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Abstract
Background: Postpartum depression (PPD) is a prevalent mental health issue with significant impacts on mothers and
families. Exploring reliable predictors is crucial for the early and accurate prediction of PPD, which remains challenging.
Objective: This study aimed to comprehensively collect variables from multiple aspects, develop and validate machine
learning models to achieve precise prediction of PPD, and interpret the model to reveal clinical implications.
Methods: This study recruited pregnant women who delivered at the West China Second University Hospital, Sichuan
University. Various variables were collected from electronic medical record data and screened using least absolute shrinkage
and selection operator penalty regression. Participants were divided into training (1358/2055, 66.1%) and validation (697/2055,
33.9%) sets by random sampling. Machine learning–based predictive models were developed in the training cohort. Models
were validated in the validation cohort with receiver operating curve and decision curve analysis. Multiple model interpretation
methods were implemented to explain the optimal model.
Results: We recruited 2055 participants in this study. The extreme gradient boosting model was the optimal predictive model
with the area under the receiver operating curve of 0.849. Shapley Additive Explanation indicated that the most influential
predictors of PPD were antepartum depression, lower fetal weight, elevated thyroid-stimulating hormone, declined thyroid
peroxidase antibodies, elevated serum ferritin, and older age.
Conclusions: This study developed and validated a machine learning–based predictive model for PPD. Several significant
risk factors and how they impact the prediction of PPD were revealed. These findings provide new insights into the early
screening of individuals with high risk for PPD, emphasizing the need for comprehensive screening approaches that include
both physiological and psychological factors.
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Introduction
Postpartum depression (PPD) is a common mental disorder
characterized by low mood, loss of pleasure, and sleep
disturbance during the postpartum period [1]. The prevalence
of PPD ranges from 3% to 38% in different nations and
is higher in limited-income countries [2,3]. PPD leads to
adverse consequences for the mother and family members,
such as emotional strain and increased caregiving burden.
Women with PPD may experience prolonged periods of
distress and are more vulnerable to recurrent depressive
episodes [4]. Previous studies revealed that PPD can impair a
mother’s parenting ability, such as breastfeeding, potentially
resulting in enduring adverse effects on the child’s develop-
ment across emotional, cognitive, and physical domains [5,6].
Moreover, PPD can strain family relationships and impose
economic burdens due to increased health care needs and
reduced productivity [6].

With such a profound impact, mothers should be rou-
tinely screened for PPD, and early interventions should be
implemented. However, current screening for PPD is mainly
based on existing depressive symptoms such as fatigue and
sleep disturbance, which are believed to be overlooked due
to overlap with normal physiological manifestations after
delivery [7,8]. In addition, the diagnosis of PPD depends on
patients’ subjective reporting of personal health conditions
[9]. It is urgent to identify individuals with high risk for
PPD before clinical symptoms appear, while no effective and
validated screening tools are currently available [7,10].

Previous studies have identified several risk factors of PPD
such as unplanned pregnancy, lack of social support, and
family history of mental disorders [11,12]. However, limited
variables in such studies led to a lack of integrity. Machine
learning algorithms provide support for the development of
predictive models to prevent and intervene adverse health
outcomes, offering avenues for personalized prediction and
intervention strategies [13,14]. Several studies have adapted
machine learning into the prediction of PPD risk in the
last few years and achieved impressive performance [15-17].
However, insufficient model explanations leave obstacles for
actual implementation. Besides, mental disorders are strongly
associated with cultural backgrounds and study populations.
Thus, the challenge remains to develop more nuanced and
culturally adaptable machine learning models for the early
detection and effective management of PPD, bridging the gap
in current research and practice.

Given the importance of early screening for PPD and the
limitations mentioned earlier, we conducted a retrospective
study at our institution. This study comprehensively collected
variables from multiple aspects, adopted machine learning
algorithms to identify risk factors, and aimed to achieve
precise prediction of PPD.

Methods
Participants
Pregnant women who underwent perinatal examinations and
delivered at West China Second University Hospital, Sichuan
University, from January 2017 to December 2020 were
invited to participate in this study. The study cohort was
divided into training and validation sets by random sam-
pling. Participants were screened for eligibility. The inclusion
criteria were as follows: (1) participants who completed
regular examinations and delivered at our institution, (2)
participants with a gestational age of ≥28 weeks, and
(3) participants who gave consent to participation and be
followed up. The exclusion criteria were (1) participants with
a psychiatric history in the 6 months before conception and
(2) participants with missing data.

