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Abstract

Background: In data-sparse areas such as health care, computer scientists aim to leverage as much available information as
possible to increase the accuracy of their machine learning models’ outputs. As a standard, categorical data, such as patients’
gender, socioeconomic status, or skin color, are used to train models in fusion with other data types, such as medical images and
text-based medical information. However, the effects of including categorical data features for model training in such data-scarce
areas are underexamined, particularly regarding models intended to serve individuals equitably in a diverse population.

Objective: This study aimed to explore categorical data’s effects on machine learning model outputs, rooted the effects in the
data collection and dataset publication processes, and proposed a mixed methods approach to examining datasets’ data categories
before using them for machine learning training.

Methods: Against the theoretical background of the social construction of categories, we suggest a mixed methods approach
to assess categorical data’s utility for machine learning model training. As an example, we applied our approach to a Brazilian
dermatological dataset (Dermatological and Surgical Assistance Program at the Federal University of Espírito Santo [PAD-UFES]
20). We first present an exploratory, quantitative study that assesses the effects when including or excluding each of the unique
categorical data features of the PAD-UFES 20 dataset for training a transformer-based model using a data fusion algorithm. We
then pair our quantitative analysis with a qualitative examination of the data categories based on interviews with the dataset
authors.

Results: Our quantitative study suggests scattered effects of including categorical data for machine learning model training
across predictive classes. Our qualitative analysis gives insights into how the categorical data were collected and why they were
published, explaining some of the quantitative effects that we observed. Our findings highlight the social constructedness of
categorical data in publicly available datasets, meaning that the data in a category heavily depend on both how these categories
are defined by the dataset creators and the sociomedico context in which the data are collected. This reveals relevant limitations
of using publicly available datasets in contexts different from those of the collection of their data.

Conclusions: We caution against using data features of publicly available datasets without reflection on the social construction
and context dependency of their categorical data features, particularly in data-sparse areas. We conclude that social scientific,
context-dependent analysis of available data features using both quantitative and qualitative methods is helpful in judging the
utility of categorical data for the population for which a model is intended.
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Introduction

Background
Artificial intelligence (AI) promises to transform medical
diagnostics and treatment; however, this paradigm change comes
with social and ethical challenges [1,2]. One particular challenge
is the persistent unreliability of medical machine learning
models for diverse populations [3-7]. The variation in
performance reliability across populations stems, among other
factors, from data scarcity in medical datasets. Publicly available
datasets to train medical models, compared to those in other
disciplines, are small or have little variation, often featuring
populations from a specific area of the world in which the data
were collected. When a machine learning model is trained on
such a dataset, the results can have limited generalizability to
a more diverse population seeking medical care, having
disadvantaging or discriminatory effects [8].

Computer scientists increasingly turn to innovative multimodal
computational methods to counter data scarcity and leverage
the full potential of the limited available information. Recently,
(deep) multimodal data fusion algorithms (ie, algorithms
incorporating available categorical data such as a patient’s
medical history and demographics in addition to a main data
category such as a medical image) have been developed and
successfully used in, for example, dermatology and radiology
[9-14]. However, the effects of including categorical data for
machine learning training are understudied, particularly
regarding models such as medical image classifiers intended to
equitably serve individuals from diverse populations. However,
understanding the impacts of categorical data on machine
learning outcomes is crucial for the development of fairer and
more accurate machine learning models.

From a social science perspective, using categorical data for
machine learning training is controversial. Categorization, by
definition, clusters individuals in groups based on their
attributes. Many categories, such as gender, socioeconomic
status, and skin color, are used broadly to structure everyday
communication and facilitate scientific research. However, these
categories are socially constructed, meaning that they are the
result of artificial definitions that go beyond biological facts
[15]. As a result, socially constructed categories are unstable
and can be too broad or narrow for the context they are used in
or simply inadequate shorthands [3]. When rendered statistically,
such as in a machine learning model, the inexactitude of such
categories becomes materially significant and can introduce
biases.

This paper proposes a mixed methods approach to assess the
qualitative utility of available categorical data before machine
learning model training. We first assess data categories’ social
construction as a major reason behind their context dependency.
We then report an exploratory, quantitative examination of the
effects of data features from a specific dermatological dataset’s

[16] unique categorical data features on a vision transformer
model. We square the quantitative findings with a qualitative
study of the data collection process and inclusion and exclusion
logics of the dataset’s categorical data for publication.

Our results suggest how data collection practices and publication
decisions are roots for the observable effects of categorical data
on machine learning model training. This study practically
exemplifies how insights into the social construction and context
dependency of available categorical data can be derived and
used for inclusion or exclusion decision-making during training.
This demonstrates how integrating quantitative and qualitative
insights to decide on the inclusion or exclusion of categorical
data can help incorporate health equity considerations into
machine learning–based medical imaging workflows, such as
considering who is served or neglected when certain data
categories are used or disregarded during training. Such
interdisciplinary results, we argue, are pertinent to inform model
training accounting for the unavoidable performance differences
of machine learning models for different groups.

The Dermatological and Surgical Assistance Program
at the Federal University of Espírito Santo 20 Dataset
In dermatology, the primary data category typically consists of
images of skin lesions. Additional data often collected include
the patient's age, sex or gender, and dermatologically relevant
factors such as skin type or the location of the lesion on the
body. We base our work on experiments with and analyses of
the Brazilian Dermatological and Surgical Assistance Program
at the Federal University of Espírito Santo (PAD-UFES) 20
dermatological dataset [16]. The dataset contains 2298 entries
in total labeled for 6 skin lesion classes: 3 malignant (basal cell
carcinoma [BCC], nevus [NEV], and melanoma [MEL]) and 3
benign (seborrheic keratosis [SEK], actinic keratosis [ACK],
and squamous cell carcinoma [SCC]).

