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Abstract
Background: Patients with heart failure frequently face the possibility of rehospitalization following an initial hospital stay,
placing a significant burden on both patients and health care systems. Accurate predictive tools are crucial for guiding clinical
decision-making and optimizing patient care. However, the effectiveness of existing models tailored specifically to the Chinese
population is still limited.
Objective: This study aimed to formulate a predictive model for assessing the likelihood of readmission among patients
diagnosed with heart failure.
Methods: In this study, we analyzed data from 1948 patients with heart failure in a hospital in Sichuan Province between
2016 and 2019. By applying 3 variable selection strategies, 29 relevant variables were identified. Subsequently, we constructed
6 predictive models using different algorithms: logistic regression, support vector machine, gradient boosting machine,
Extreme Gradient Boosting, multilayer perception, and graph convolutional networks.
Results: The graph convolutional network model showed the highest prediction accuracy with an area under the receiver
operating characteristic curve of 0.831, accuracy of 75%, sensitivity of 52.12%, and specificity of 90.25%.
Conclusions: The model crafted in this study proves its effectiveness in forecasting the likelihood of readmission among
patients with heart failure, thus serving as a crucial reference for clinical decision-making.
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Introduction
In contemporary society, with the advancement of civilization
and the increasing aging population, cardiovascular diseases
are emerging as a significant global health concern. Among
these, heart failure (HF) stands out as a prevalent cardiovas-
cular ailment characterized primarily by the heart’s inability
to adequately fulfill the body’s blood supply requirements
[1]. Despite notable strides in medical technology improv-
ing survival rates among patients with HF, the incidence
of readmissions remains alarmingly high. Not only does

readmission impose financial burdens on patients, but it also
jeopardizes their quality of life and overall health status.
Hence, predicting the likelihood of readmission in patients
with HF is crucial for efficient medical management and care.

One of the primary motivations for this study is the
significant challenge posed by the high readmission rates
among patients with HF in China. These readmissions not
only strain health care resources but also contribute to
poorer patient outcomes, emphasizing the need for effective
predictive models. Previous studies have demonstrated the
potential of machine learning models in improving clinical
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decision-making, but their applicability to Chinese population
with HF remains limited. This study aims to address this
gap by developing a tailored predictive model that consid-
ers specific population characteristics and clinical contexts
in China, contributing to more personalized and accurate
interventions.

The process of readmission of a patient with HF
is multifaceted, involving a plethora of intricate fac-
tors. Precisely identifying high-risk cohorts across various
dimensions stands as a pivotal strategy in curtailing readmis-
sion rates [2]. By accurately forecasting this risk, health
care teams can tailor patient-centric interventions while
judiciously allocating health care resources. This necessitates
a holistic approach encompassing not only the patient’s
clinical status but also their lifestyle habits, psychological
well-being, and socioeconomic circumstances, all of which
may significantly influence their recovery trajectory and
readmission susceptibility.

In the realm of medical research, both the logistic
regression (LR) model and the Cox proportional hazards
model serve as ubiquitous statistical analysis tools. How-
ever, their applicability is somewhat limited by inter-regional
disparities, such as differences in health care infrastruc-
ture, patient demographics, and treatment practices across
various geographic locations. These disparities can hinder
the generalizability of models developed in one region
when applied to another. Data truncation challenges further
exacerbate challenges in model development, as clinical
data sets often suffer from incomplete patient follow-up
or missing records, particularly in real-world health care
settings where longitudinal tracking can be difficult. With
the rapid proliferation of big data services and technologies,
coupled with substantial enhancements in parallel computing
efficiency, the integration of machine learning in health care
has experienced unprecedented growth. Machine learn-
ing–driven predictive models have demonstrated remarkable
efficacy across various medical domains, including clinical
diagnosis, disease prognosis, genetic analysis, and pharma-
cokinetics [3-6]. The success of these models owes to a
diverse array of machine learning algorithms, encompassing
linear regression, spectral clustering, hierarchical clustering,
long short-term memory, gradient boosting trees, XGBoost,
K-means clustering, and attention mechanisms. The versa-
tility and formidable predictive power exhibited by these
algorithms offer novel insights and tools for medical research.

