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Abstract
Background: Federated analytics in health care allows researchers to perform statistical queries on remote datasets without
access to the raw data. This method arose from the need to perform statistical analysis on larger datasets collected at multiple
health care centers while avoiding regulatory, governance, and privacy issues that might arise if raw data were collected at a
central location outside the health care centers. Despite some pioneering work, federated analytics is still not widely used on
real-world data, and to our knowledge, no real-world study has yet combined it with other privacy-enhancing techniques such
as differential privacy (DP).
Objective: The first objective of this study was to deploy a federated architecture in a real-world setting. The oncology study
used for this deployment compared the medical health care management of patients with metastatic non–small cell lung cancer
before and after the first wave of COVID-19 pandemic. The second goal was to test DP in this real-world scenario to assess its
practicality and use as a privacy-enhancing technology.
Methods: A federated architecture platform was set up in the Toulouse, Reims, and Foch centers. After harmonization
of the data in each center, statistical analyses were performed using DataSHIELD (Data aggregation through anonymous
summary-statistics from harmonized individual-level databases), a federated analysis R library, and a new open-source DP
DataSHIELD package was implemented (dsPrivacy).
Results: A total of 50 patients were enrolled in the Toulouse and Reims centers and 49 in the Foch center. We have shown
that DataSHIELD is a practical tool to efficiently conduct our study across all 3 centers without exposing data on a central
node, once a sufficient setup has been established to configure a secure network between hospitals. All planned aggregated
results were successfully generated. We also observed that DP can be implemented in practice with promising trade-offs
between privacy and accuracy, and we built a library that will prove useful for future work.
Conclusions: The federated architecture platform made it possible to run a multicenter study on real-world oncology data
while ensuring strong privacy guarantees using differential privacy.
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Introduction
Federated analytics (FA) [1] allow researchers to perform
statistical queries on remote datasets without accessing raw
data. This method has emerged from the need of conduct-
ing statistical analyses on larger datasets originating from
multiple health care centers, while avoiding regulation,
governance, and privacy related issues that could occur if the
raw data were gathered in a central location external to the
health care centers.

DataSHIELD (Data aggregation through anonymous
summary-statistics from harmonized individual-level
databases) [2] is one of the pioneering open-source soft-
ware solutions for bioscience collaboration using federated
analysis. It has been used in several projects including the EU
Child Cohort Network [3] and German MIRACUM consor-
tium [4]. However, even if it has been identified as a next step
in some oncology studies [5], to the best of our knowledge it
has not been used on real-world oncology data. One possible
reason for this can be that data harmonization is actually the
sticking point, since it proves to be challenging on real-world
data when not already done ahead of time.

While FA ensures that sensitive data are never directly
exposed, results from statistical queries can still leak some
information from individuals. Indeed, several privacy attacks
[6,7] have been proposed to exploit common statistical
analysis results and disclose private information. To mitigate
these attacks, differential privacy (DP) can be used in
combination with FA to provide stronger privacy guaran-
tees. DP [8,9] is a method for computing statistical analy-
ses on a sensitive dataset in such a way that the results
do not compromise the privacy of the initial raw data. It
proves particularly appropriate for studies on patient health
data which are highly sensitive, but as far as we know,
no real-world data study have already combined FA and
privacy-enhancing techniques such as DP. Our study focuses
on a scenario with 3 hospital nodes, consistent with typical
real-world deployments in health care, where the number
of participating centers is usually small (on the order of a
few nodes). Scalability and performance metrics (eg, query
response times and network latency) were therefore not the
primary focus of this pilot.

The goal of this study, called Distributed Analytics for
Research in Hospitals (DARAH), is to evaluate the opera-
tional deployment of a federated architecture in the context of
a real-world oncology study. Another objective is to analyze
the impact of DP in a federated analysis on the meaningful-
ness of the study results.