The PAD-UFES 20 dataset has a unique combination and a
comparatively high number of 21 patient-focused data features.
These features are leverageable for machine learning model
training. The dataset’s data cover the patients’ medical
information and history (eg, skin_cancer_history), medical
details about the skin lesion not captured by the image (eg, itch,
grew, bleed, and elevation), demographics (eg, age, gender,
background_father, and background_mother), environmental
determinants (eg, pesticide, has_piped_water, and
has_sewage_system), and lifestyle (eg, smoke or drink), with
many of the data types being categorical (ie, the assignment of
individual patients to a category is a matter of definition; Table
1 [15]). This unique combination of data features for each entry,
its comparably small sample size for a machine learning context,
and its public availability that makes PAD-UFES 20 accessible
for researchers worldwide were significant criteria for choosing
this dataset for exploring the implications of using categorical
data for machine learning training.
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Examining the PAD-UFES 20 dataset’s categorical data features
illuminates its theoretical limitations. Most of the samples in
the dataset originate from Brazilian patients of central European
ancestry. Prevalent characteristics of this group include a White
phenotype and a dominantly disadvantaged socioeconomic
status. The combined characteristics of lighter skin tones typical
of the White phenotype and their heightened sun exposure
during various activities common among those of a
disadvantaged socioeconomic status in Brazil, such as fieldwork
and domestic labor, make this subgroup particularly susceptible
to skin lesions induced by the intense Brazilian sun. While the

resulting high prevalence of skin cancer in the dataset renders
the PAD-UFES 20 dataset effective for training a skin lesion
classifier, especially for skin cancer, it is crucial to recognize
that the dataset’s population is notably specific and, thus,
introduces significant biases. Because the dataset is skewed
toward lighter skin tones and a particular socioeconomic status,
a model trained using this dataset might, even when trained on
image data alone, limitedly generalize to other populations. In
the following section, we will consider how data categories are
socially constructed and, thus, context dependent, calling their
utility for the model training process into question.

Table 1. Description of (categorical) data attributes available with the PAD-UFES 20 dataset (in the metadata CSV file).

DescriptionAttribute

A string representing the patient ID – example: PAT_1234patient_id

A string representing the lesion ID – example: 123lesion_id

A string representing the image ID, which is a composition of the patient ID, lesion ID, and a random number
– example: PAT_1234_123_000

image_id

A Boolean to map if the patient smokes cigarettessmoke

A Boolean to map if the patient consumes alcoholic beveragesdrink

A string representing the country in which the patient’s father and mother descends. Note: many patients descend
from Pomerania, a region between Poland and Germany. Although it is not a country, we decided to keep the
nomenclature, since they identify themselves as Pomeranian descendants.

background_father and back-
ground_mother

An integer representing the patient’s ageage

A Boolean to map if the patient uses pesticidespesticide

A string representing the patient’s gendergender

A Boolean to map if the patient or someone in their family has had skin cancer in the pastskin_cancer_history

A Boolean to map if the patient or someone in their family has had any type of cancer in the pastcancer_history

A Boolean to map if the patient or someone in their family has had any type of cancer in the pasthas_piped_water

A Boolean to map if the patient has access to a sewage system in their homehas_sewage_system

An integer representing the Fitspatrick skin typefitspatrick

A string representing one of the 15 macro-regions previously describedregion

A float representing the skin lesions’ horizontal and vertical diametersdiameter_1 and diameter_2

A string representing the skin lesion diagnostic – BCC, SCC, ACK, SEK, MEL, or NEVdiagnostic

A Boolean to map if the skin lesion itchesitch

A Boolean to map if the skin lesion has recently growngrew

A Boolean to map if the skin lesion hurtshurt

A Boolean to map if the skin lesion has recently changedchanged

A Boolean to map if the skin lesion has bledbleed

A Boolean to map if the skin lesion has an elevationelevation

A Boolean to map if the diagnostic comes from clinical consensus or biopsybiopsed

The Social Construction of Categorical Data
Data categories featured in publicly available datasets such as
the PAD-UFES 20 and used to train medical imaging machine
learning models are often assigned to someone or something as
biological despite being “socially constructed.” Socially
constructed categories are historically produced, reproduced,
and changed within institutions or cultures [15]. Many
demographics, for example, age, race, or gender, are examples

of socially constructed categories. They play a key role in
shaping and structuring human communication as well as the
beliefs we hold about the world, but they are also loaded with
meanings that go beyond their biological bases or initial
definitions and depend on the working definitions of these
categories in a specific assessment setting [15]. Hence, while
sometimes appearing universally applicable and comparable,
socially constructed categories harbor underlying ambiguities
that make them context dependent. When such
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context-dependent data are used for machine learning training,
their ambiguities create biases and can disadvantage population
groups, often those already marginalized [3,5].

In the early nineties, Suchman [17], building on the analysis by
Winner [18] of how artifacts have politics, described how
categories have politics. The works by both Winner [18] and
Suchman [17] drew attention to how moral values are inscribed
in human-made constructs, be they artifacts made of concrete,
such as bridges that disallow a specific population from entering
a public beach [18], or categorial classifications, such as racial
categories that group specific individuals and bestow upon these
groups value-laden associations [17] that have tangible,
measurable impacts on aspects of their lives, such as income,
access to health care, and education [19-21]. The category “race”
and its experienced disparities constitute an illustrative example
of how categories are socially constructed and create social and
political struggles for those classified under them. To elucidate,
we can juxtapose the official “race” categories used in the census
of countries such as the United States, Brazil, and Germany. In
the United States, the collection of racial categories has
undergone much change since the establishment of racial
categories in the country’s census in 1790 [22]. Today, the US
Office of Management and Budget “requires five minimum
categories (White, Black or African American, American Indian
or Alaska Native, Asian, and Native Hawaiian or Other Pacific
Islander) for race [and] permits the Census Bureau to also use
a sixth category - Some Other Race” [23]. Following Statistical
Policy Directive 15 in October 1997, “the option to choose
multiple racial categories was introduced as part of the U.S.
government’s routine data-collection mission” [24]. For census
data collection in Brazil, on the other hand, “white, brown,
black, yellow (amarelo, i.e., of some Asian descent), and...the
Indigenous (indígena) category [which was added] in the 1991
census” [25] constitute the “official” racial categories. In
Germany, as another contrasting example, the census
systematically omitted data collection of ethnic and racial
categories after World War II. Instead, the German census
collects “related data on foreigners, migrants and their
descendants” [26], such as individuals’“migration background.”

