUC-ROC score of 74.6% (0.746/1)
indicates a notable enhancement in classification discrimina-
tion compared to LR.

NB achieved results similar to LR, with an accuracy
of 99.8% (0.998/1) and an AUC-ROC score of 50.0%
(0.5/1). Although its precision, recall, and Fq-score matched
those of LR, the modest AUC-ROC score indicates poten-
tial limitations in distinguishing between classes in certain
situations.

DT matched the accuracy, precision, and recall of LR
but demonstrated a marked improvement in its AUC-ROC
score (0.792/1, 79.2%). This highlights its enhanced ability
to effectively separate classes despite similar performance on
other metrics.

RF also achieved 99.9% (0.999/1) accuracy, precision, and
recall, equaling KNN in these metrics. However, its AUC-
ROC score of 74.2% (0.742/1) suggests that its performance
in classification discrimination is slightly less robust than that
of DT but still superior to LR.

XGB achieved a high accuracy of 99.5% (0.995/1) and an
Fi-score of 99.6% (0.996/1). However, its AUC-ROC score
of 59.3% (0.593/1) reveals its lower discrimination capacity
compared to DT, RF, and KNN in this dataset.

SVM achieved strong results across all metrics, with
accuracy, precision, recall, and Fj-score aligning with those
of the top-performing models (99.8%-99.9%). Notably, its
AUC-ROC score of 89.8% (0.898/1) is the highest among all
models, demonstrating superior discrimination performance
within this dataset.

For the medication dataset, a sample of 4000 data items
was cleaned and analyzed regarding the target quality. As
shown in Table 4, the baseline model LR achieved an
accuracy of 59.2% (0.592/1), precision of 35.0% (0.35/1),
recall of 59.2% (0.592/1), an Fj-score of 44.0% (0.44/1),
and an AUC-ROC score of 45.8% (0.458/1). Although it
performed better than several models in terms of recall
and accuracy, its overall low precision and AUC-ROC
score indicate limited effectiveness in distinguishing between
classes.

https://medinform jmir.org/2025/1/e60204

KNN performed lower than LR, with an accuracy of
48.3%, precision of 43.8%, and a slightly better Fq-score of
44 .9%. However, its AUC-ROC score of 43.2% was lower,
indicating weaker discriminatory ability compared to LR.

NB showed results similar to LR, achieving an accuracy
of 58.3% and an Fj-score of 43.6%. However, its AUC-
ROC score of 42.6% indicates slightly lower classification
discrimination compared to LR.

DT achieved an accuracy of 51.7%, a precision of 39.5%,
and a recall of 51.7%, resulting in an Fj-score of 42.5%.
Its AUC-ROC score of 43.1% was comparable to that of
KNN and NB, but slightly lower than LR, indicating similar
performance levels.

RF and XGB performed poorly on this dataset. RF
achieved an accuracy of 30.0%, an Fj-score of 29.5%, and
an AUC-ROC score of 22.2%. XGB exhibited even lower
accuracy at 21.7%, with precision at 23.3%, an Fi-score
of 22.3%, and an AUC-ROC score of 19.0%, underscoring
the significant limitations of these models for this dataset.

The SVM exhibited the most balanced performance among
the models, achieving an AUC-ROC score of 65.1%, the
highest across all models. Although it has a relatively low
accuracy of 30.0% and an Fq-score of 30.0%, its AUC-ROC
score suggests strong potential for distinguishing between
classes.

Based on the results of testing different machine learn-
ing algorithms on the three datasets, the XGB model was
deployed for echocardiographic data, the SVM for laboratory
data, and the SVM for medication data during the UMG-
MeDIC data inspection process.

The data inspection process used a hybrid approach,
meaning that data quality inspection was not solely reli-
ant on the trained model; conventional inspections were
also conducted. To achieve this, it was decided that data
items flagged as unsound during quality prediction would
undergo traditional inspection to reduce false-positive rates
and fine-tune the models. The classifiers were then retrained
with the new test data.
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Table 4. Scoring of the prediction classifiers evaluated for the medication data set with Logistic Regression, K-Nearest Neighbors, Bayes Classifier,
Decision Tree, Random Forest, Extreme Gradient Boosting and SVM. While LR and NB performed with the best accuracy (59.2, 58.3), SVMs

AUC-ROC score of 65.1 was the highest.