Outcome
Participants were assessed for PPD 3 months post partum
with the Edinburgh Postnatal Depression Scale [18]. The
Edinburgh Postnatal Depression Scale has 10 items concern-
ing depressive symptoms, and each item is evaluated using
scores ranging from 0 to 3, constituting a total score of
30. Participants who scored 13 or more were regarded as
having PPD [18]. The diagnosis of PPD was confirmed by 2
experienced senior psychiatrists using the Structured Clinical
Interview for Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM-5) [19] and the Chinese
Classification and Diagnostic Criteria of Mental Disorders,
Third Edition (CCMD-3) [20].
Variable Screening
Demographic variables were collected from the electronic
medical record system of our institution. Clinical varia-
bles were assessed and documented by qualified clinicians.
Relevant laboratory indicators were collected at 28 weeks of
gestation from the medical laboratory system of the institu-
tion.

Participants were assessed for antepartum depression
before delivery with the Zung Self-Rating Depression Scale
[21]. The Self-Rating Depression Scale is a self-reported
scale with 20 items concerning depressive symptoms, and
each item is evaluated with scores ranging from 0 to 4,
according to the severity of symptoms. All participants with
more than 53 points were regarded as having antepartum
depression [22].

Social variables, including education, income, exposure to
suspected adverse factors, and family and social relations,
were collected using scales and self-administered question-
naires. Income level was assessed using the local minimum
income standard. Suspected adverse factors included alcohol
consumption and smoking. Family and social relations
comprised spouses in good health, only child, planned
pregnancy, social support, family satisfaction, adverse marital
status, and family history of mental illness. The level of
social support was measured using the Social Support Rating
Scale, which is widely used to assess social support with
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great reliability [23]. Scores higher than 35 are considered
normal; scores of 35 or lower indicate low levels of social
support [24]. Family satisfaction was assessed using the
Family Adaptation, Partnership, Growth, Affection, Resolve
index [25]. The Family Adaptation, Partnership, Growth,
Affection, Resolve index consists of 5 items, each with a
score ranging from 0 to 2. It systematically evaluates the level
of family care a pregnant woman receives. A total score of
0‐3 represents a low level of family satisfaction, and a score
higher than 4 represents a normal level.

To avoid the potential bias of multicollinearity and
overfitting, least absolute shrinkage and selection operator
(LASSO) regression was performed to select and filter the
variables in the training set. LASSO is a regression-based
methodology that can reduce model complexity; multicolli-
nearity and overfitting are avoided by constructing a penalty
function [26]. LASSO regression is applied to filter a large
number of variables and remove those that are insignificant
[27,28]. The 5-fold cross-validation method was used to
calculate the optimal λ values, and variables with nonzero
coefficients were selected as the final predictive factors. After
LASSO regression, the variance inflation factor (VIF) was
calculated among the included variables to assess multicolli-
nearity. The VIF was introduced to understand the impact of
collinearity in regression models and has since been widely
applied in various fields, including medical research [29-31].
VIF helps ensure that machine learning models or statistical
models are not adversely affected by collinear predictors
[32]. Typically, a VIF value greater than 10 is considered
indicative of high multicollinearity, which may necessitate
removing or adjusting variables to improve model stability
[29,33].
Model Development
We used the following 3 machine learning algorithms
to develop the PPD prediction model: extreme gradient
boosting (XGBoost), random forest (RF), and gradient
boosting machine (GBM). XGBoost is a powerful and
efficient machine learning algorithm known for its excep-
tional performance in regression, classification, and rank-
ing problems. It is an extension of the traditional gradient
boosting method that combines multiple weak classifiers to
create a strong classifier that minimizes the loss function
[34]. RF is an ensemble machine learning algorithm based on
decision trees. It creates multiple decision trees, each based
on a randomly sampled subset of the training data to create
a more accurate and robust output [35]. GBM is a popular
machine learning algorithm that combines the principles of
boosting and gradient descent to create a powerful predictive
model [36]. Additionally, logistic regression, a traditional
method, was implemented to predict PPD as a control.

Machine learning models were developed in the training
set. To mitigate overfitting and achieve ideal model perform-
ance, hyperparameters for each machine learning model were
tuned by grid search. In each session of hyperparameter
tuning, 3-fold cross-validation was implemented, and the
area under the receiver operating characteristic curve (AUC)
was the criterion to assess model performance [37]. The