Note how the different handling of racial categories in a census
creates subtle classification differences. Foremost, the categories
collected are different. As a result, a single person could be
classified differently depending on whether they live in the
United States, Brazil, or Germany. Second, the categories
themselves are based on different features. For example,
“[u]nlike the USA, color or race in Brazil refers primarily to
appearance rather than descent” [25]. Third, the approach to
collecting the data is notably different. While, in the United
States, the categorization was conducted by an authority
employee until 1970 [22], “[s]elf-identification has been the
official method for recording racial category membership in
Brazil since 1950” [25]. Finally, Germany applies a “color
blind” approach, collecting neither appearance-based nor
self-identified racial data in its official census [26]. The
decisions (not) to collect and how to collect the data shape the
potential applications of the data on a country-by-country basis
and influence the local medical data collection practices. The
resulting differences hamper cross-national comparison and

complexify the transfer of publicly available datasets that
include such categories to different national contexts (it is
important to note that the categories used for assessments in the
official census do not always translate to the medical sector;
for example, in the United States, the census categories are
being challenged for the context of medical use by the Agency
for Healthcare Research and Quality [27]). In addition to
national differences in handling racial data categories, the
inexactitude of racial categories and their intertwining with
proxies such as skin color have been criticized [28]. In
increasingly diverse populations, classifying someone as
belonging to a single or even multiple races becomes
increasingly complex and, thus, inaccurate. Because assessment
strategies and categories can never be defined in a fine granular
enough way, the categories are, by default, more descriptive of
some than others classified within the same category. Following
a recent controversy on a published paper that distinctly depicted
human ancestry [29], a coauthor of the paper said that their
“analysis reaffirms that race and ethnicity are social constructs
that do not have a basis in genetics” [30].

In the context of machine learning models, the nuanced effects
of using social constructs as categories can impact performance.
Computer scientists who build machine learning and other
statistical models “work every day on the design delegation,
and choice of classification systems and standards” [24]. Thus,
they have immense decision-making power over the
specifications of the classification systems implemented.
However, as Bowker and Star [24] note, “few see them as
artifacts embodying moral and aesthetic choices that in turn
craft people’s identities, aspirations, and dignity.” When, as a
result, machine learning models process multiple individuals
as classified under a single data category, subtle distinctions
crucial for the model’s intended use might be overlooked,
manifesting inaccuracies and biases. The resulting models will
tend to perform better for those who align closely with the mean
of their assigned category and less reliably for individuals who
fall between or outside of the categories or are placed within a
category that is too broad. Famous examples of the effects that
the incautious consideration of racial categories can have in
practice are the “racist soap dispenser” [31], which would not
identify darker-skinned hands and, thus, not dispense soap for
them; Google Photo’s facial recognition software, which
identified darker-skinned individuals in photo postings as
gorillas [32]; the perpetuation of discriminatory biases through
search engines [33]; and the worrisome automation of decisions
on whether someone is worthy of help, for example, when
triggering child abuse investigations [34].

In health care, studies accounting for racial differences have
reified categorial differences of inexact, socially constructed
categories. For example, the hypertension medication BiDil
was granted Food and Drug Administration approval after
showing efficacy for Americans of African ancestry, whereas
earlier, when tested on Americans of European ancestry, it was
believed to be ineffective. Duster, a social scientist and critic
of using socially constructed categories in genomic research,
criticized the parties involved in both the study and its approval
for insufficiently accounting for the “complex feedback loop
and interaction effect between phenotype and social practices
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related to that phenotype” [35]. His work contributed to a large
body of science studies scrutinizing the utility of assessing and
using race, ancestry, gender, and other data categories in
different areas of medical research [36-42]. For example, in
precision medicine, scholars claimed that the absence of
biomedical significance of categorizations creates shorthands,
which are, at most, unhelpful for meaningful statistical inference
[43,44]. Despite potentially providing clues for correlations,
data categories used in health care are frequently proxies for
other factors that matter in the context of diagnosis or treatment.
In dermatology, health and its categorial social determinants
are particularly intertwined as different skin types have different
susceptibilities to skin lesions [45].

Feature Selection: The Current State of the Art to
Assess Data Feature Utility for Machine Learning
The fact that data features have different utility for different
contexts is well established in the data science community.
Hence, so-called feature selection methods have followed the
introduction of techniques that use multiple, possibly multimodal
(ie, various data types) data features in a single medical machine
learning model [46]. Using feature selection in developing a
machine learning model, computer scientists test which data
features make sense to include for training. To do so, feature
selection methods render available data features statistically
and rank them regarding their relevance for the intended use of
a particular model. In addition to helping choose which data to
include for a model, data feature selection methods have been
used to create new insights about certain statistical connections
of variables and, thus, strengthen the explainability of a model
[47] or find clues about the root causes of certain diseases [48].

The feature selection approach effectively provides insights into
the statistical relevance of the data features of a particular dataset
and its corresponding machine learning model. However,
available feature selection methods fail to provide qualitative
insights into why a specific data category contributes to a
model’s reliability, explainability, and performance. An
additional limitation of currently used feature selection methods
is that they usually look at the relevance of a data category
across the entire model and fail to investigate performance
increases or decreases due to the inclusion or exclusion of
certain data features per class. As a result, the effects of
irrelevant data features, or those reducing the performance of
a particular class, might be balanced out if another class does
correlate with the same data features.

Methods

The methods for this work were a mix of applied computing
and qualitative investigations based on grounded theory [49].
For the claims we make, it is necessary to incorporate both
computer scientific findings from experimenting with the dataset
and qualitative accounts that can shed light on some of the
effects we observed in more detail than numbers can.

Quantitative Analysis
The quantitative analysis aimed to investigate the effect that
each available data feature, including categorical data, has on
a skin lesion classifier model to provide insights into the utility

of each data feature. Therefore, we trained multiple similar
transformer-based models using the PAD-UFES 20 dataset
while randomizing one of the data categories in each case. We
then compared the performance of the obtained models per
class. Coauthors AW and TC-B led the method and
implementation of the quantitative analysis.

For preprocessing, duplicates and entries with 2 images or
lacking data were excluded. A total of 64.14% (1474/2298) of
the entries remained. Patient data were first converted to
categorical data (numerical data entries [age and lesion size]
were binned) and encoded into soft one-hot vectors.