Accuracy Precision Recall F1-score AUC-ROC score
Logistic regression 592 350 592 440 458
K nearest neighbors 48.3 43.8 48.3 449 432
Naive Bayes classifier 583 34.8 583 43.6 42.6
Decision tree classifier 51.7 395 51.7 425 43.1
Random forest classifier 300 29.0 300 29.5 222
Extreme gradient boosting 21.7 233 21.7 223 190
Support vector machine 300 32.1 300 300 65.1

Prerequisite at the UMG-MeDIC

In general, predicting the data quality for echocardiography,
laboratory, and medication data is now possible based on
trained ML models, allowing the results to be made avail-
able to researchers. The relational structure established for
metadata stores information in the metadata table, which
includes an ID, the name of the metadata, a description
of the metadata, and details about “metadata_type_id,”
“source_item_id,” and “value_id,” all of which are inheri-
ted from other tables through foreign keys in the relational
structure. The respective metadata value is stored in the
metadata_value column of the metadata_value table, as
illustrated in Figure 2.

The predictive quality information is integrated via SQL
queries into the relational database within UMG-MeDIC.
Specifically, the metadata for the predictive quality data is
stored in the metadata table, while the corresponding results
of the predictive quality analysis, in terms of actual values,
are stored in the “metadata_value” table. This setup enables
easy retrieval and analysis of the prediction results, as the
metadata table acts as the central reference point for all
integrated data, with each entry linking back to its respective
predicted values in the metadata_value table. Figures 8 and
9 (second reference in Multimedia Appendix 1 [2]) illustrate
an example of the metadata structure within the relational
database that includes the added predictive quality informa-
tion.

Figure 2. Relational structure and the metadata tables within the UMG-MeDIC (Medical Data Integration Center of the University Medical Center

Gottingen).
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Discussion

Conclusion

The benefits of RWD for medical care and research
are numerous, ranging from clinical decision-making and
patient-centered medicine to its application as synthetic

https://medinform jmir.org/2025/1/e60204

* metadata_id BIGINT

controls in randomized trials. Moreover, real-world evidence
enhances randomized controlled trials to bridge the efficacy-
effectiveness gap. The central requirement for leveraging the
data to achieve these advantages is data quality, particularly
its reliability [26]. The quality of the data can be articula-
ted or supported with corresponding metadata, thus further
investigation into predicting data quality with Al is necessary.
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Given the significant importance of reliable health care data
for researchers in reusing it, the UMG-MeDIC has incorpora-
ted metadata on data quality as easily accessible information.

Principal Findings

All previously collected metadata concerning the primary
source systems of the UMG within CouchDB were extrac-
ted and transferred to the newly established generic rela-
tional metadata structure within the data warehouse (DWH),
as described in Section Prerequisite at UMG-MeDIC. This
relational structure aligns with the DWH’s underlying design
and serves as another principal finding of this work. After
the algorithm transferred all existing metadata into the newly
created relational metadata tables, the next step was to adjust
the extract-transform-load (ETL) processes. In addition,
metadata types, such as predicted data quality and data item
language, which had not been previously collected and stored,
are now being integrated into the existing metadata, providing
more information about data reliability.

Based on the above results, predicting data quality for the
3 clinical datasets served as a case study. It evaluated the
approach of predicting data quality within the ETL process,
storing the resulting data quality as metadata alongside other
metadata, and making the information available for research-
ers.

The study evaluated several machine learning models for
predicting data quality across 3 different datasets: echocardio-
graphic, laboratory, and medication data. The results of the
echocardiographic data show that ensemble methods like RF
and XGB outperform simpler models, including the baseline
model LR and NB. The strong AUC-ROC scores of RF
and XGB highlight their ability to effectively discriminate
between classes, making them the most suitable models for
this dataset.

While most models demonstrated high accuracy, preci-
sion, recall, and Fi-scores for predicting the laboratory data,
significant variations were observed in AUC-ROC scores.
SVM emerged as the most effective model for this data-
set, combining high overall performance with the best class
discrimination capabilities. KNN, DT, and RF also performed
well, showing notable improvements over LR regarding
AUC-ROC scores.