combination of hyperparameters with the largest AUC value
was further evaluated in the validation set.
Model Evaluation
Predictive models were evaluated with the receiver operat-
ing characteristic curve (ROC) and decision curve analysis
(DCA) in the validation set. ROC reflects the ability of a
model to discriminate PPD [38]. DCA is used to evaluate
and compare the clinical utility of different diagnostic or
predictive models. It provides a framework for assessing the
net benefit of a model by taking into account the poten-
tial harms and benefits associated with different decision
thresholds [39]. Additionally, accuracy, sensitivity, specific-
ity, positive predictive value (PPV), and negative predictive
value (NPV) of each model were calculated for comprehen-
sive evaluation. Based on ROC, the predictive model with
the greatest AUC value was considered as the optimal model,
which would be further explored for interpretation.
Model Interpretation
We performed variable importance, partial dependence plot
(PDP), and Shapley Additive Explanation (SHAP) to interpret
the optimal predictive model. Variable importance assesses
the contribution of each input variable by calculating the
decrease in error when split by a variable [40]. PDPs calculate
the partial dependence of a variable by fixing the values of
other variables and observing the variation in the outcome
[41]. It helps to explain how the outcome changes with
changes in input variables. SHAP measures the contribution
of variables in each individual sample [42]. The SHAP values
show how much each variable contributes, either positively or
negatively, to the outcome.
Statistical Software
All statistical analyses were performed with R software
(version 4.3.1; R Foundation for Statistical Computing).
LASSO regression was performed using the R package
glmnet. Logistic regression model was implemented using
the R package glm. XGBoost, RF, and GBM models
were developed and assessed with R package mlr3. Model
interpretation was performed with R packages fastshap and
pdp. Other involved packages include xgboost, randomFor-
est, gbm, pROC, ggplot2, and their various dependencies.
Ethical Considerations
This study was approved by the ethics committee of
West China Second University Hospital, Sichuan University
(approval 2021-186). Informed consent was obtained from
all individual participants involved in the study. The original
informed consent covered the secondary use of the data
without the need for additional consent. All participant data
were anonymized to protect privacy and confidentiality. No
compensation was provided for participation in this study.
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Results
Participant Characteristics
The overall procedure of this study is shown in Figure 1.
After eligibility screening, 2055 participants were included
in the study cohort. A total of 78 variables were incorpora-
ted in our study including 16 psychosocial characteristics,
43 obstetric characteristics, and 19 laboratory indicators.
The baseline characteristics were analyzed by χ² test

and Wilcoxon test for category variables and continuous
variables, respectively. The detailed characteristics are shown
in Tables 1-3. Of these participants, 697 (33.9%) participants
were diagnosed with PPD, 621 (30.2%) participants had
antepartum depression, 101 (4.9%) were unemployed, 187
(9.1%) had an income below the local minimum income
standard, 1947 (94.7%) pregnant women were the only child
of the family, and 45 (2.2%) reported low family satisfaction;
the median age of participants was 32 (IQR 29-35) years.

Figure 1. The flow chart of the study design.

Table 1. Psychosocial characteristics of participants.
Psychosocial characteristics Non-PPDa (n=1358) PPD (n=697) P value Method
Age (years), median (IQR) 31 (29-35) 32 (29-35) .03 Wilcoxon
Antepartum depression, n (%) <.001 χ² test

No 1170 (86.2) 264 (37.9)
Yes 188 (13.8) 433 (62.1)

Ethnics, n (%) .15 χ² test
Han 1326 (97.6) 673 (96.6)
Others 32 (2.4) 24 (3.4)

Work status, n (%) .002 χ² test
Employed 1277 (94) 677 (97.1)
Unemployed 81 (6) 20 (2.9)

Season of delivery, n (%) .51 χ² test
Spring 343 (25.3) 193 (27.7)
Summer 350 (25.8) 165 (23.7)
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Psychosocial characteristics Non-PPDa (n=1358) PPD (n=697) P value Method

Autumn 411 (30.3) 217 (31.1)
Winter 254 (18.7) 122 (17.5)

Education, n (%) .63 χ² test
Below higher education 459 (33.8) 243 (34.9)
Higher education 899 (66.2) 454 (65.1)

Income, n (%) .46 χ² test
Below normal level 119 (8.8) 68 (9.8)
At or above normal level 1239 (91.2) 629 (90.2)

Smoking, n (%)
.69

Yates’
correction

No 1355 (99.8) 694 (99.6)
Yes 3 (0.2) 3 (0.4)

Drinking, n (%)
>.99

Yates’
correction

No 1355 (99.8) 695 (99.7)
Yes 3 (0.2) 2 (0.3)

Spouse in good health, n (%) .95 χ² test
Yes 1339 (98.6) 687 (98.6)
No 19 (1.4) 10 (1.4)

Only child, n (%) .17 χ² test
Yes 1280 (94.3) 667 (95.7)
No 78 (5.7) 30 (4.3)

Planned pregnancy, n (%) .31 χ² test
Yes 1310 (96.5) 666 (95.6)
No 48 (3.5) 31 (4.4)

Social support, n (%) .52 χ² test
Normal 1329 (97.9) 679 (97.4)
Low 29 (2.1) 18 (2.6)

Family satisfaction, n (%) .13 χ² test
Normal 1333 (98.2) 677 (97.1)
Low 25 (1.8) 20 (2.9)

Adverse marital status, n (%) .006 χ² test
No 1349 (99.3) 683 (98)
Yes 9 (0.7) 14 (2)

Family history of mental illness, n (%)
.04

Yates’
correction

No 1356 (99.9) 691 (99.1)
Yes 2 (0.1) 6 (0.9)

aPPD: postpartum depression.