Methods
Use of DataSHIELD
At the time of starting the project, we evaluated multiple FA
frameworks and chose DataSHIELD due to its comprehen-
sive privacy controls, stable community support, and mature
set of statistical functions. DataSHIELD’s unique strength
lies in its local, decentralized authorization mechanism and
built-in privacy disclosure checks, which prevent analysts
from executing arbitrary code on remote servers. The “default
privacy disclosure mode” enforces a baseline set of privacy
checks (eg, thresholds on minimum cell counts) that align
with real-world clinical data governance needs. While other
tools like NVidia FLARE or custom Python/R frameworks
exist, they often lack these out-of-the-box privacy safeguards,
making DataSHIELD a practical choice for our use case. We
maintained the default privacy settings throughout the study
to ensure a fair demonstration of DataSHIELD’s capabilities
without additional configuration.
Use of Differential Privacy
DP provides a measurement of the privacy risk associated
with publishing each particular result on a sensitive dataset,
by measuring the maximum leakage that each result can cause
about the individuals’ data. In practice, it often works through
the addition of a controlled amount of statistical noise to
obscure the contributions to the result from each individual in
the dataset.

Several open-source libraries exist that implement DP,
most of which are written in Python or expose a Python
interface. Popular ones include Google’s DP library [10],
PyDP [11] from the OpenMined community and OpenDP
[12]. In R, the main open-source library is the diffpriv
library [13] that implements some DP mechanisms but not
a real suite of functions ready to use, and which is not
actively supported with last contributions going back to 2017.
Furthermore, none of these tools were directly compatible
with the DataSHIELD framework, which requires a specific
interface in R. As a result, a new open-source a DP R package
(R Core Team) for DataSHIELD has been implemented:
dsPrivacy. It is available in the Arkhn GitHub repository.

dsPrivacy implements common statistical operations such
as mean (SD) with DP and can be directly integrated into
DataSHIELD. More specifically, pure DP has been imple-
mented, which means that the statistical noise added to
the result is drawn from a Laplacian distribution. Privacy
is therefore defined with a single parameter “ε” (which
corresponds to the inverse of the noise variance) and it is
called the privacy budget. The privacy budget ε controls the
amount of noise injected in the computation and hence the
privacy of the analysis, smaller the privacy budget ε, higher
the noise, which means better privacy guarantees since the
private information is better covered by the noise.
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DP induces a trade-off between privacy and accuracy of
the analysis [14] as privacy is ensured with noise, better
privacy means a lower signal-to-noise ratio and less meaning-
ful results. Conversely, when ε is high, the noise is reduced
and privacy degrades. Choosing the right value for ε from a
privacy standpoint is quite controversial [15] and is highly
dependent on the context and the study considered.

dsPrivacy in the context of FA works by adding Laplacian
noise locally at each center on the results computed on the
local datasets before results are aggregated on a central node.
This is referred to as local DP, as opposed to central DP,
where the noise is added after the aggregation part on the
central node. This paradigm is detailed in the Discussion
section.
Use Case: Differences in the Patient Drug
Exposure of Patients With Non–Small
Cell Lung Cancer Before and After the
First Wave of the COVID-19 Pandemic

Context
In order to test the implementation of a federated platform
with DP, a study was conducted using real-world oncology
data, with the aim of analyzing the differences in the patient
drug exposure of patients with non–small cell lung cancer
before and after the first wave of the COVID-19 pandemic.
Specifically, the analyses were based on the first line of
treatment, including its duration and disease progression at
24 months. The study was carried out in 3 hospitals: Foch
Hospital, Toulouse University Hospital Center, and Reims
University Hospital Center.

Patient Selection
The inclusion criteria were adult patients with metastatic non–
small cell lung cancer treated with chemotherapy, immu-
notherapy, antiangiogenic therapy, or any combination of
these treatments at Foch, Toulouse, and Reims centers
between March 2019 and March 2021. The list of considered
treatments is available in Multimedia Appendix 1.