The medication dataset showed lower performance across
all models. LR outperformed other models in terms of
accuracy and recall, making it the most effective choice
for this dataset. However, SVM’s superior AUC-ROC score
suggests it may be better suited for tasks requiring high
class separation. Models like RF and XGB underperformed
significantly, possibly due to the characteristics of this dataset
in particular. This indicates a poor fit without further data
engineering.

Comparison to Previous Work

To the best of our knowledge, data quality prediction based
on specific quality factors for echocardiographic, laboratory,
and medication data, as well as the usage and provision of
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the resulting data quality within metadata, have not yet been
implemented.

Therefore, the approach taken in this work is aligned
with similar studies in other fields. Schmitt et al describe
a comparable procedure concerning the inspection process
in the electronic industry for producing programmable logic
controllers. The predictive model-based quality inspection
framework provided there was adapted for application in the
Medical Data Integration Center.

Regarding metadata, no comparable examples were found
in the field of medical data. However, a similar method
for assessing the quality of medical data was employed by
Haghighat et al for digitized histological glass slides, where
they also used Al to evaluate the utility and diagnostic level
of these images [27]. According to Georgiev and Valkanov,
the future of DWH data quality, however, lies in further
developing ETL processes towards dynamic and adaptable
solutions with automated identification and elimination of
quality issues based on artificial intelligence [28].

The existing metadata needed to be transferred and stored
in the correct table at the right location. This process only
had to be done once for slightly over 3,000 existing metadata
documents. From now on, all additional metadata will be
loaded directly into the relational metadata structure through
adapted ETL routes. In contrast, Oukhouya et al propose a
generic metadata management model designed specifically
for data from heterogeneous sources to be stored in a
DWH [29]. Their model is based on a data lake, a concept
introduced in business intelligence architecture to manage
large volumes of unstructured and semistructured data. They
identified several essential functionalities of metadata that
are critical for supporting a metadata management system.
Requirements may vary significantly between DWHs in
the medical field and those in other sectors. Nonetheless,
this comprehensive model could serve as a starting point
for developing suitable metadata management for medical
DWHs to avoid reinventing the wheel. Therefore, in further
developing metadata management for the DWH of UMG
MeDIC, the extent to which the proposed model can provide
applicable information for a relational database system should
be evaluated.

Strengths and Limitations

First, the low performance of machine learning models,
particularly in echocardiographic and medication samples,
could be due to several factors. Models may struggle if the
features in the dataset lack sufficient discriminatory power or
if the presence of irrelevant or inconsistent data impairs their
ability to learn effectively.

To address these issues, an error analysis was conducted to
identify which classes are most often misclassified. There-
fore, confusion matrices were used to identify false positives
and false negatives for each model (see third reference in
Multimedia Appendix 1 [3]).

Second, the high occurrence of false negatives in the
LR, KNN, and NB indicates that the data within the
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medication dataset are composed of non-linear relationships.
Furthermore, the high dimensionality (many features) of
the medication dataset results in problematic KNN calcu-
lations. The confusion matrix for the DT shows that the
model struggles to correctly identify class 0. It almost
always predicts class 1, even when class 0 would be the
correct prediction. To improve this behavior, we performed a
threshold value optimization. The XGB model demonstrates
significant weaknesses in class differentiation, particularly
for class 0. A potential reason for this issue may be that
the features lack sufficient discriminatory power. The same
observation applies to RF and SVM.

The performance of the models within the echocardiog-
raphy dataset indicates that the dataset includes non-linear
relationships and dependencies among the features. The
slightly higher performance of models like RF and XGB also
suggests that non-linear relationships play a role.

Third, 750 data points may not be sufficient for models
like RF, XGB, and SVM, which typically learn from a large
number of parameters and data points. These models often
require more data to generalize effectively.

Although the medication dataset model currently shows
lower predictive performance (accuracy: 30%, AUC-ROC:
65.1%), it has been integrated into the data inspection process
as part of a hybrid approach, where automated predictions
enhance traditional inspection methods. Rather than replacing
manual review, the model assists in prioritizing data items for
further inspection, enabling data stewards to concentrate on
potentially lower-quality records.