Table 2. Obstetric characteristics of participants.
Obstetric characteristics Non-PPDa (n=1358) PPD (n=697) P value Method
Weight gain during pregnancy, median (IQR) 12.5 (9.425‐15) 12.5 (9.7‐16) .39 Wilcoxon
BMI, median (IQR) 20.83 (19.43‐22.68) 20.83 (19.36‐23.01) .63 Wilcoxon
Age of menarche (years), median (IQR) 13 (12-13) 13 (12-14) .30 Wilcoxon
Gestational days, median (IQR) 274 (268-280) 274 (267-278) .05 Wilcoxon
Bleeding volume, median (IQR) 400 (300-400) 400 (300-400) .07 Wilcoxon
Fetal weight, median (IQR) 3.28 (2.94‐3.57) 3.23 (2.8‐3.53) .001 Wilcoxon
Fetal height, median (IQR) 50 (48-51) 49 (48-51) .03 Wilcoxon
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Obstetric characteristics Non-PPDa (n=1358) PPD (n=697) P value Method
Apgarb 1 minute, median (IQR) 10 (10-10) 10 (10-10) <.001 Wilcoxon
Apgar 5 minutes, median (IQR) 10 (10-10) 10 (10-10) <.001 Wilcoxon
Apgar 10 minutes, median (IQR) 10 (10-10) 10 (10-10) <.001 Wilcoxon
Length of stay, median (IQR) 4 (4-6) 4 (4-6) .79 Wilcoxon
Gravidity .19 χ² test

1, n (%) 471 (22.9) 217 (10.6)
2, n (%) 370 (18) 207 (10.1)
3, n (%) 265 (12.9) 136 (6.6)
4, n (%) 160 (7.8) 79 (3.8)
≥5, n (%) 92 (4.5) 58 (2.8)
Median (IQR) 2 (1-3) 2 (1-3)

Abortions, n (%) .38 χ² test
0 624 (45.9) 301 (43.2)
1 409 (30.1) 207 (29.7)
2 207 (15.2) 115 (16.5)
≥3 118 (8.7) 74 (10.6)

Parity, n (%)
.89

Yates’
correction

0 831 (40.4) 434 (21.1)
1 497 (24.2) 246 (12)
2 29 (1.4) 16 (0.8)
≥3 1 (0) 1 (0)

Conception method, n (%) .93 χ² test
Normal 1169 (86.1) 599 (85.9)
Assisted reproduction 189 (13.9) 98 (14.1)

Fetal malformation, n (%) .02 χ² test
No 1308 (96.3) 656 (94.1)
Yes 50 (3.7) 41 (5.9)

Amniotic fluid volume disorder, n (%) .35 χ² test
No 1284 (94.6) 652 (93.5)
Yes 74 (5.4) 45 (6.5)

Renal disease, n (%) .58 χ² test
No 1334 (98.2) 687 (98.6)
Yes 24 (1.8) 10 (1.4)

Systemic lupus erythematosus, n (%)
.69

Yates’
correction

No 1351 (99.5) 695 (99.7)
Yes 7 (0.5) 2 (0.3)

Gestational diabetes mellitus, n (%) .92 χ² test
No 1030 (75.8) 530 (76)
Yes 328 (24.2) 167 (24)

Gestational hypertension, n (%) .25 χ² test
No 1290 (95) 670 (96.1)
Yes 68 (5) 27 (3.9)

Threatened premature labor, n (%) .002 χ² test
No 1183 (87.1) 571 (81.9)
Yes 175 (12.9) 126 (18.1)

Hepatitis B, n (%) .49 χ² test
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Obstetric characteristics Non-PPDa (n=1358) PPD (n=697) P value Method

No 72 (5.3) 42 (6)
Yes 1286 (94.7) 655 (94)

Twin pregnancy, n (%) .07 χ² test
No 1247 (91.8) 623 (89.4)
Yes 111 (8.2) 74 (10.6)

Placenta previa, n (%) .45 χ² test
No 1281 (94.3) 663 (95.1)
Yes 77 (5.7) 34 (4.9)

Heart disease, n (%) .29 χ² test
No 1344 (99) 693 (99.4)
Yes 14 (1) 4 (0.6)

Scarred uterus, n (%) .81 χ² test
No 342 (25.2) 179 (25.7)
Yes 1016 (74.8) 518 (74.3)

Rh blood type, n (%) .01 χ² test
Positive 1350 (99.4) 685 (98.3)
Negative 8 (0.6) 12 (1.7)

ABO blood type, n (%) .63 χ² test
O 491 (36.2) 241 (34.6)
B 335 (24.7) 179 (25.7)
A 423 (31.1) 211 (30.3)
AB 109 (8) 66 (9.5)