In recent years, the application of machine learning in
medical decision support systems has expanded significantly.
For instance, Li et al [7] proposed a clinical decision
system based on a deep belief network for patients with
osteosarcoma, enhancing diagnostic accuracy and treatment
efficiency, while Li et al [8] developed a predictive model
for forecasting lymph node metastasis in patients with
Ewing sarcoma, which is crucial for treatment planning

and prognosis evaluation. Similarly, Li et al [8] introduced
a machine learning–based predictive model for predicting
lymph node metastasis in patients with Ewing sarcoma, and
Dong et al [9] developed and validated a predictive model
to evaluate the risk of bone metastasis in kidney cancer.
These studies highlight the versatility of machine learning
models across different cancer types and their utility in
supporting clinical decision-making processes. Building on
these advancements, this study explores the potential of the
graph convolutional network (GCN) model in developing
a readmission prediction model for patients with HF. By
conducting a comparative analysis with conventional machine
learning techniques, the study not only ensures data integrity
but also seeks to provide an optimal strategy for predicting
readmission of a patient with HF in China. This approach
is vital in reducing the disease burden on patients and
aligns with the broader goal of leveraging advanced machine
learning to improve health care outcomes. Renowned as an
efficient deep learning algorithm [10], the GCN model boasts
formidable graph structure learning capabilities, adept at
capturing intricate data relationships [11]. Concurrently, this
study meticulously preserves data integrity during preprocess-
ing to ensure the model’s predictive accuracy.

Methods
Source of Data
The data source for this study was the PhysioNet data
portal [12]. The website provides a medical record–based
database that integrates electronic medical records and
external outcome data from admissions to a hospital in
Sichuan Province, China, between 2016 and 2019 to create
a retrospective HF database. The database encompasses a
comprehensive array of 168 variables derived from 2008
patients with HF.
Ethical Considerations
The Fourth People’s Hospital of Zigong’s Ethics Commit-
tee gave its approval for the creation of this database
(approval number: 2020‐010) [13]. A separate publication
[14] provides a full description of the database’s creation
procedure. None of the data used in this study contained
personal information.
Target Population
Following a comprehensive examination of the medical
records of patients with HF, which encompassed a total
of 2008 cases, the integrity of the data was meticulously
evaluated in terms of its pertinence to patient outcomes.
After a stringent procedure of data cleansing and scrutiny, the
records of 1948 patients were conclusively deemed to satisfy
the criteria of the study and were thus incorporated into this
analysis, as illustrated in Figure 1.
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Figure 1. Research design. AUC: area under the receiver operating characteristic curve; LASSO: least absolute shrinkage and selection operator.

Data Preprocessing
Addressing data incompleteness emerged as a critical
challenge during the course of this study. Specifically,
characteristic variables exhibiting a missing rate of 50% or
higher necessitated exclusion from the analysis due to the
substantial extent of missing information. For other data with
missing values, the k-nearest neighbor (KNN) algorithm [15]
was deployed for imputation, with the K value set to 16 to
optimize the imputation efficacy.

Upon completion of data imputation, information
pertaining to the medications administered to patients during
their hospitalization was reintegrated into the data set.
Subsequently, a meticulous examination of the data ensued,

whereby instances containing missing values were enumer-
ated. Encouragingly, the incidence of such instances was
minimal, facilitating their straightforward removal from the
data set.

After a rigorous series of data preprocessing steps, 1948
study participants and 140 variables were included in the data
set. Using these data, we define the target predictor variable
as the probability that a patient will require hospital readmis-
sion for the specified condition within the next 6 months.
Variable Selection
There were 140 major variables included in this analysis,
including basic patient data such as quality-of life assessment,
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gender, vital signs, and socioeconomic factors, as well as
the frequency of visits. Extensive documentation of base-
line clinical characteristics was also conducted, encompass-
ing blood markers (eg, hemoglobin levels, red blood cell
counts, platelet counts), D-dimer levels, respiratory rate,
blood pressure (both systolic and diastolic), and the Charl-
son Comorbidity Index. In addition, a number of distinct
comorbidities, including diabetes, Alzheimer disease, and
hepatopathy, were examined in the study.