Continual model retraining poses challenges, including
catastrophic forgetting, data drift, and a need for robust
evaluation strategies [30,31]. To tackle these issues, the
model undergoes scheduled retraining with updated data
while performance is monitored using metrics such as
accuracy, recall, and AUC-ROC. The impact of human
factors in creating, consolidating, and evaluating the database,
especially regarding potential errors, must be taken into
account. Moreover, it can be assumed that an increased
number of connected systems in a MeDIC will reduce human
errors but also create new types of errors [32].

Thus, newly flagged data points undergo manual verifi-
cation before being included in future training iterations,
ensuring that retraining enhances rather than diminishes
performance. In productive operation, new, realistic data is
often continuously available, better reflecting how the target
variables behave in real life. Additionally, models such as RF,
XGB, and SVM significantly benefit from a larger database,
allowing them to learn more reliable patterns.

The machine learning algorithms ran on a laptop with
Microsoft Windows 11 Pro, which features an Intel Core
processor with 4 cores. The prediction runtime was about
10 minutes for all the algorithms. The models are currently
deployed at UMG-MeDIC, and there is an inspection strategy
in place that follows a hybrid approach.

However, it is important to note that the technical
implementation of the relational data structure depends on the

https://medinform jmir.org/2025/1/e60204

Bonisch et al

inherent and specific requirements of the UMG-MeDIC. This
means that while the data storage is specialized, the quality
prediction of the clinical data remains unaffected by it.

Nevertheless, scalability for datasets containing vastly
different types of clinical data, such as imaging data or
genomic sequences, may require additional preprocessing
or adaptation steps. For instance, the features extracted
from such data may vary significantly from those used
in the current work, necessitating customized data prepara-
tion pipelines and potentially adjusted analytical models.
Furthermore, the quality scale employed was established as
binary, using 0 and 1; a more refined granularity of the
quality scale is pending further development.

Future Directions

Future work aims to enhance model performance by applying
feature engineering, using data augmentation techniques,
and investigating possible adjustments in model selection.
Despite current limitations, even imperfect predictive models
are valuable as they direct manual review efforts, reduce
workload, and improve overall data quality assessment.

Furthermore, it must be discussed to what extent the
metadata published in the different data formats contain the
risk of reidentification. Metadata do not intrinsically contain
any personal data within the UMG-MeDIC. However, it must
be examined how far the linkage of the metadata with further
information or the uniqueness of the metadata increase the
risk of re-identification.

The ability to provide researchers with quality information
on data they want to inspect and research is a key success
factor for reliable medical and biomedical research, avoiding
the “garbage in—garbage out” paradigm [33]. Due to the
abundance of data accessible in a medical data integration
center, employing predictive model-based quality inspection
shows great promise in ensuring reliable data for medical
research.

However, real-world deployment brings additional
challenges such as data drift, generalizability across clinical
settings, and resilience against distribution shifts. Addition-
ally, it’s important to note that as more systems connect
within a MeDIC, human errors (eg, transmission errors)
decline, yet new types of errors may arise, which are part
of the continuous learning process of these systems.

Moving forward, it is necessary to conduct a postdeploy-
ment evaluation, which includes the monitoring of predic-
tion performance on live data at the UMG-MeDIC data
integration center, comparing model outputs with manual
quality assessments from data stewards, testing on external
datasets to ensure generalizability beyond internal sources,
and longitudinal tracking of model performance to detect
degradation over time.

This expanded evaluation will allow us to refine
model performance, improve generalization, and provide a
more comprehensive assessment of real-world impact. By
integrating these additional validation steps, we aim to ensure
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the long-term reliability and effectiveness of our approach in
clinical data quality assessment.
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ETL: Extract-Transform-Load

KNN: k-nearest neighbor

LR: logistic regression

MeDIC: Medical Data Integration Center

NB: Naive Bayes

PRISMA: Preferred Reporting Items for Systematic reviews and Meta-Analyses
RWD: real world data

SMOTE: Synthetic Minority Oversampling Technique
SVM: support vector machine

UMG: University Medical Center Gottingen

XGB: extreme gradient boosting
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