Abnormal fetal position, n (%) .92 χ² test
No 1206 (88.8) 618 (88.7)
Yes 152 (11.2) 79 (11.3)

Uterine myoma, n (%) .94 χ² test
No 1227 (90.4) 629 (90.2)
Yes 131 (9.6) 68 (9.8)

Ovarian cyst, n (%)
>.99

Yates’
correction

No 1349 (99.3) 693 (99.4)
Yes 9 (0.7) 4 (0.6)

Umbilical cord encirclements, n (%) .65 χ² test
No 869 (64) 453 (65)
Yes 489 (36) 244 (35)

Hypothyroidism, n (%) .40 χ² test
No 1130 (83.2) 590 (84.6)
Yes 228 (16.8) 107 (15.4)

Pelvic anomaly, n (%) .56 χ² test
No 1346 (99.1) 689 (98.9)
Yes 12 (0.9) 8 (1.1)

Intrauterine death, n (%)
<.001

Yates’
correction

No 1358 (100) 684 (98.1)
Yes 0 (0) 13 (1.9)

Macrosomia, n (%) .84 χ² test
No 1295 (95.4) 666 (95.6)
Yes 63 (4.6) 31 (4.4)
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Obstetric characteristics Non-PPDa (n=1358) PPD (n=697) P value Method
Fetal growth restriction, n (%) .34 χ² test

No 1335 (98.3) 681 (97.7)
Yes 23 (1.7) 16 (2.3)

Premature labor, n (%) <.001 χ² test
No 1207 (88.9) 579 (83.1)
Yes 151 (11.1) 118 (16.9)

Mode of delivery, n (%)
.45

Yates’
correction

Vaginal delivery 842 (62) 433 (62.1)
Cesarean section 506 (37.3) 262 (37.6)
Assisted delivery 10 (0.7) 2 (0.3)

Fetal sex, n (%) .96 χ² test
Male 668 (49.2) 342 (49.1)
Female 690 (50.8) 355 (50.9)

Fetal distress, n (%) .001 χ² test
No 1333 (98.2) 667 (95.7)
Yes 25 (1.8) 30 (4.3)

Breastfeeding, n (%) .61 χ² test
No 32 (2.4) 19 (2.7)
Yes 1326 (97.6) 678 (97.3)

aPPD: postpartum depression.
bApgar: appearance, pulse, grimace, activity, and respiration.

Table 3. Laboratory indicators.
Laboratory indicators Non-PPDa (n=1358), median (IQR) PPD (n=697), median (IQR) P value Method
Hemoglobin (g/L) 111 (104‐117.75) 111 (104-118) .893 Wilcoxon
Serum ferroprotein (ng/nL) 18.15 (12.4‐25.9) 18.9 (11.9‐27.2) .400 Wilcoxon
International normalized ratio 0.97 (0.92‐1.01) 0.96 (0.91‐1.01) .325 Wilcoxon
Alanine aminotransferase (U/L) 17 (12.25‐28) 18 (12-31) .170 Wilcoxon
Aspartate aminotransferase (U/L) 21 (18-27) 21 (17-28) .263 Wilcoxon
Total bile acid (µmol/L) 2.3 (1.6‐3.5) 2.5 (1.6‐3.7) .091 Wilcoxon
Direct bilirubin (µmol/L) 2.1 (1.6‐2.8) 2.1 (1.7‐2.7) .771 Wilcoxon
Albumin (g/L) 38.7 (36.3‐41.2) 38.7 (36.3‐41.4) .627 Wilcoxon
Globulin (g/L) 27.6 (25.4‐30.1) 27.3 (25.2‐29.9) .207 Wilcoxon
Lactate dehydrogenase (U/L) 179 (163-201) 181 (164-204) .161 Wilcoxon
Alkaline phosphatase (U/L) 84 (55-121) 87 (55-128) .423 Wilcoxon
Urea nitrogen (µmol/L) 3.5 (3.07‐4.3475) 3.48 (3.08‐4.35) .787 Wilcoxon
Creatinine (µmol/L) 44 (40-48) 44 (40-48) .561 Wilcoxon
Cystatin C (µmol/L) 0.77 (0.64‐0.97) 0.77 (0.64‐0.99) .725 Wilcoxon
Uric acid (µmol/L) 259 (217-309) 254 (218-305) .250 Wilcoxon
Thyroid-stimulating hormone (mIU/L) 1.9695 (1.277‐2.8878) 1.847 (1.176‐2.776) .183 Wilcoxon
Free thyroxine (pmol/L) 14.56 (13.29‐16.22) 14.55 (13.21‐16.02) .522 Wilcoxon
Thyroid peroxidase antibody (U/mL) 40.65 (30.4‐56.1) 40.1 (30.2‐55.3) .425 Wilcoxon
Vitamin D (nmol/L) 23.9 (17.3‐31.3) 22.9 (16.1‐29.8) .011 Wilcoxon

aPPD: postpartum depression.