To comprehensively identify variables associated with
patient readmission outcomes at 6 months and ensure the
inclusivity and representativeness of the predictive mod-
el’s variables, 3 distinct variable screening strategies were
implemented within the training cohort. This multifaceted
approach is designed to ensure the accuracy of the model’s
construction and to broaden the applicability of its predic-
tive capabilities through diverse methodological strategies,
thereby enhancing its clinical utility. These strategies entailed
(1) utilization of the χ2 test, which gauges the degree of
association between the feature and the true label, thereby
informing the selection process [16]. (2) Deployment of
random forest, a technique generating multiple training sets
by self-sampling the original data set and training a deci-
sion tree on each set. Subsequently, the ensemble method
aggregates predictions through voting or averaging, ena-
bling assessment of feature importance by evaluating their
contributions to individual trees and comparing magnitudes
across features [17]. (3) Adoption of least absolute shrink-
age and selection operator (LASSO) regression, which
achieves feature coefficient compression by introducing
an L1 regularization term into the ordinary least squares
method’s objective function. This regularization prompts
some insignificant feature coefficients to converge to zero,
effectively facilitating feature selection [18].
Statistical Analysis
Every patient included in the research was subjected to
a thorough statistical analysis. Categorical variables were
statistically represented by frequencies and percentages,
whereas continuous variables were expressed using means
with SD and described with median and IQR. The “scikit-
learn” Python package was used to implement the KNN
method for estimation in order to handle missing values. In
addition, the data set was randomly partitioned with an 8:2
sample size ratio into a test set and a training set. While the
test set was used to validate the model, the training set was
mainly used for variable screening and model construction.

A total of 6 different machine learning algorithms were
used in this study to build the prediction model: XGBoost,
LR, GCN, multilayer perception (MLP), support vector
machine (SVM), and gradient boosting machine (GBM)
[19-22]. The model’s performance was then thoroughly
assessed in terms of accuracy, sensitivity, specificity, and
area under the curve (AUC), which represents the area

of the receiver operating characteristic (ROC) curve. The
purpose of this evaluation was to determine how well the
model predicted the likelihood of hospital readmission for
patients with HF during the next 6 months. In addition,
column-line plots were created to improve the interpretability
of the model, making it easier for clinicians to understand
the predictions of the model. The statistical analyses were
carried out using Pycharm software and the Python program-
ming language (version 3.10), using libraries like “scikit-
learn [23],” “pandas [24],” “PyTorch [25],” and “PyTorch
Geometric [26]”.

Results
Baseline Characteristics
This study encompassed 1948 participants and 140 varia-
bles, spanning various dimensions including baseline personal
data, laboratory test results, medication use, and comorbid-
ities. As depicted in Figure 1, out of the 1948 patients
investigated, 779 patients experienced all-cause readmission,
while 1169 patients did not. The data set was divided into two
subsets: 390 patients formed the test set, and 1558 patients
constituted the training set. Subsequently, the training set was
further split into 2 subsets: 390 patients were allocated to the
validation set, while 1168 patients remained in the training
set.

Variable Selection
Figure 2 depicts the outcomes of the 3 screening methods and
the final results. We have selected the union of these methods
as our definitive feature set, which not only guarantees the
completeness of the features but also enhances the model’s
capacity to accommodate the intricacies of the data. In this
study, most categorical and continuous variables exhibited
significant differences between the nonreadmission group
and the readmission group, indicating that these variables
may play a crucial role in the risk of patient readmission.
For example, variables such as diabetes, chronic kidney
disease, type of HF, and the use of multiple medications
showed highly significant statistical differences. However,
some variables did not reach the conventional level of
significance, such as isoproterenol injection, total bile acid,
globulin, lymphocyte count, and monocyte count. Although
these variables did not demonstrate statistical significance,
after thorough discussions with experts in the relevant
field, we believe that these variables may still hold clinical
importance. Therefore, we decided to include them in the
analysis to ensure the comprehensiveness and scientific rigor
of the results. Ultimately, 29 feature variables were selec-
ted. Statistical descriptions in tabular form for both continu-
ous and categorical variables are provided in Tables 1 and
2, respectively. Furthermore, Figure 3 visually present the
selected variables across the training set and test set.
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Figure 2. Kernel density maps for feature selection. (A) Random forest feature selection. (B) Least absolute shrinkage and selection operator feature
selection. (C) χ2 feature selection. (D) Final selected features.