The exclusion criteria included patients objecting to the
reuse of their data, protected adult patients (patients under
curatorship, tutorship, or advisership), patients undergoing a
clinical trial, patients whose follow-up did not start in one
of these centers, patients who are not immediately meta-
static, and patients with an epidermal growth factor receptor
mutation, anaplastic lymphoma kinase translocation, or ROS
proto-oncogene 1 mutation.

For this study, the objective was to have 25 patients per
period and per site (ie, 50 patients per center). Initially,
patients were preselected using the inclusion criteria present
in the chemotherapy prescription software CHIMIO, namely
the date and type of treatment. Since the other criteria for
inclusion and exclusion were not available in CHIMIO,
physicians in each center manually assessed whether the
patients could be included in the study.

Variables
In this study, the variables of interest were the duration of
the first line of treatment and the disease progression at
24 months following or during the first line of treatment.
The start of a second line of treatment or death following
(before the start of a second line) or during the first line of
treatment were the proxies used for disease progression at
24 months. These events had to have occurred during the
observation period, which was 2 years after the patient’s
inclusion in the study. The explanatory variable was the
patient’s inclusion period, before the first wave of COVID-19
(March 1, 2019, to March 1, 2020) or after the first wave
of COVID-19 (March 2, 2020, to March 31, 2021). Some
potential confounders were also studied, such as age, gender,
BMI, blood creatinine level, and type of treatment. All these
variables were extracted from the CHIMIO software and are
listed in Multimedia Appendix 2.
Data Harmonization
In this study, a physician visited each participating site
to ensure consistent variable definitions, coding standards,
and data formats. We chose Fast Healthcare Interoperabil-
ity Resources (FHIR) as the initial data standard [16,17],
due to its maturity and support in oncology, and the data
model is available in Multimedia Appendix 3. Harmoniza-
tion involved reviewing data dictionaries at each hospital,
resolving semantic ambiguities (eg, different coding for
treatments), and ensuring uniform data types and units.
This manual process, though time-consuming, proved crucial
for producing a common dataset compatible with federated
queries. In future implementations, automated or semiautoma-
ted harmonization workflows, potentially protected by DP to
further safeguard patient privacy during preprocessing, could
streamline this step. To facilitate the analyses, a tabularized
version of the FHIR standard has been produced and the
correspondence between the variables of interest used in the
datasets and the FHIR attributes are presented in Multimedia
Appendix 2.

Statistical Definition Without Differential
Privacy
First, univariate and bivariate descriptive statistics were
performed for the variables of interest, the explanatory
variables and the confounding factors. For the qualitative
variables, percentages per category were calculated. For the
quantitative variables, the mean but also the 5th, 25th, 50th,
75th, and 95th percentiles were computed. The minimums
and maximums were not computed because these values
are considered disclosive (eg, the presence of an outlier) in
DataSHIELD standard configuration.

Then, to ensure the absence of confounding factors,
covariates for which there was a difference between the
2 groups (before and after the first COVID-19 wave) in
bivariate analysis with a P value of <.20 were included in the
multivariate models. A Student t test was used for quantitative
variables. A chi-square test was used for qualitative variables
with at least 5 elements in each class. Otherwise, a Fisher test
was used.
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Finally, to investigate a difference in management between
patients in the first and second waves, a linear regression
was performed. The variable of interest was the duration of
first-line treatment at the metastatic stage and the explanatory
variable was the period (before or after the first wave). The
duration of treatment was defined as the period from day
1 to the last day of the first line. A multivariate survival
analysis (Cox model) was also performed in which the event
of interest was the disease progression at 24 months. The
explanatory variable was also the period (before or after the
first wave). Potential confounders identified in the previous
step were included in both multivariate analyses. A difference
was considered significant if the CI did not contain 1 for
linear regression and survival analysis.

Statistical Definition With Differential Privacy
The univariate and bivariate statistical analyses presented in
above were also performed with DP. The global strategy used
to implement DP has been discussed in “Use of Differential
Privacy” section and some details for each part of the study
are detailed here.