Variable Screening
After LASSO regression, 18 variables with nonzero coeffi-
cients were identified as potential predictors of PPD. Among
these variables, the 5-minute Apgar (appearance, pulse,

grimace, activity, and respiration) score and the 10-minute
Apgar score had VIF values over 10, indicating multicolli-
nearity between them. Of these 2 variables, the 5-minute
Apgar score had a lower coefficient in absolute value in the
LASSO regression, suggesting its lower contribution to the
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outcome; therefore, it was excluded. Another round of VIF
analysis was performed after excluding the 5-minute Apgar
score, and the results showed that all remaining variables had
a VIF below 10, indicating low multicollinearity. Finally, 17
variables including prenatal depression, ethnics, occupation,
income, only child, family satisfaction, adverse marital status,
amniotic fluid volume disorder, Rh negative, intrauterine

death, fetal distress, age, fetal weight, 10-minute Apgar score,
serum ferroprotein, thyroid-stimulating hormone (TSH), and
thyroid peroxidase antibody (TPOAb) were identified as
features to develop predictive models. The detailed results
of the LASSO regression and VIF analyses are presented in
Table 4.

Table 4. LASSOa coefficients and VIFb of screened variables after LASSO regression.
Variable Coefficient VIF VIF (second round)
Prenatal depression 2.245 1.014 1.013
Ethnics 0.055 1.008 1.008
Occupation −0.215 1.047 1.045
Income 0.015 1.043 1.043
Only child 0.081 1.013 1.012
Family satisfaction 0.134 1.287 1.286
Adverse marital status 0.422 1.296 1.293
Amniotic fluid volume disorder 0.416 1.011 1.011
Rh negative −0.163 1.012 1.011
Intrauterine death 1.042 1.487 1.486
Fetal distress 0.339 1.034 1.034
Age 0.002 1.035 1.034
Fetal weight −0.17 1.472 1.347
Apgarc 5 minutes −0.002 44.005 N/Ad

Apgar 10 minutes −0.155 42.777 1.860
Serum ferroprotein 0.001 1.043 1.043
TSHe −0.001 1.003 1.003
TPOAbf 0.001 1.008 1.008

aLASSO: least absolute shrinkage and selection operator.
bVIF: variance inflation factor.
cApgar: appearance, pulse, grimace, activity, and respiration.
dN/A: not applicable.
eTSH: thyroid-stimulating hormone.
fTPOAb: thyroid peroxidase antibody.

Model Development and Evaluation
Predictive models were established in the training set. With
optimal hyperparameters, models were evaluated in the
validation set. The AUC values obtained in the validation
set of all 4 models were above 0.75 (Table 5 and Figure

2A). The XGBoost model outperformed other models with
the highest AUC of 0.849 (95% CI 0.828‐0.871). GBM had
the poorest performance with an AUC value of 0.779 (95%
CI 0.738‐0.820). Detailed results of model evaluation were
shown in Table 5.

Table 5. Model evaluation metrics.
AUCa (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPVb (95% CI) NPVc (95% CI)

XGBoostd 0.849 (0.828‐0.871) 0.813 (0.772‐0.854) 0.718 (0.646‐0.790) 0.862 (0.807‐0.917) 0.718 (0.646‐0.790) 0.855 (0.805‐0.905)
RFe 0.781 (0.740‐0.821) 0.782 (0.750‐0.815) 0.656 (0.591‐0.720) 0.848 (0.813‐0.883) 0.688 (0.624‐0.753) 0.827 (0.791‐0.864)
GBMf 0.779 (0.738‐0.820) 0.786 (0.753‐0.818) 0.675 (0.611‐0.738) 0.843 (0.807‐0.878) 0.688 (0.624‐0.751) 0.835 (0.799‐0.870)
LRg 0.788 (0.754‐0.822) 0.779 (0.739‐0.816) 0.685 (0.615‐0.748) 0.823 (0.782‐0.858) 0.646 (0.577‐0.710) 0.848 (0.808‐0.881)

aAUC: area under the receiver operating characteristic curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dXGBoost: extreme gradient boosting.
eRF: random forest.
fGBM: gradient boosting machine.
gLR: logistic regression.
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Figure 2. (A) The ROC and (B) the DCA of predictive models. The area under the curve and the corresponding 95% CI for each model are shown in
the legend of Figure 2A. DCA: decision curve analysis; GBM: gradient boosting machine; LR: logistic regression; RF: random forest; ROC: receiver
operating characteristic curve; XGBoost: extreme gradient boosting.