Table 1. Composition ratios of categorical variables in selected features and their use.
Classification Nonreadmitted (n=1169), n (%) Readmitted (n=779), n (%) P value
Dementia .01

No 1114 (95.3) 720 (92.43)
Yes 55 (4.7) 59 (7.57)

Diabetes <.001
No 931 (79.64) 566 (72.66)
Yes 238 (20.36) 213 (27.34)

MSCKDa <.001
No 938 (80.24) 560 (71.89)
Yes 231 (19.76) 219 (28.11)

Admission ward .01
Cardiology 879 (75.19) 624 (80.10)
General ward 156 (13.34) 100 (12.84)
Intensive care unit 9 (0.77) 4 (0.51)
Others 125 (10.69) 51 (6.55)
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Classification Nonreadmitted (n=1169), n (%) Readmitted (n=779), n (%) P value
Type of HFb <.001

Both 800 (68.43) 632 (81.13)
Left 336 (28.74) 129 (16.56)
Right 33 (2.82) 18 (2.31)

Occupation <.001
Officer 4 (0.34) 3 (0.39)
Worker 9 (0.77) 17 (2.18)
Urban resident 951 (81.35) 670 (86.01)
Farmer 142 (12.15) 48 (6.16)
Others 63 (5.39) 41 (5.27)

Heparin sodium injection <.001
Nonuser 1059 (90.59) 747 (95.89)
User 110 (9.41) 32 (4.11)

Shenfu injection <.001
Nonuser 1002 (85.71) 629 (80.74)
User 167 (14.29) 150 (19.26)

Hydrochlorothiazide tablet <.001
Nonuser 983 (84.09) 693 (88.96)
User 186 (15.91) 86 (11.04)

Milrinone injection <.001
Nonuser 802 (68.61) 467 (59.95)
User 367 (31.39) 312 (40.05)

Torasemide tablet <.001
Nonuser 1048 (89.65) 657 (84.34)
User 121 (10.35) 122 (15.66)

Isoprenaline hydrochloride injection .07
Nonuser 1147 (98.12) 773 (99.23)
User 22 (1.88) 6 (0.77)

aMSCKD: moderate to severe chronic kidney disease.
bHF: heart failure.

Table 2. Statistical analysis of continuous variables in selected characteristics.
Nonreadmitted (n=1169) Readmitted (n=779) P value
Mean (SD) Median (IQR) Mean (SD) Median (IQR)

Urea 9.02 (5.26) 7.57 (5.7-10.7) 9.95 (5.17) 8.6 (6.24-12.2) <.001
Calcium 2.29 (0.18) 2.28 (2.2-2.4) 2.31 (0.18) 2.3 (2.2-2.4) <.001
SBPa 132.94 (24.46) 130.0 (118-150) 128.52 (24.44) 128.0 (110-143) <.001
D-dimer 2.56 (5.81) 1.28 (0.8-2.2) 1.95 (3.58) 1.2 (0.71-2) .03
Sodium 138.63 (4.74) 139.3 (136.5-141.8) 137.79 (4.97) 138.5 (135.15-141) <.001
Uric acid 465.95 (160.52) 444 (353-554) 502.20 (172.4) 475.0 (377-604) <.001
GFRb 72.51 (36.15) 70.44 (46.7-93.7) 64.70 (35.45) 58.01 (40.0-82.5) <.001
Cystatin 1.76 (0.90) 1.48 (1.2-2.) 1.90 (0.92) 1.64 (1.27-2.29) <.001
LVEDDc 51.91 (9.10) 51.0 (46-56.4) 53.37 (8.92) 52.31 (48.38-56.94) <.001
LDL-Cd 1.89 (0.72) 1.78 (1.4-2.3) 1.81 (0.73) 1.73 (1.32-2.14) <.001
hs-Tne 0.34 (2.40) 0.048 (0.02-0.12) 0.17 (0.67) 0.063 (0.03-0.12) <.001
CREf 102.11 (69.76) 82.2 (63-113) 113.72 (81.91) 94.07 (69.5-130.09) <.001
Discharge day 8.69 (5.74) 7 (6-10) 10.66 (10.36) 8 (6-11) <.001
Total bile acid 8.11 (10.72) 5.7 (3.3-8.9) 8.93 (13.32) 5.7 (3.2-9.3) =.67
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Nonreadmitted (n=1169) Readmitted (n=779) P value
Mean (SD) Median (IQR) Mean (SD) Median (IQR)