We trained identical multi-classifier vision transformer models
(with a training, validation, and testing data split of
70%-15%-15%) based on the architecture published in the study
by Cheslerean-Boghiu et al [13]. As the feature extractor, we
used the “vit_small_patch16_224” vision transformer, which
comprises 12 transformer encoder layers and a classification
head operating on embedding vectors with 384 elements. The
model, loaded via the PyTorch Image Models library [50] with
ImageNet-1K (Standford Vision Lab) pretrained weights,
operates at an input resolution of 224 × 224 pixels. Positional
embeddings were also derived from ImageNet pretraining, and
we performed fine-tuning across the entire model without any
layer freezing. The framework used for this implementation
was PyTorch.

One model was trained using all available data, and one model
was trained using randomized values for all data features. For
the other 16 models, we randomized the input for 1 data feature
in each case: Fitzpatrick, background_father,
background_mother, gender, hurt, region, age, smoke, drink,
pesticide, has_piped_water, has_sewage_system,
cancer_history, and skin_cancer_history. The data features we
tested were selected based on an internal discussion about the
potential utility of the data features for the model. These
decisions were made before having spoken to the authors of the
PAD-UFES 20 dataset.

To solidify our results, all models were trained in 5 separate
runs each; the randomized values of the models were set
differently in each training run. The seed was set differently in
every run. The fixed input dimensions of our vision transformer
model constituted the rationale for this process. Feature
randomization has been successfully applied in other studies
[51]. Leaving out data features instead of randomizing them
would alter the model and, thus, impair our analysis of the
effects of each data feature.

For the result presentation, we concatenated all runs per model
(one model with all data features included, one model with
randomized values for all data features, and one model for each
randomized data feature). We created receiver operating
characteristic (ROC) curve plots for each of the 6 classes (NEV,
BCC, MEL, ACK, SCC, and SEK). Each ROC plot shows the
performance of all models for one of the classes in color-coded
graphs. For each performance representation, we included area
under the ROC curve values and CIs calculated using the
nonparametric bootstrap method with 10,000-fold resampling
at the image level.
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The quantitative part of our analysis is an exploratory study;
needs replication to substantiate it, including reproduction with
combinations of data features included or excluded; and is
naturally limited by the small sample size of the dataset,
particularly in combination with the transformer model
architecture used. This setup was selected not to develop a robust
skin lesion classifier but to simulate a real-world application of
this dataset [13], highlighting the realistic limitations and
implications associated with its use.

Qualitative Analysis
The qualitative analysis featured in this work is based on
one-on-one interviews with 3 of the authors of the PAD-UFES
20 dataset. The interviews aimed to gain (unpublished) insights
into the dataset and the data therein.

The first author of this paper (TW) approached André Pacheco,
assistant professor at the Federal University of Espírito Santo,
lead of the PAD-UFES project, corresponding author of the
dataset, and presenter of multiple (publicly available) talks on
the PAD-UFES 20 dataset, via email, establishing first contact,
explaining the context of the study, discussing participation in
an interview for the study at hand, leading to the first interview
in October 2023. After the initial interview, 2 other authors of
the dataset publication were recruited via snowballing: Gabriel
Giorisatto, a machine learning student working in André
Pacheco’s research laboratory when the PAD-UFES project
started and who helped gain skin cancer domain knowledge
facilitating dialogues with medical colleagues, and Breno
Krohling, a machine engineer who was working as an
undergraduate student in the laboratory facilitating the
PAD-UFES project by helping with data collection. The second
and third interviews were conducted in October 2024.

An initial interview was conducted with André Pacheco in
October 2023. To solidify the findings, 2 additional interviews
were conducted in October 2024 (Breno Krohling and Gabriel
Giorisatto). All interviews were conducted by TW via Zoom
(Zoom Video Communications) and followed the peer-to-peer
interview method [52] using a semistructured interview guide
to structure the conversation. The interviews lasted between 40
minutes and 1.5 hours and covered the genesis of the
PAD-UFES 20 project; the context in which the dataset was
created; the authors’ rationale for collecting the data; their
rationales for collecting each of the data features; the initial
intended use of the dataset; how access to the community
centrally featured in the dataset was established; how the dataset
was created; and how the authors of the dataset reflected on the
public use of the dataset, which, at least in some instances,
includes the data features for analysis.

Initial interview transcripts were created with AI assistance
[53]. TW double-checked and corrected the transcripts while
relistening to the interview audio files. The interview transcripts
were analyzed using a grounded theory–inspired coding process
that included line-by-line coding and axial coding with
sensitizing concept clusters according to initial findings [49].
Initial codes were selectively recoded to inform our analysis

and condition our findings. TW created memos based on the
codes that later formed the basis for the qualitative accounts in
this work. The quotes used in this manuscript have been edited
for readability and were returned to the interviewees to
double-check that the correctness of meaning stayed intact
before publication. The interview data showed strong
consistency across participants, suggesting a high level of
theoretical saturation.

We followed the COREQ (Consolidated Criteria for Reporting
Qualitative Research) checklist for reporting the qualitative part
of this study (Multimedia Appendix 1).

Ethical Considerations
Before each interview, TW explained the reservations about
participating in the study, including the interviewees’ ability to
opt out of the study at any time and the impossibility of granting
them pseudonymization. All interviewees gave their written
informed consent to participate in the interviews and to be
referred to by their real names throughout this manuscript.
Interviewees did not receive any compensation for participating
in the interviews.

Results

Overview
In the following sections, we present our findings of the
experimental inclusion or exclusion of the data features of the
Brazilian PAD-UFES 20 dermatological dataset for training a
vision transformer multi-classifier and the pairing of these
quantitative findings with a qualitative investigation. We
observed scattered effects in the quantitative analysis and
interpreted them regarding the creation and use practices of
publicly available medical datasets. However, combined with
our qualitative analysis, the observed scattered effects provide
insights into how data collected in or for a particular social
context can have adverse effects when used to train models
intended for different or broader contexts. On the other hand,
our data solidify evidence that the optimization of a model for
a social context such as the dataset’s by including categorical
metadata for training can make the model more precise if data
categories are not too broad, narrow, or ambiguous or
shorthands. However, there is reason to believe that, in these
cases, the precision of the model overfits the dataset’s context
and, hence, the resulting model might impede the ability of
health care professionals to decide whether a particular model
will work for a new patient. Our insights advise for
interdisciplinary dialogue to assess the data or context fit before
model training.