All the univariate analyses run code from PyDP [11] that
we wrapped in dsPrivacy. As adding DP preserves privacy,
the minimum and maximum values could be computed
instead of 5th and 95th percentiles. Then bivariate analyses
were carried out. For quantitative variables, an implementa-
tion of the Student t test is used and from the result of
this test, a P value is inferred. For qualitative variables,
occurrence tables are computed (under the hood, the function
tableDP from DPPack [18] is used in each center and all the
tables are summed) and then a chi-square or Fisher test is
performed with the R functions “chisq.test” and “fisher.test.”
Linear regression and Cox models were not implemented with
DP.

Determining appropriate ε values is challenging and
context-dependent. In this study, our priority was to main-
tain analytical use. After testing lower ε values (closer to
1) that yielded excessive noise and unusable results, we
selected ε=5.0 for univariate analyses and ε=60.0 for complex
operations like the Student t tests. While ε=60.0 is higher than
common DP standards in theoretical literature, this choice
reflects our small sample size (~50 patients/center) and the
need to ensure meaningful statistical inference. In scenarios
with more patients or improved aggregation techniques (eg,

secure aggregation enabling central DP), lower ε values could
be achieved. As this was a feasibility study, we highlight that
future work should explore more advanced DP mechanisms,
larger sample sizes, and improved cryptographic methods to
reduce the required privacy budget.

Ethical Considerations
From an ethical and regulatory standpoint, this study
complied with the MR-004 reference methodology and
adhered to GDPR requirements since DP alone does
not classify data as anonymized under current regulatory
frameworks. However, the use of DP strengthens data
protection, and aligns with emerging privacy regulations by
minimizing data exposure risks. These regulatory environ-
ments emphasize data sovereignty, patient consent, and
robust security, all of which are supported by our federated,
privacy-enhancing architecture. All patients enrolled in this
study were informed individually, and those who exercised
their right to opt out were removed from the study. This is an
observational study and the research ethics committees of all
three centers in Toulouse, Reims, and Foch have confirmed
that no ethical approval is required and have authorized this
project on their patient data.

Results
Deployment of Federated Architecture in
the Three Centers
The schema of our federated architecture is given in Figure 1.
Researchers connect through a VPN to a central node hosted
on a cloud provider–certified ISO (International Organiza-
tion for Standardization) 27001 standard. This central node
coordinates the execution of the queries on the remote data
assets hosted in the different hospitals and aggregate all the
responses received. Each hospital exposes through the private
network pseudonymized datasets, which originate from their
local harmonized data architecture, but which are completely
isolated on a dedicated infrastructure for security purposes.
Each hospital receives and executes remote requests from the
central node that match local permissions set in DataSHIELD
regarding data assets, authorized functions, and legitimate
users. This ensures that hospitals keep full sovereignty on
how their data are exploited.
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Figure 1. Federated architecture diagram.

One key element is deploying a secure private network
between all stakeholders, ensuring that each hospital only
exposes pseudonymized data within a controlled environ-
ment. Although these pseudonymized datasets were not
themselves protected by DP before analysis (since DP
is applied at query-time), the secure network, encryption
(TLS), and isolation measures minimize risks. We did not
use “Let’s Encrypt” for certificates due to internal secur-
ity policies favoring certificates from recognized authori-
ties and the controlled VPN environment lacking public
domain validation. Instead, a custom approach using a trusted
certificate authority provided both strong authentication and
encryption tailored to our network configuration.
Flowchart
The flowchart is presented in Figure 2. In total, 75 and 74
patients from respectively before and after the first wave

were included in the analysis comparing disease progression.
Of the patients in the period before, 63 had progressed, 9
were progression-free, and 3 had changed groups during the
observation period and were therefore censored at the time of
transfer. Of the patients in the period after, 55 had progressed,
17 were progression-free and 2 had changed groups dur-
ing the observation period and were therefore censored at
the time of transfer. Thus, after exclusion of patients who
changed centers, 72 patients from each period were included
in the analysis of the duration of the first line of treatment.
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Figure 2. Patient selection and exclusion process between two periods: before and after the first wave (BW and AW).