Globulin 28.65 (6.13) 27.9 (24.7-31.3) 28.32 (5.50) 28 (25-30.8) .59
Lymphocyte count 1.03 (0.63) 0.94 (0.61-1.29) 1.04 (0.55) 0.94 (0.66-1.29) .31
Monocyte count 0.48 (0.25) 0.42 (0.32-0.58) 0.47 (0.23) 0.42 (0.32-0.56) .77

aSBP: systolic blood pressure.
bGFR: glomerular filtration rate.
cLVEDD: left ventricular end diastolic diameter.
dLDL-C: low-density lipoprotein cholesterol.
ehs-Tn: high sensitivity troponin.
fCRE: creatinine enzymatic method.
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Figure 3. The specific distribution of the selected features in the training and test sets (the training set is represented in blue, and the test set is
represented in green).
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Performance Evaluation Results of the
Machine Learning Models
In this study, 3 independent strategies were used for variable
screening, leading to the identification of 29 variables closely
associated with the prognosis of patients with HF, which were
subsequently included in the model construction process. A
total of 6 models for predicting readmission risk have been
developed with the aim of providing an accurate evaluation
for patients with HF.

During the construction of the GCN model, we systemat-
ically tuned the hyperparameters, including the number of
neurons in the hidden layer, the dropout rate, and the learning
rate, to optimize the model’s performance in predicting
the risk of readmission in patients with recurrent HF. We

evaluated the impact of various parameter combinations by
calculating the AUC on the validation set and ultimately
selected the combination that maximized the validation AUC.
As shown in Figure 4, different parameter combinations led
to significant variation in model performance, with some
yielding higher AUC values and others leading to lower
performance. In our experiment, we identified the config-
uration with the highest validation AUC, highlighted in
red, which achieved the best performance. This systematic
hyperparameter tuning process provided valuable insights into
the model’s sensitivity, allowing us to select the settings with
the highest potential for real-world application. Ultimately,
we used this optimal parameter combination to construct our
final model.

Figure 4. Graph convolutional network model hyperparameter tuning process. AUC: area under the receiver operating characteristic curve; DO:
dropout; HC: hidden channels; LR: logistic regression.

The outcomes of the 6 predictive models are presented in
Table 3, while their respective performance comparisons
are depicted in Figure 5. In the tabulated data, the GCN
model distinguished itself with an AUC value of 0.831,
significantly surpassing the other 5 models, whereas the MLP
model exhibited the lowest AUC value of 0.564. Regarding
prediction accuracy, the GCN, GBM, LR, and XGBoost
models all achieved accuracies exceeding 60%, with the

GCN model registering the highest accuracy of 75% and
the MLP model yielding the lowest at 56.4%. In terms of
sensitivity, the GCN, XGBoost, and MLP models demonstra-
ted commendable performance, while in terms of specificity,
the GCN, SVM, and XGBoost models outperformed others.
Considering these 4 evaluation indices collectively, the
GCN algorithm demonstrated the most effective prediction,
followed by the XGBoost model.