Changes in Model Performance Through Data Feature
Randomization
The juxtaposition of the performance of the models, which were
trained using all available data features (model 1), using
randomized values for all available data features in training
(model 2), or randomizing 1 data feature in each case (models
3-16), showed scattered effects for each class (Figure 1).
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Figure 1. Performance of the vision transformer models trained on the Dermatological and Surgical Assistance Program at the Federal University of
Espírito Santo 20 dataset per class—(A) basal cell carcinoma (BCC), (B) nevus (NEV), (C) melanoma (MEL), (D) seborrheic keratosis (SEK), (E)
actinic keratosis (ACK), and (F) squamous cell carcinoma (SCC). Each graph represents the mean performance of 5 similar concatenated models; the
color of each graph corresponds to the metadata feature that was randomized for this model’s training (see the legend in each of the images) except for
the “all random” and “all unchanged” graphs. The “all random” graph represents the model performance when all metadata features were randomized,
and the “all unchanged” graph represents the model performance when all metadata features were included in the training as per the dataset.

Randomizing All Data Features
Across all classes, the performance of the models decreased
when all data features were randomized for training compared
to the model for which we included all data feature values

according to the PAD-UFES 20 dataset (“all unchanged”),
indicating the predictive utility of the data features for the
classes.
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The magnitude of the performance drop from the “all
unchanged” to the “all random” model varied notably across
classes. For example, for SCC (Figure 1F), the performance
decreased from 0.89 to 0.80 by 0.09. For other classes, the
performance difference was only very slight (eg, 0.01; Figure
1B), or the performance even stayed the same (eg, 0.00 for SEK;
Figure 1D) when all data features were randomized. This
indicates that the data are more relevant to some classes than
others.

Randomizing Individual Data Features
Randomizing individual data features impacted the models. In
some instances, the model’s performance decreased when a data
feature was randomized, indicating that the randomized data
feature had predictive utility for the model’s performance. For
example, randomizing the “cancer history” data feature reduced
the average predictive performance for the melanoma class
(Figure 1C) by 0.04. Considering the breadth of some confidence
intervals (CIs), this effect seems even more pronounced for
some of the models created in our experiment. In other cases,
the model’s performance increased when a data feature was
randomized, indicating that the randomized data feature
hampered the model’s predictive power. For example, when
“background father” was randomized, the performance for the
SEK class increased by 0.01 compared to that of the “all
unchanged” model.

The effects observed in our quantitative analysis coincide with
the qualitatively contextualized expectations regarding the
relevance of data features to the overall model and some classes
(detailed analysis in the following sections). As a general trend,
the randomization of data features considered highly medically
relevant by the dataset’s authors, on average, also decreased the
model’s performance, indicating that the data features have
predictive power. The performance variance varied per class
and randomized data feature across those expected to be highly
medically relevant (eg, itch, bleed, and elevation) and those
expected to be confounded through their social context
dependency to the envisaged prediction (eg, background_mother
and background_father, has_sewage_system, or
has_piped_water).

Comparative Analysis of the Randomization of
Individual and All Data Features
When all data features were randomized, the model in some
cases performed better than a model for which we randomized
only 1 data category during training. This suggests that a model
trained using all random data features ignored the meta data
and took only the image data into account. The fact that the CI
reaches (close to) 1.00 in most models supports this hypothesis
and further shows that, in our experiment, relatively
well-performing models were obtainable even when one or all
data features were randomized. Note that, in our experiment,
we validated the performance of the models on a split from the
training dataset. The performance increased for some models
when data were included, which can partially be explained by
the heterogeneity of the PAD-UFES 20 dataset, which is largely
biased toward a lighter-skinned immigrant population. The
model likely overfits this population.

Overall, the quantitative analysis of the models showed a
scattered impact of the available data features in the PAD-UFES
20 dataset, making it difficult to quantitatively evaluate the
usefulness of including individual data features. However,
medical data appeared slightly more pertinent to the model than
other categories serving as proxies, whereas demographic,
context-dependent variables showed uneven relevance per model
class. However, note that the empirical evidence exploratively
derived from our quantitative analysis can only provide limited
(stand-alone) information about specific impacts of the inclusion
and exclusion of data features from the PAD-UFES 20 dataset
and is rather meant to showcase the potential of quantitative
analysis for the evaluation of data features. Checking whether
the results are consistent across other feature selection methods
would exceed the scope of this exploratory study. Still, it would
be highly relevant to future work to provide further insights into
the utility of the PAD-UFES 20 data.

Qualitative Contextualization

Overview
This section features qualitative data from interviews with the
authors of the PAD-UFES 20 dataset to show an example
contextualization of the quantitative findings using qualitative
analysis. The accounts presented provide insights into how the
dataset was created and why certain data categories were
included in and excluded from the publicly available version.
Thus, they provide insights into the quality of the publicly
available PAD-UFES 20 data features.

Inclusion: How Data Categories Were Chosen
First, it is essential to understand how the team decided which
data categories to include for data collection. Our interlocutors
told us that one purpose of the PAD-UFES project was to
digitize the university’s dermatological data collection process
that, at the time, was still conducted manually by medical
students. Therefore, an initial set of data categories to collect
originated from formerly institutionally established data
collection practices. The refinement of the data collection
specifications for the PAD-UFES 20 dataset specifically was
established while aiming to satisfy multiple actors’ interests at
the same time:

They [the medical colleagues] wanted to have this
data to make research on this data, so, for example,
the geographic location of the patient, if the patient
has clean water, the income of the patient per
month...they wanted relevant data for their research
about the demography of the patients. This
information was initially not relevant to us, we wanted
specific information about the lesion. So, we had these
two types of data to collect. [Gabriel]

Hence, some data categories were defined independently by
medical students and scholars, whereas the computer scientists
leading the data collection were less interested in these.