Bivariate Analysis and Selection of
Potential Confounders
Combined univariate analyses without and those with DP
are presented in Multimedia Appendix 4. Combined bivariate

analyses without and with DP are presented in Tables 1 and
2, respectively. Direct comparison between DP and no-DP
analyses across all periods is available in Table 3. In analysis
without and with DP, the covariates selected for multivariate
analyses were the treatment type (<.001) only.

Table 1. Bivariate analyses without differential privacy.
Variables Patients (period before; n=75) Patients (period after; n=74) P value
Variables of interest
  Disease progression, n (%) .21
   No 12 (16) 19 (25.7)
   Yes 63 (84) 55 (74.3)
   Missing 0 (0) 0 (0)
  First line duration (days) .09
   Mean (SD) 179.7 (267.1) 255.2 (274.6)
   Median (IQR) 75.7 (14.7‐190) 141.8 (45.1‐420.8)
   5th and 95th percentiles 0‐592.4 15‐792.8
   Missing, n (%) (0) (0)
Covariables
  Organization, n (%) .99
   Toulouse University Hospital 25 (33.3) 25 (33.8)
   Reims University Hospital 25 (33.3) 25 (33.8)
   Foch Hospital 25 (33.3) 24 (32.4)
   Missing 0 (0) 0 (0)
  Gender, n (%) .79
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Variables Patients (period before; n=75) Patients (period after; n=74) P value
   Female 33 (44) 30 (40.5)
   Male 42 (56) 44 (59.5)
  Missing 0 (0) 0 (0)
  Age (years), n (%) .38
   <55 12 (16) 10 (13.5)
   55‐65 30 (40) 23 (31.1)
   >65 33 (44) 41 (55.4)
   Missing 0 (0) 0 (0)
  BMI (kg/m²), n (%) .39
   <18.5 13 (17.3) 19 (25.7)
   18.5‐25 34 (45.3) 27 (36.5)
   >25 28 (37.3) 28 (37.8)
   Missing 0 (0) 0 (0)
  Treatment category, n (%) <.001
   Chemotherapy 46 (61.3) 30 (40.5)
   Chemotherapy+angiogenesis inhibitor 6 (8) 0 (0)
   Chemotherapy+immunotherapy 7 (9.3) 33 (44.6)
   Immunotherapy 16 (21.3) 11 (14.9)
   Missing 0 (0) 0 (0)
  Creatinemia (µmol/l) .47
   Mean (SD) 66.7 (20.3) 64.3 (18.9)
   Median (IQR) 60.0 (54.7‐73.3) 63.7 (55.1‐73.1)
   5th and 95th percentiles 46.7‐98.8 41.1‐82.8
   Missing, n (%) 0 (0) 1 (1.4)

Table 2. Bivariate analyses with differential privacy.

Variables Patients (period before) Patients (period after)
P
value

Variables of interest
  Disease progression (εa=5.0), n (%) .27
   No 12 (16) 18 (24.7)
   Yes 63 (84) 55 (75.3)
  Firstline duration (days
; ε=5.0, except P value: ε=60.0)

.051

   Mean (SD) 189.5 (231.1) 287.4 (286.3)
   Median 81.8 132.6
   Range 0.3‐1359.5 8.5‐827.1
Covariables
  Gender (ε=5.0), n (%) .92
   Female 32 (43.2) 30 (41.1)
   Male 42 (56.6) 43 (58.9)
  Age (years; ε=5.0), n (%) .37
   <55 12 (16.2) 10 (13.7)
   55‐65 29 (39.2) 22 (30.1)
   >65 33 (44.6) 41 (56.2)
  BMI (kg/m²; ε=5.0), n (%) .38
   <18.5 13 (17.1) 19 (25.7)
   18.5‐25 34 (44.7) 27 (36.5)
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Variables Patients (period before) Patients (period after)
P
value