Table 3. Predictive outcomes of heart failure readmissions for 6 machine learning algorithms.
Model AUCa (95% CI) P value Accuracy, % Sensitivity, % Specificity, %
LRb 0.624 (0.569-0.679) <.001 0.613 31.45 81.82
SVMc 0.569 (0.510-0.628) <.001 0.590 15.72 88.74
GBMd 0.637 (0.584-0.693) <.001 0.610 33.33 80.09
XGBooste 0.663 (0.608-0.718) <.001 0.662 42.77 82.25
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Model AUCa (95% CI) P value Accuracy, % Sensitivity, % Specificity, %
MLPf 0.564 (0.507-0.622) <.001 0.564 40.88 67.10
GCNg 0.831 (0.813-0.849) <.001 0.750 52.12 90.25

aAUC: area under the receiver operating characteristic curve.
bLR: logistic regression.
cSVM: support vector machine.
dGBM: gradient boosting machine.
eXGBoost: Extreme Gradient Boosting.
fMLP: multilayer perception.
gGCN: graph convolutional network.

Figure 5. Performance comparison of different models. (A) Precision-recall (PR) curve. (B) Receiver operating characteristic (ROC) curve. GCN:
graph convolutional network; GBM: gradient boosting machine; LR: logistic regression; MLP: multilayer perception; SVM: support vector machine;
XGBoost: Extreme Gradient Boosting.

Crucial Predictors in Readmission Risk
In this study, we used gradient attribution and SHAP (Shapley
Additive Explanations) values to conduct an in-depth analysis
of the model’s feature importance, aiming to gain a more
comprehensive understanding of the model’s decision-making
basis when predicting the risk of readmission in patients with
HF. The gradient attribution method revealed the model’s
sensitivity to changes in each feature (Figure 6). The results
indicated that D-dimer and lymphocyte count are key features
influencing the model’s output, with their importance scores
significantly higher than those of other features. This suggests
that the model is particularly sensitive to variations in
these features when predicting readmission risk. In addi-
tion, features such as isoprenaline hydrochloride injection
and high sensitivity troponin also showed high importance,
implying that they may play a significant role in the clinical

treatment of patients with HF, thereby substantially impacting
the model’s predictive outcomes.The SHAP value analysis
further revealed the specific contributions of each feature to
the model’s predictions (Figure 7). SHAP values not only
quantify feature importance but also illustrate the direction
of these features’ influence on different prediction categories.
The analysis showed that moderate to severe chronic kidney
disease, type of HF, and dementia are the most influential
features affecting the model’s prediction of readmission risk,
with higher values of these features significantly increasing
the likelihood of patient readmission. Furthermore, SHAP
value analysis highlighted that certain features, such as uric
acid and globulin, exhibit bidirectional influences in the
model’s predictions, meaning that these features may have
different effects on prediction outcomes depending on the
context.
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Figure 6. Importance of features for heart failure readmission risk.
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Figure 7. Shapley Additive Explanations (SHAP) value feature importance.

By integrating the results from both analysis methods,
we reached the following conclusions: lymphocyte count
emerged as a critical feature, displaying extremely high
importance in gradient attribution and also showing a notable
impact in SHAP value analysis, indicating its central role
in predicting readmission risk for heart failure patients.
Although features like D-dimer had high importance in
gradient attribution, their impact was relatively smaller
in SHAP value analysis, suggesting that these features
might play a crucial role in the model’s local sensitivity.
Conversely, features such as moderate to severe chronic
kidney disease and type of HF were prominent in SHAP
value analysis, underscoring their critical significance in the
model’s overall predictions. By combining gradient attribu-
tion and SHAP value analysis, we not only identified the
features crucial to the model’s predictions but also gained
a more precise understanding of how these features func-
tion in different predictive contexts. This multidimensional
analytical approach provides a solid foundation for formulat-
ing personalized treatment and management strategies and
contributes to improving the accuracy of readmission risk
prediction for patients.

Discussion
Clinical prognosis of patients with HF is highly variable
and closely related to the course and severity of the ill-
ness. Building a predictive model for 6-month readmission
risk that is specifically tailored to the Chinese population
is crucial for both patients and health care professionals
in the global context of precision prevention and treatment
strategies. Clinical and biochemical indicators are important
points of reference for physicians because of their accessi-
bility and ease of interpretation, even though a variety of
complex factors influence the readmission risk of patients
with HF. In this study, alongside integrating clinical and
biochemical indicators, considerations were extended to
encompass patients’ state of consciousness, verbal responses,
mobility, and socioeconomic factors such as substance use
and occupational status [27].