To determine which data categories would be relevant for
machine learning, André and his colleagues referred to the
“reporting standard in most medical data sets” (Breno) and
consulted additional medical experts. André explained that their
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selections of which data features to collect were ultimately
related to the following:

...specific questions [dermatologists ask their
patients], like “does this lesion itch” or “has it bled
in the past”...“has this been growing”...this kind of
questions. Because they [doctors] try to simulate the
algorithm that they have in their head. [André]

On the basis of the factors that dermatologists reported working
with to diagnose a lesion, André and his colleagues created a
combination of data categories to potentially accompany the
dermatological images. They ran the categories by the
dermatologists again before starting the data collection process,
asking the following:

If you have only this information, can you classify
or...provide a diagnosis from this lesion for this
lesion? And most doctors said “okay, now I have
enough information.” [André]

Re-Exclusion: Medically Irrelevant Data
Despite basing the choice of which data categories to collect
on dermatological clinical practice, it became clear during data
collection that not all data categories seemed reasonable to
include for analysis:

[For the dataset creation] we asked people if they
had contact with chemicals. Most of them work on
farms. They are peasants...and some doctors say
chemicals, you know, when you put them in the food
[on the fields], they may have an impact on skin
lesions. So, we have this in the data set. But most
doctors don’t ask [their] patients [about chemicals
during skin assessments] because they don’t think
this is relevant. [André]

The “pesticide” category serves as a representative example
here. Gabriel and Breno shared similar insights regarding the
categories “has_sewage_system” and “has_piped_water.” They
reported that these categories were initially collected for medical
students to analyze demographic factors and skin cancer or
explore potential causal links between these features and skin
cancer that could not be established in a subsequent analysis
[54]. Notably, they still chose to publish these data categories
despite excluding them from their machine learning analysis
after deeming them medically irrelevant:

We left this information there [in the dataset] because
we thought something like “maybe someone in the
world wants to have this information to do something
with it,” right? [André]

Re-Exclusion: Unreliable Answers
Some other data categories available in the dataset were
unreliable due to ambiguous internal definitions or varying
degrees of patient honesty, such as the following:

If the patient uses cigarettes or drinks...if they
consume alcohol. Those are general questions most
people don’t like to answer.... Most of them say no,
but sometimes they use that. [André]

André explained that the resulting vagueness of the data features
“smoke” and “drink” caused them to disregard these categories
in the version of the dataset that they used for training
algorithms. However, again, they held onto these features for
publication of the dataset in case “someone wants to do some
analysis with it,” as Breno said. This highlights the importance
of critically reflecting on the available data features for their
applicability for the intended use of a new model and the
integrity of the categories.

Re-Exclusion: “Purposeful” Shorthands
Particularly striking data categories in the PAD-UFES 20 dataset
are “background_father” and “background_mother.” André and
his colleagues included these data categories for data collection
for the following reason:

...many people in Brazil are descendants from Europe.
Immigration. So, you know, this is a complicated
feature because if I ask [a patient about their
background and they say] “Oh, I’m descended from
Germany,” we know that they are very white. They
probably have Fitzpatrick skin type 1 or 2...because
they work on a farm in the sun.... [Sun] exposure and
being white is a very, very, um, you know,
predisposition for skin cancer. [André]

Hence, the categories referring to the patients’ parents’
background are conscious shorthands to assess their skin color.
When asked why they collected both the patients’ parents’
backgrounds and their Fitzpatrick skin type, André answered
the following:

Because sometimes people don’t know from which
part of the world they descend. And at the office, they
use that for statistics...just to see which region [the
patients come from]. And in Brazil, there is a very
high miscegenation. It doesn’t mean if people descend
from, I don’t know, Italy, for example, [some might
be] very white and [others], they have, you know,
Fitzpatrick skin type 3 or 4 because of miscegenation,
right? So, it tells us some part of the history, but not
the whole history. [André]

Several noteworthy observations emerge from this and similar
accounts that we obtained from our interlocutors. First, it is
interesting to highlight the decision to assess the migration
background instead of racial categories. The rationale for
including the background categories seems closely related to
race-related concepts. However, the team hoped to assess who
migrated from countries in which lighter skin tones are more
prevalent. Second, while race or family origin appears to be an
intuitive category to ask about to assess skin tone, its medical
relevance in the context of a dermatological classifier seems
questionable under closer scrutiny. Individuals descending from
a specific region may have a higher likelihood of a particular
skin type, yet their actual skin characteristics could deviate
significantly, especially if their parents themselves underwent
migration. Finally, including the background categories served
multiple purposes: assessing the skin type, potentially including
genetically important information that goes beyond skin type,
and delivering statistics. The assessment of the patients’parents’
backgrounds is a shorthand to fulfill all these goals

JMIR Med Inform 2025 | vol. 13 | e59452 | p. 9https://medinform.jmir.org/2025/1/e59452
(page number not for citation purposes)

Willem et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


simultaneously; however, not asking these questions separately
compromises the exactitude of the categories.

These nuances suggest that the “fitzpatrick_skin_type” variable
might offer greater reliability in assessing the intended
parameters of the background data categories. However,
according to André, the team included the variable
“fitzpatrick_skin_type” only as a backup to the background
categories. They did so because they expected that some patients
might be unable to provide satisfactory answers regarding their
backgrounds or migration history. Furthermore, he argued,
“Fitzpatrick is subjective. You know, maybe a doctor may say
this person is type two, and another doctor says this person is
type three.” Moreover, the Fitzpatrick skin type scale, being a
social construct in itself, harbors numerous limitations regarding
its suitability to assess the intended parameters. For example,
the scale has recently been criticized for having a Eurocentric
bias toward lighter skin tones [55] and for incorrectly and
inadequately reflecting sunburn and tanning risks for skins of
color [56]. A useful data category would assess a cause factor
of the classes the dataset is used to predict. For example,
assessing how much melanin a patient’s skin holds might be
more expedient in the case at hand.

Therefore, it was not surprising that all interviewees told us that
the project team ultimately did not use some of the categorical
data features for their analyses. This shows, once again, how
limited the utility of some of the data categories included in the
publicly available dataset can be. The fact that, in their
qualitative analysis, they “didn’t find [some features] that useful
when compared to the other data features” (André) is in line
with the scattered effects of our quantitative results, in which
the utility of other data features was much more visible
compared to that of the background categories (Figure 1). Again,
this emphasizes the necessity for thoroughly scrutinizing the
available data categories in publicly available datasets.