   >25 29 (38.2) 28 (37.8)
  Treatment category (ε=5.0), n (%) .001
   Chemotherapy 46 (61.3) 31 (39.7)
   Chemotherapy+angiogenesis inhibitor 6 (8) 0 (0)
   Chemotherapy+immunotherapy 7 (9.3) 35 (44.9)
   Immunotherapy 16 (21.3) 12 (15.4)
  Creatinemia (µmol/L)
(ε=5.0 except for P value: ε=60.0)

.53

   Mean (SD) 65.4 (18.9) 61.9 (17.1)
   Median 64.4 65.4
   Range 48.8‐88.9 37.4‐86.1

a ε: privacy budget.

Table 3. Comparison of bivariate analyses across all periods (before and after), with and without differential privacy.

Variables
Global results (before and after combined) without
DPa

Global results (before and after combined)
with DP (εb=5.0)

Variables of interest
  Disease progression, n
   No 31 31
   Yes 118 118
  First-line duration (days)
   Mean (SD) 217.2 (269.4) 198.9 (286)
   Median 113.5 126.4
   Range 0.5‐785.6 0.1‐524.8
Covariables
  Gender, n (%)
   Female 63 63
   Male 86 87
  Age (years), n
   <55 22 21
   55‐65 53 52
   >65 74 75
  BMI (kg/m²), n
   <18.5 32 32
   18.5‐25 61 61
   >25 56 56
  Treatment category, n
   Chemotherapy 76 76
   Chemotherapy+ angiogenesis inhibitor 6 6
   Chemotherapy+ immunotherapy 40 41
   Immunotherapy 27 27
  Creatinemia (µmol/L)
   Mean (SD) 65.5 (19.6) 64.6 (15.15)
   Median 62.3 64.3
   Range 43.9‐92.8 45.6‐83.7

a DP: differential privacy.
b ε: privacy budget.
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Comparison of the Progression Between
Two Periods (Cox Model)
In the analysis without DP, the hazard ratio of the cox model
for the period before compared with the period after the first
wave was 0.98 (95% CI 0.65-1.46). As the 95% CI includes
1, the two periods were not considered significantly different
in terms of disease progression at 24 months after adjustment
for a significant covariate (treatment type).
Comparison of the Duration of the First
Line of Treatment Between the Two
Periods (Linear Regression)
In the analysis without DP, the coefficient of linear regression
for the first period compared with the second one was –13.84
(95% CI –103.82 to 76.14). As the CI includes 1, the two
periods were not considered significantly different in terms
of first line duration after adjustment for significant covariate
(treatment type).

Discussion
Principal Findings
In this study, a federated analysis with and without DP was
performed on a real-world study in oncology. The real-world
study showed consistent results in both settings. In partic-
ular, identical conclusions were drawn regarding the lack
of difference in first-line treatment duration and disease
progression at 24 months in non–small cell lung cancer
patients treated before or after the first wave of COVID-19
pandemic.

Real-world deployment in 3 centers has shed light on
some key aspects in terms of security. Regarding tools,
DataSHIELD offers a lot of flexibility as it allows the use
of custom libraries such as dsPrivacy implemented as part
of this study. The downside is that community libraries are
not always well maintained and bugs can be encountered
(eg, dsStats had to be fixed manually). DataSHIELD builds
upon Opal [19], a convenient data management application
which comes with straightforward but very satisfactory user
management and makes it easy to configure access to specific
data to specific users. Opal is also secured by design and
enforces many good security practices like CSRF (Cross-Site
Request Forgery) and HTTPS usage. However, available
docker images to deploy it have several major known security
vulnerabilities and do not seem regularly updated. Regarding
network configuration, setting up strong security standards
across all sites has proved challenging. An IpSec bridge was
set up to enable secure communication between the central
node and the hospitals. Communication among all stakehold-
ers was a key factor for this step and formal processes
(network schema, requirements formalization, debugging
methods, and so on) proved decisive in order to facilitate
discussions. Regarding certificates to secure communications
inside the private network, the primary intention was to use
certificates signed by hospitals internal certificate authority
because it would not match our security requirements so

certificates signed by public certificate authority have been
claimed. Some hospitals provided a Sertigo certificate but
it was not natively recognized by the central node server.
Another hospital used instead a public certificate generated
by the central node manager (Arkhn). This last solution
has proven to be the best solution in terms of efficiency
and security, even if the domain names covered by these
certificates are not representing the actual ownership of hosts.