The study was conducted with the objective of accu-
rately forecasting the 6-month readmission risk for patients
with HF. To this end, 6 predictive models were developed
and validated, using 3 distinct variable screening methods
that incorporated 29 characteristic variables. The models’
performance was rigorously assessed using 4 key metrics:
AUC, accuracy, sensitivity, and specificity. Among all the
models tested, the GCN-based model emerged as the most
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effective, as evidenced by its outstanding AUC of 0.866,
an accuracy rate of 0.75%, a sensitivity of 52.12%, and a
specificity of 90.25%. These results underscore its superior
predictive prowess.

By elucidating optimal readmission strategies for patients
with HF in China, this study aims to provide robust
support for clinical decision-making, enabling physicians
to conduct more precise assessments of readmission risk.
Building on this foundation, it seeks to alleviate the dis-
ease burden and improve the quality of life for patients
with HF. This study innovatively applies the GCN model
to predict readmission risk for patients with HF, leverag-
ing its unique graph structure learning capability to effec-
tively capture and use complex structural relationships within
the data, demonstrating significant advantages in handling
high-dimensional, heterogeneous medical data. Through
rigorous data preprocessing and variable selection strategies,
this study ensures the scientific validity and reliability of
the model’s predictions, enhancing the credibility of the
findings. The systematic comparative analysis comprehen-
sively evaluates the performance of GCN against various
traditional machine learning models, with results showing
GCN’s superior performance across key metrics, further
confirming its effectiveness in predicting HF readmission
risk. This research not only expands the application bounda-
ries of GCN in medical prediction but also provides pre-
cise tools and methods for predicting readmission risk in
Chinese patients with HF, holding significant clinical value
for reducing readmission rates, alleviating healthcare burdens,
and improving patient quality of life.

In this study, we systematically compared various machine
learning models, including XGBoost, LR, GCN, MLP, SVM,
and GBM. Although these models demonstrated certain
predictive capabilities across different tasks, GCN exhibited
significant advantages, especially in tasks involving complex
structured data. Unlike other traditional models, GCN can
effectively use the latent complex structures within the
data, aggregating relevant information to generate richer
and more representative feature representations. In contrast,
while XGBoost and GBM excel at handling high-dimen-
sional features, they cannot directly capture the structural
relationships within the data, leading to limited performance
when dealing with complex structured data. Similarly, MLP
and SVM, as typical nonstructured models, are unable to
leverage relational information within the data, relying solely
on independent features for prediction, which weakens their
ability to capture complex dependencies among features.
Although LR has the advantage of being simple and easy
to use, its linear nature makes it difficult to handle complex
nonlinear relationships. GCN, through its unique convolu-
tional operations, not only effectively integrates both local
and global information but also maintains stable perform-
ance in sparse data environments. This ability to aggregate
information and process complex structured data enabled
GCN to significantly outperform other models in predict-
ing the risk of rehospitalization among patients with HF.
Therefore, we chose GCN as our primary model to fully

exploit the complex structural information within the data and
enhance prediction accuracy.

The international medical community considers research
on predicting the risk of readmission in patients with HF to be
extremely important [28-30]. Research has repeatedly shown
that the use of GCN results in better predictive performance
when compared to other algorithms. These findings were
derived from a predictive model encompassing 1948 patients
and 29 associated factors, showcasing excellent performance
relative to prior studies [28,31-34].

However, it’s important to recognize that the comparison
between different predictive models isn’t always straightfor-
ward, given the variance in methodologies and variables
used. Currently, most machine learning–based HF readmis-
sion prediction models lack validation in a prospective cohort
of Chinese patients with HF. Notably, significant disparities
exist between Western and Chinese populations concerning
dietary habits, ethnic composition, and disease prevalence
[35,36]. Consequently, caution should be exercised when
extrapolating models constructed based on Western popula-
tions to Chinese or other Asian populations, to avoid potential
misinterpretations and contentious conclusions.