Another purposeful shorthand that André and his colleagues
used can be found in the categories “has_piped_water” and
“has_sewage_system.” The team told us that they collected
these data for the following reason:

...most people [in the dataset] are very poor. They
work in farms, you know, this kind of thing. Right?
When you collect “has_piped_water” and
“has_sewage_system,” you can draw some
correlations to family income. Usually, people with
low family income don’t have piped water and don’t
have a sewage system. And they usually have more
skin lesions. [André]

Our other interlocutors seconded this, and Breno added that
“the age was also important because, as...they were farmers,
the older they were, the more sun-exposed they were, so they
have an increased risk of skin cancer,” showing how sometimes
combinations of categorical data features were believed to have
statistical importance for assessing skin cancer using predictive
machine learning models.

However, as André noted, “this is a correlation, not causation....
They [poorer people] usually have more skin lesions because
they don’t have money to afford the private treatment.” While

it seems meaningful to assess social determinants of health,
such as socioeconomic status, our aforementioned quantitative
analysis did not show a particularly pronounced utility of this
data feature across classes. In addition, André told us that these
categories are not used in their model. Furthermore, because of
the specific population in the dataset, correlations between the
data categories are expected. For example, during data
collection, André and his colleagues recruited heavily among
the European immigrant population, creating a dataset
predominantly of individuals with lighter skin tones and who
were socioeconomically disadvantaged and prone to skin lesions
because of their high sun exposure. While the research group
is still grappling with mitigating the resulting biases, André
pointed out that “it’s very hard to see how it could generalize
to other groups here in Brazil.” When taken into consideration
in isolation, some biases of a skin lesion classifier trained using
the PAD-UFES 20 dataset might be productive for the accuracy
of diagnoses in a population with similar characteristics to those
of the population included in the PAS-UFES 20. According to
André, the population they use their current model with—which
is similar to the population of the dataset—is “98%...skin types
under four.”

These Fitzpatrick skin types (1 to 3) are very well represented
in the dataset; hence, the model they use regarding this aspect
presumably works well for the vast majority of the patients they
diagnose with the help of the model. This shows how a machine
learning model might be locally helpful but hardly transferable
to another context, in this case, a more diverse population,
providing yet another reason for a context-sensitive assessment
of data categories before their inclusion in training. However,
what this leaves open is how the remaining 2% of patients in
the Brazilian case can be granted fair access to dermatological
care, how high the number of individuals who do not have
access to this dermatological workflow is, and what skin types
they have.

Renomination: Missing Categories Create Missing
Values
André and his colleagues not only omitted specific data features
from their model during analysis, but in other instances, they
also discovered during the data collection process that specific
data categories are indeed pertinent yet they had overlooked
assessing them:

For example, the “elevation” data...one year after
the [data] collection started, some doctors said to us,
“Oh, the elevation is important, because if the lesion
has elevation...it’s probably not a melanoma.” And
we said, “Oh my God, this is very important
information. Why haven’t any doctors here said that
to us before.” Right. So, if you check the data set, you
will see that elevation is missing for many samples
in the dataset. [André]

When the data features that result from the late inclusion of
categories in data collection are included for training a machine
learning model, the missing values must be accounted for;
otherwise, they could distort the results. We did not explicitly
test for the impact of missing values; however, because they
are relatively many in the case of the PAD-UFES 20 dataset’s
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“elevation” category, it seems best to exclude this data category
for training or wait for a new version of the dataset, which,
according to André at the time of this writing, will be published
shortly.

Publication: Making the Data Available to the Public
Our qualitative analysis showed that the authors of the
PAD-UFES 20 dataset were aware of the caveats of the dataset.
André and his colleagues carefully considered which data to
include for the training of their model based on the quantitative
analysis they performed and, importantly, the contextual
knowledge they had about the population; the ways in which
the data were assessed; and the quality of the data features they
produced regarding unreliable answers, shorthands, medically
irrelevant data, or missing values. However, when prompted
about whether they had concerns about how their publicly
available dataset might be decontextualized when used in other
areas of the world by other developers with less contextual
knowledge or applied to different population groups, André
answered the following:

No, we don’t have concerns about that. We just
released the data set to, you know, to help the
research community. You know, when we started to
work in this field, we felt like, “oh, the data, there are
just a few open [publicly available] datasets, and it
would be great if we could release a data set that
people from any part of the world could use.” Right.
But, of course, that can be used for good or bad. Of
course, we cannot control what people do with this
data set. [André]

This account brings together several arguments. Again, it
highlights that the team’s motivation to publish the PAD-UFES
20 dataset was to counter the frustration within the medical
machine learning community regarding the challenge of
accessing datasets just above the quantitative threshold for being
effective for machine learning applications. While emphasizing
the pervasive scarcity of data in health care and the urgent need
for comprehensive datasets, all interviewees underscored the
dual use potential of datasets—the obtained results can either
be advantageous or detrimental for individual patients or society
at large depending on the decisions made by those using the
dataset.

On the basis of our analysis, the potential damages that
uncontextualized datasets might result in are not necessarily
due to adverse decision-making of developers but can stem from
a challenging-to-bridge gap in contextual knowledge. The
significant gap between the pressing need for publicly available
data to pursue the promised benefits of AI in health care and
the potential for unintended harms highlights the need to
exercise caution when dealing with unfamiliar, publicly
available categorical data. It prompts important questions about
responsible data publication practices.

Discussion

Principal Findings
For this study, we conducted a quantitative analysis and
interpreted it regarding the creation and use practices of publicly

available datasets. Our results showed that vague data categories,
which are medically irrelevant, unreliable, shorthands for other
categories, or otherwise distorted (eg, by missing values), can
impair the quality of a machine learning model either overall
or for specific predictive classes. The second part of our
study—a qualitative analysis of an interview with authors of
the dataset—provided evidence that the effects observed in the
quantitative study are due to the social context dependency of
the data categories chosen for a dataset and the medico-social
context in which the data were collected.

Our results suggest that the uncritical use of context-dependent
categorical data from publicly available datasets can introduce
significant biases. These biases are particularly challenging to
detect and mitigate because, under current machine learning
standards, performance tests—even subgroup-specific
performance tests—are typically conducted on a test split
derived from the same dataset used for training. As this test
split shares its context-dependent categorizations with the
training split, these biases can go unnoticed. Such biases pose
a particular risk in sensitive fields such as health care, which
are challenged by scarce data landscapes combined with
high-stakes decision-making in which every false negative and
false positive can be detrimental to individual patients. As we
demonstrated, a qualitative examination of how categorical data
features are defined and an assessment of where categories may
be vague, unreliable, oversimplified, or otherwise unsuitable
for the model’s intended application can help detect these biases.