Regarding data standards, we chose FHIR, since it
appeared to be the most mature health standard in oncology
at the beginning of this project [16,17]. However, Observa-
tional Medical Outcomes Partnership (OMOP) is develop-
ing extensions for oncology and is rapidly closing the gap
[20,21]. As the FHIR standard corresponds to json files that
are not very suitable for analytical purposes, we anticipate
that moving to OMOP will be more convenient for future
analyses.

Overall, our experience suggests that the most time and
work intensive parts are building harmonized data models
locally and setting up the network infrastructure. As both
these steps are agnostic of the study considered, we anticipate
that they can be easily leveraged to scale the number of
studies carried out on this infrastructure.

On the DP side, it has been decided not to perform
linear regression and Cox models with DP because imple-
menting it with a moderate privacy budget was deemed too
complex. Privacy budgets used in this study (especially for
computing the P values) are quite high compared with the
literature [15,22], in order to achieve reasonable accuracy on
differentially private results but we have shown that we are
able to derive similar results compared with plain FA. As
underlined above, the appropriate level of privacy is highly
dependent on the context considered. Here, given that this
study was already compliant to the French MR-004 method-
ology without DP, DP was used by prioritizing usefulness
over privacy. In other contexts, especially if DP becomes
recognized as a legitimate and safe technology to process
personal data, and hence benefits from a dedicated regula-
tory status, lower privacy budgets will probably be required
(alongside privacy-focused pen tests). We have identified 3
directions to achieve this. The first direction is to increase
the number of patients per center. This is the most straight-
forward option to improve the privacy vs accuracy trade-
off, since the amount of noise to add to reach a certain
privacy budget ε directly depends on the number of indi-
viduals. We have included close to 50 patients per center,
which is quite low especially for some budget intensive
operations for which we estimate that a thousand patients
would be adapted. Second, by using central DP. If the noise
is added on the central node, it is computed considering
the sum of the patients across all the centers and enables
lower noise for the same privacy budget. This is especially
powerful if many centers are participating in the federated
analysis. However, this means that by default the central
node can see the contribution of each center without any
noise which is a privacy breach if it cannot be trusted.
A common solution is to implement secure aggregation
[23], meaning that all contributions are hidden and are only
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disclosed after the aggregation operation, using cryptographic
mechanisms such as secure multiparty computation [24],
homomorphic encryption [25], or functional encryption [26].
Secure aggregation is not yet implemented in dsPrivacy and
is left as future work. Finally, it can be achieved by improv-
ing the DP mechanism. We have used pure or ε-DP, which
is a simple mechanism and which makes composition very
simple, since the privacy budget of a sequence of operations
is the sum of the budget of each operation. More complex
mechanisms such as (ε, δ)-DP [6] or Rényi DP [27] provide
more optimized composition properties [28] that allow for a
tighter privacy budget management.
Conclusions
The DARAH project illustrates FA are a practical method to
conduct scientific projects while improving data privacy, by

keeping patient data stored in the hospitals and leveraging
their already existing data architecture. It highlights some key
challenges to be anticipated and possible answers to ensure
the success of this type of projects. It also shows that DP
can be used in addition to FA to improve privacy guarantees,
but more experimentation is needed to develop guidelines
and best practices, especially around the trade-off between
accuracy and privacy. Finally, in an emerging ecosystem
where tools for FA and DP are not yet well integrated, the
dsPrivacy library will prove useful for researchers who want
to explore privacy-friendly analysis methods.
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