DCA (Figure 2B) was performed for 4 models in the
validation set to compare the net benefit of the best model and
alternative approaches for clinical decision-making. Treat-
ment strategies informed by any of the 4 models are superior
to the default strategies of treating all or no patients. The net
benefit of the XGBoost model exceeded those of the other
models at 20%-60% threshold probabilities.
Model Interpretation
The XGBoost model, identified as the optimal model in
terms of AUC value, was further explored for interpretation.
Table 6 demonstrates the variable importance of the XGBoost
model. Antepartum depression, TSH, fetal weight, serum
ferritin, TPOAb, and age were the 6 variables that most
influenced the outcome of the model.

PDPs illustrate a visual representation of the relationship
between the most influential variables and the predicted
response while accounting for the average effect of the other
predictors in the model (Figure 3). As our predictive outcome
is a binary categorical variable, the impacts of variables
on the outcome were presented in the form of predictive
probability ranging from 0 to 1. These plots indicate that
the probability of PPD increases when participants have
antepartum depression, higher TSH, higher serum ferritin, and
older age. Likewise, the probability descends when partici-
pants have higher fetal weight and higher TPOAb.

Table 6. Variable importance for extreme gradient boosting model.
Variable Importance
Prenatal depression 0.268
Fetal weight 0.169
TSHa 0.162
TPOAbb 0.132
Serum ferritin 0.131
Age 0.063
Apgarc 10 minutes 0.024
Income 0.014
Occupation 0.012
Amniotic fluid volume disorder 0.011
Fetal distress 0.010
Family satisfaction 0.009
Only child 0.009
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Variable Importance
Intrauterine death 0.007
Rh negative 0.005
Adverse marital status 0.002
Ethnics 0.002

aTSH: thyroid-stimulating hormone.
bTPOAb: thyroid peroxidase antibody.
cApgar: appearance, pulse, grimace, activity, and respiration.

Figure 3. Partial dependence plots for the 6 most influential variables in the extreme gradient boosting model. The y-axis is set on a probability
scale since our model was a binary classification model; the values of TSH and SF were on a logarithmic scale to present more pronounced trends
in predicted probability as the values of the variables change. SF: serum ferritin; TPOAb: thyroid peroxidase antibody; TSH: thyroid-stimulating
hormone.

SHAP provides an insight into how variables influence
the prediction in each single sample (Figure 4). It can be
concluded that the risk of PPD increases for participants with
antepartum depression, lower fetal weight, lower level of
TPOAb, elevated serum ferritin, and older age. The overall
impact of TSH is not obvious. The interpretation of SHAP

was mostly consistent with the interpretation of PDP. A
higher risk of PPD is also associated with lower Apgar scores
at 10 minutes, low income, amniotic fluid volume disorder,
fetal distress, unsatisfactory family conditions, only child
in the family, intrauterine death, Rh negative blood type,
adverse marital status, and other ethnics.
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Figure 4. The SHAP values for the extreme gradient boosting model. Each dot in the figure represents a variable for a single participant. The
horizontal position indicates whether that variable has a positive or negative impact on the predictive probability. Greater absolute values of SHAP
represent a greater predictive probability of postpartum depression. The color shows the value of the variable for that observation. Purple indicates a
higher value, representing the positive contribution of predictive outcome; and yellow indicates a lower value, representing the negative contribution
of predictive outcome. A larger absolute value means that the variable has a greater impact on the result. For example, lower fetal weight (yellow
dots) caused a negative impact on the predictive outcome. Since the SHAP system only accepts numeric input, binary categorical variables are
converted to 0 (negative) and 1 (positive). In this case, low income and fetal distress are associated with a greater probability of postpartum
depression. Apgar: appearance, pulse, grimace, activity, and respiration; SHAP: Shapley Additive Explanation; TPOAb: thyroid peroxidase antibody;
TSH: thyroid-stimulating hormone.

Discussion
Principal Findings
This study developed and validated a machine learning–based
model for prediction of PPD with an AUC of 0.849. Through
the model interpretation of our optimal XGBoost model,
several significant predictors of PPD were identified. These

findings derived from the XGBoost model provide insightful
contributions to the understanding of PPD.

Based on variable importance, antepartum depression was
the most influential predictor of PPD in our analysis. Women
with antepartum depression are likely to extend depres-
sive symptoms into the postpartum period. In an epidemiol-
ogy study, more than 54% of women with PPD reported
depressive symptoms during pregnancy [5]. Several studies
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excluded participants with antepartum depression to focus
on newly diagnosed PPD [16,43]. This might avoid the bias
associated with chronic depression but neglect the impact of
maternal prenatal mental status on PPD.