Although this study’s results indicate that readmission risk
of patients with HF can be accurately predicted, it should be
noted that there are a number of limitations. First, while this
study used 29 characteristic variables to develop a predic-
tive model, the practical clinical application of using such
a large number of variables is constrained. In a real-world
clinical setting, obtaining all the feature variables used in this
study may not always be feasible due to challenges in data
collection, especially in resource-limited environments. This
represents a significant limitation, as the practical utility of
the model in daily clinical practice could be reduced by the
availability of these variables. Future work should aim to
simplify the model by identifying the most critical predic-
tive features, thus improving its clinical applicability without
compromising accuracy.

First, it was impossible to establish a clear causal link
between the chosen factors and patient readmission due
to the retrospective analysis of databases. Nonetheless, the
study mitigated this limitation by using diverse screening and
modeling strategies, coupled with result validation, to bolster
the robustness of its findings and provide a strong quantitative
basis for future prospective studies.

Second, while multicenter studies are typically deemed
more representative, it is worth noting that single-center
predictive models have yielded significant results in clinical
research. This study, based on single-center data, holds
clinical significance and reinforces the value demonstrated
by single-center studies in advancing our understanding of
predictive modeling in healthcare.

Third, the absence of ECG-derived feature information in
the database limited the consideration of potential predictors
in this study. However, the study thoroughly explored the
predictive role of available variables in predicting 6-month
readmission risk. The data set for this study was derived
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from a database of Chinese patients with HF, which may
have specific applicability to Asian populations. Nonethe-
less, constructing more generalizable models will necessitate
comprehensive databases encompassing a broader spectrum
of populations.

Furthermore, akin to many prior studies, this study did
not extensively analyze the specific causes of readmission.
Nonetheless, considering that HF predominantly affects the
elderly population, curtailing all-cause readmission rates
is paramount to enhancing patient survival quality. This
study’s model demonstrated excellent specificity and overall
accuracy, suggesting that it is a highly effective tool for
identifying low-risk individuals. Furthermore, the model
was able to predict that most patients would not require
readmission to the hospital within 6 months of their dis-
charge. This insight is crucial for judiciously allocating health
care resources and channeling additional resources toward
high-risk individuals, thereby diminishing readmission rates
and enhancing their quality of survival.

Finally, this study methodically selected and compared
the 6 most prevalent methods among various traditional
statistical models and machine learning modeling techniques.
The findings underscored the robustness and rationality of
the modeling methods used in this study, underscoring their
suitability for predictive modeling in the context of HF
readmission.

In future work, we plan to further expand and diversify our
data set to enhance the model’s generalization ability across
different patient populations and explore extending the data
set to a broader range of geographic regions and hospital
systems. We will focus on optimizing the GCN model and
exploring the integration of other advanced machine learning

models, such as deep neural networks and ensemble learning
methods, to improve the accuracy and robustness of HF
readmission risk prediction.

In addition, we intend to further develop more transpar-
ent model interpretation frameworks, enabling clinicians to
better understand and trust the model’s outputs. We also plan
to strengthen our collaboration with clinicians and medical
experts to ensure the model’s effectiveness in real-world
clinical settings. To further facilitate practical application, we
aim to develop a web-based calculator that allows healthcare
providers to easily input patient data and quickly obtain
predictions of readmission risk. This tool will enhance the
accessibility and usability of the model in clinical practice.
Furthermore, we plan to apply our research findings to the
risk prediction of other chronic diseases, thereby expanding
its potential applications in medical decision support.

Finally, we will closely monitor the ethical considerations
associated with the model’s real-world application, evaluating
its potential impact on patients and health care systems to
ensure that our research remains safe and socially acceptable
in clinical practice.

In conclusion, this study successfully developed a
predictive model using a GCN with 29 variables to fore-
cast the risk of readmission for patients with HF over a
6-month period. Through comprehensive assessment using
4 key evaluation metrics, the model exhibited exceptional
performance and yielded convincing validation results. This
important discovery provides a critical point of reference for
therapeutic treatment and diagnostic judgment with regard
to Chinese individuals suffering from HF. Furthermore, it
provides insightful information for the next research on HF
readmission in Asian populations.
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