Limitations
It is important to note that the magnitude of the observed effects
of data categories on a machine learning model’s performance
likely varies depending on the dataset used. We expect, for
example, that, if a similar study to ours were conducted using
a larger dataset, the impacts of the data categories and washout
effects would make the results more challenging to quantify.
Conversely, in our experiment, the washout was less
pronounced, and thus, the impact of the data categories became
visible. However, the fact that we worked with a publicly
available medical imaging dataset positions our results to raise
significant concerns, particularly for domains such as medicine
in which data scarcity frequently results in particularly small
datasets being used for machine learning training. However,
other studies should replicate our findings and investigate the
impact of data categories in different settings.

An established limitation of case-sensitive research is limited
generalizability. We would like to highlight that the phenomena
observed in this study might not immediately lend themselves
to generalization. This work intended to explore the interplay
among data collection practices, the social construction of
categories, and current use practices of publicly available
datasets for machine learning model training in high-risk areas
such as health care. While offering insights that might apply to
similar cases or broader trends, this work, instead of deriving
generalizable claims, exemplifies our research approach. We
recommend conducting additional analyses when applying the
approach to other scenarios. We made corresponding remarks
throughout the manuscript. In line with the trend toward
structured assessment of data categories [9-14], our data suggest
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that including well-defined and contextually relevant data
features in machine learning training can increase the accuracy
of a model. However, this renders overfitting likely, and the
translation to a more diverse population likely holds potential
for harm because the accuracy of a model for any given patient
and, therefore, the reliability of the model’s outputs become
more complex to assess. Further investigations are required to
validate these hypotheses.

Relationship to Prior Work and Outlook
Our results deepen concerns raised by scholars about the social
construction of attributes and intersectionality, for example,
that machine learning puts specific, already marginalized groups
at risk of medical under- or overtreatment [3,5-7]. Following
the idea that categories have politics [17,18,24], our analysis
of the politics of data categories extended established risks of
the use of image data [7] and cautions against the inconsiderate
use of categorical data accompanying image data in medical
machine learning settings and beyond. In light of the context
dependency and social constructedness of categorical attributes,
such as racial categories used in the official censuses of
individual countries [22,23,25-28], our results highlight the
need for sociomedical studies to identify more precise data
categories tailored to each of the diverse contexts in which
medical machine learning models are applied. We believe that
an increase in data category quality is essential to fulfill the
potential of enhancing machine learning algorithms by
incorporating relevant data categories during training. To
achieve this, interdisciplinary research that establishes
context-dependent data category definitions is needed.
Context-dependent definitions should account for the, as Duster
[35] put it, “complex feedback loop and the interaction effect
between phenotype and social practices related to that
phenotype.”

As we have pointed out in this paper, the trend toward structured
assessment of data categories in medical imaging is
accompanied by an increase in data fusion algorithms. Both
practices follow a sublime “more data is better” narrative
previously reported in the context of publicly available image
databases such as ImageNet [57]. This logic incentivizes those
collecting data to include categories that fulfill multiple purposes
simultaneously and those who develop machine learning models
to include more of these potentially vague or too specific data
features for training. Feature selection methods [46], the insights
of which are based on statistics leveraged from the training
dataset and lack qualitative contextualization, seem to be
toothless against the context-sensitive limitations of data
inclusion and exclusion for training. Additional mechanisms
are needed to investigate the suitability of data categories for a
new model, its context, and the population to which it will be
applied. Consequently, this work advocates for deepening
transdisciplinary collaborations in high-risk areas such as
machine learning for medical images. We believe that the
combination of applied computing and qualitative assessment
is pertinent to assessing the contextual dependencies of data
assessments and data applications and providing analytical
insights into relevant gaps. As demonstrated in this research,
considering quantitative and qualitative evaluations together

can yield valuable recommendations for using or refraining
from using data categories.

Conclusions
This work case-sensitively explored the effects of including
categorical data features for training in data-scarce and
community-serving areas such as medical imaging. We
suggested a mixed methods approach, a blend of quantitative
and qualitative analysis, to draw contextual conclusions about
the social construction and context dependency of categorical
data in publicly available datasets before using them for machine
learning training. We exemplified our approach by applying it
to the PAD-UFES 20 dermatological dataset, for which we
quantitatively observed scattered effects on model performance
when comparing scenarios in which we included all available
data features for training, randomized all data features, or
randomized a single data feature at a time. A qualitative analysis
of the genesis of the dataset revealed root causes for the futility
of some of the available data features.

Highlighting the nuanced and complex relationship between
categorical data features and model performance, our
observations suggest the need for an overall cautious use of
publicly available categorical data for machine learning training.
Our findings showed that data collection and categorization
practices are not always intentional (enough) and that data
categories’ social constructedness and context dependency limit
their transferability to new models. This underscores the
importance of conducting qualitative, context-dependent
analyses when considering integrating categorical data features
into model training, particularly in domains in which the impact
on diverse populations is paramount.

We further deduce from these findings that, first,
interdisciplinary social science and health care scholarship is
needed to create more purposeful and context-dependent
definitions of data categories to guide data collection. Second,
dataset creators should include detailed descriptions of the
collection context of each data category. Finally, those using
publicly available datasets should assume that more features
may be available than are necessarily useful to include in
training. Machine learning scientists should further institute
robust practices to test available categorical data for their
integrity within the context of the intended model application
to prevent the perpetuation of biases when too narrow or vague
data categories translate to their model. Importantly, the absence
of reliable methods to assess and mitigate the adverse effects
of context-sensitive data features creates an ethical imperative
of refraining from including categorical data features unless
proven safe for use in a diverse population related to the model’s
intended use.

We believe our findings to be particularly relevant for fields
such as medicine, where sample sizes are often limited,
demanding meticulous scrutiny of available data features for
suitability before incorporation into model training. We advocate
for an interdisciplinary approach that combines technical rigor
with sociological understanding, ensuring that machine learning
models are developed with the complexity of categorial
attributes in mind. This collaborative effort is essential for
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advancing the ethical and effective deployment of AI in a manner that respects the complexities of human societies.
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