In addition, our study identified key biochemical markers
of PPD including TSH, TPOAb, and serum ferritin. Accord-
ing to the result of the PDP interpretation, women with
elevated serum ferritin levels were prone to PPD. Ferritin
serves a critical role in the synthesis of monoamine neuro-
transmitters including dopamine [44]. With excessive ferritin,
neurotransmitter dysregulation might play a part in the onset
of PPD [45]. This finding warns the risks of excessive iron
supplementation during pregnancy. Apart from that, elevated
TSH and declined TPOAb were associated with a higher
risk of PPD in our model interpretation. Elevated TSH
often indicates hypothyroidism, whose clinical manifestation
includes depression [46]. TPOAb is an autoantibody against
the enzyme thyroid peroxidase and is commonly associ-
ated with autoimmune thyroid diseases such as Hashimoto
thyroiditis [47,48]. A systematic review reported that the
association between TPOAb and PPD remains controversial
[49]. The specific mechanism of how TPOAb affects PPD
requires more investigation.

Additionally, women with older age and lower infant
weight were prone to PPD in our findings. This aligns
with existing literature [49]. Other commonly recognized
predictors like lack of social support, gestational diabetes,
and overweight were excluded in the LASSO regression due
to potential multicollinearity. These results not only validate
some of the existing hypotheses about the pathophysiology of
PPD but also open new avenues for research, particularly in
the context of developing more effective, holistic screening
methods.

Our study offers several advancements over previous
research on PPD prediction. Earlier studies predominantly
focused on clinical factors, such as obstetric history
and comorbidities during pregnancy [50-52]. Our research
comprehensively collected variables from multiple domains,
including clinical, psychosocial, and biochemical markers.
This broader scope allows for a more holistic view of the
potential risk factors contributing to PPD, addressing the
multifactorial nature of the condition. In addition, many
previous studies were limited by relatively small sample
sizes, often involving fewer than 1000 participants, which
may have restricted the generalizability of their findings
[50,51,53]. In contrast, our study included a larger cohort
of over 2000 participants, providing greater statistical power
and a more reliable basis for identifying significant risk
factors. This larger sample size also enhances the model’s
ability to detect more subtle associations between variables
and PPD, which might have been overlooked in studies with
smaller sample size. Moreover, previous research has often
been limited to populations in Western countries [54,55]. Our
study focuses on a Chinese cohort, offering insights that are
culturally specific and potentially more relevant for address-
ing PPD in non-Western settings. This regional focus helps
fill a critical gap in the literature, as the risk factors and
prevalence of PPD may vary significantly between different

cultural and geographical populations. Finally, our inclusion
of biochemical markers, such as thyroid function and serum
ferritin levels, adds a novel dimension to PPD research. These
physiological indicators have rarely been incorporated in
prior studies; yet, they may play a crucial role in understand-
ing the biological underpinnings of PPD. By integrating these
markers with traditional clinical and psychosocial factors, our
study provides a more comprehensive framework for early
detection and intervention.

Although our study was conducted on a specific popula-
tion from Southwestern China, the comprehensive nature of
the variables included in the model suggests that it could
be adapted to other populations with similar characteristics.
Future studies could explore the model’s applicability in
different regions and cultural contexts, potentially leading to a
robust, universally applicable tool for PPD prediction.

Our study offers significant insights into the clinical
application of machine learning models for PPD. By
integrating a broad spectrum of both biochemical and
psychosocial factors, our models offer a more nuanced
and accurate prediction compared to traditional methods.
Incorporating often-overlooked indicators such as thyroid
function and iron metabolism provides insight into the early
screening of PPD. The XGBoost model, which demonstrated
the highest performance, is particularly valuable for its ability
to manage complex interactions between variables, making it
universally applicable in a clinical setting where multiple risk
factors are at play. This comprehensive approach enhances
the understanding risk factors for PPD and supports more
effective early interventions. Future research can build on
these findings by validating them in larger, more diverse
populations, integrating these predictive factors into routine
prenatal care, and exploring interventions targeting these risks
to reduce the incidence of PPD.

Limitations
This work is not without limitations. First, our analysis
is constrained by the retrospective nature of the data,
which may introduce biases such as recall bias or selec-
tion bias. Additionally, during the process of variable
screening, removing variables with collinearity ensured
the independence of final predictors, but also eliminated
substantial amounts of variables, leading to loss of informa-
tion. Furthermore, the study’s reliance on a specific popula-
tion from a single institution may limit the generalizability of
our findings to broader, more diverse populations.

Conclusions
This study developed and validated several machine
learning–based models for predicting PPD, integrating a
comprehensive set of clinical, psychosocial, and biochem-
ical factors, and incorporating a larger sample size. The
XGBoost model was considered as the optimal model with
an AUC of 0.849. Interpretation derived from the predictive
model revealed significant predictors of PPD, encompass-
ing antepartum depression, elevated TSH, declined TPOAb,
elevated serum ferritin, older age, and lower infant weight.
These identified risk factors could be implemented to the
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early screening of PPD for individuals at high risk. These
findings underscore the advantages of integrating diverse
predictors and advanced machine learning techniques to

improve early screening for PPD. This approach not only
enhances prediction accuracy but also provides valuable
insights for future research and clinical applications.
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