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Abstract

Background: In this study, we evaluate the accuracy, efficiency, and cost-effectiveness of large language models in extracting
and structuring information from free-text clinical reports, particularly in identifying and classifying patient comorbidities within
oncology electronic health records. We specifically compare the performance of gpt-3.5-turbo-1106 and gpt-4-1106-preview
models against that of specialized human evaluators.

Objective: We specifically compare the performance of gpt-3.5-turbo-1106 and gpt-4-1106-preview models against that of
specialized human evaluators.

Methods: We implemented a script using the OpenAI application programming interface to extract structured information in
JavaScript object notation format from comorbidities reported in 250 personal history reports. These reports were manually
reviewed in batches of 50 by 5 specialists in radiation oncology. We compared the results using metrics such as sensitivity,
specificity, precision, accuracy, F-value, κ index, and the McNemar test, in addition to examining the common causes of errors
in both humans and generative pretrained transformer (GPT) models.

Results: The GPT-3.5 model exhibited slightly lower performance compared to physicians across all metrics, though the
differences were not statistically significant (McNemar test, P=.79). GPT-4 demonstrated clear superiority in several key metrics
(McNemar test, P<.001). Notably, it achieved a sensitivity of 96.8%, compared to 88.2% for GPT-3.5 and 88.8% for physicians.
However, physicians marginally outperformed GPT-4 in precision (97.7% vs 96.8%). GPT-4 showed greater consistency,
replicating the exact same results in 76% of the reports across 10 repeated analyses, compared to 59% for GPT-3.5, indicating
more stable and reliable performance. Physicians were more likely to miss explicit comorbidities, while the GPT models more
frequently inferred nonexplicit comorbidities, sometimes correctly, though this also resulted in more false positives.

Conclusions: This study demonstrates that, with well-designed prompts, the large language models examined can match or
even surpass medical specialists in extracting information from complex clinical reports. Their superior efficiency in time and
costs, along with easy integration with databases, makes them a valuable tool for large-scale data mining and real-world evidence
generation.

(JMIR Med Inform 2025;13:e58457) doi: 10.2196/58457
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Introduction

Real-world data (RWD) holds immense potential for advancing
health care by providing a comprehensive view of patient health,
disease progression, and treatment outcomes [1]. However,
RWD presents significant challenges due to its diverse sources
and formats, such as electronic health records, medical imaging,
and laboratory results, each with different standards and
terminologies. Much of this data is unstructured, like free-text
clinical notes, which are difficult to process and analyze.
Additionally, missing information is common, leading to gaps
that hinder accurate analysis. Advanced methodologies and
technologies are needed to effectively extract, standardize, and
analyze RWD, ensuring its potential to improve health care
outcomes is fully realized.

Extracting information from clinical texts has traditionally relied
on manual methods, where trained health care professionals
review and annotate clinical notes to identify relevant
information such as diagnoses, treatments, and patient outcomes.
This manual process is not only time-consuming and
labor-intensive but also prone to human error, leading to
inconsistencies and inaccuracies. Additionally, statistical and
rule-based approaches have been used, which depend on
predefined patterns and keywords to extract information.
However, these methods often fall short in handling the
complexity and variability inherent in natural language, resulting
in incomplete or inaccurate data extraction.

The rise of artificial intelligence, driven by advances in
computing power, has propelled the development of natural
language processing (NLP). NLP algorithms can automatically
structure information from unstructured clinical texts, facilitating
analysis and integration with other clinical data [2-5]. Earlier
NLP systems often relied on rule-based systems and simpler
machine learning models, implying limitations such as the need
for extensive customization, deep computer science knowledge,
significant computational resources, and large volumes of
high-quality labeled data. These challenges hinder their
widespread adoption and optimal performance across different
applications.

Transformer models, a deep learning architecture introduced in
the paper “Attention is All You Need” by Vaswani et al [6],
have revolutionized the field of NLP, establishing themselves
as the foundation upon which modern large language models
(LLMs) have been developed. LLMs, such as OpenAI's
generative pre-trained transformers (GPTs), are models trained
on vast amounts of text to learn complex linguistic patterns.
This enables them to generate text, understand context, perform
translations, and carry out other tasks with unprecedented
accuracy and fluency. Thanks to this capability, users can
interact with these models, instructing them to tackle various
problems without the need for additional training.

The GPT-3 model, released in 2020, and its successor, GPT-4
[7], introduced in 2023, represent significant advancements in
the ability to understand and generate coherent text. The
progression from GPT-3 through GPT-3.5 to GPT-4 marks a
significant evolution in OpenAI's language model capabilities.
GPT-4 offers enhanced understanding and generation of text
due to its larger training dataset and more refined architecture,
resulting in responses that are more accurate, contextually aware,
and nuanced compared to its predecessors. This latest version
also demonstrates improved performance on a broader array of
tasks, including complex reasoning and problem-solving.
Additionally, it is multimodal, capable of processing not only
text but also images and audio. However, it is important to note
that these models are not specifically designed for medical
diagnostic purposes.

Currently, there are numerous LLMs available, such as LLaMA,
Mistral, Claude, or BioBERT. However, in the medical field,
the ChatGPT models have been the most extensively studied
[8], demonstrating strong capabilities in various applications,
including interpreting clinical guidelines and enhancing
evidence-based medicine [9], or table summarization in clinical
study reports [10]. Despite their potential, concerns about the
applicability of these general-purpose models in the medical
domain persist [11,12], particularly due to their lack of
transparency in training data, which remains largely unknown.
Therefore, it is essential to evaluate their performance for each
specific application.

In the context of extracting and structuring information from
free-text clinical reports, studies have shown promising results
with OpenAI models. For instance, Fink et al [13] demonstrated
the effectiveness of these models in extracting data from
computed tomography reports related to lung cancer, where
they outperformed traditional NLP models in classifying disease
progression.

Focusing on the significance of appropriate instructions
(prompts), studies such as that of Choi et al [14] highlighted
that the gpt-3.5-turbo model exhibited an accuracy rate of 87.7%
in extracting information from pathology and ultrasound reports
of breast cancer patients. Additionally, the LLM methods
demonstrated superior efficiency in terms of time and costs
compared to manual approaches.

In 2018, the Department of Radiation Oncology at Hospital
Universitario Virgen Macarena initiated the implementation of
the Mosaiq system, transitioning toward a paperless workflow
and centralizing all radiation therapy treatment data within the
application. As detailed by Bertolet et al [15], this data was
automatically exported to JSON files via Word documents and
Visual Basic for Applications code. Figure 1 depicts a diagram
illustrating the flow and organization of the described data.
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Figure 1. Representative diagram of the Web Oncological Information System (SIOW). It illustrates the integration of data from MOSAIQ and TPS
into the MongoDB database and its subsequent management through SIOW, including the collection of administrative data from the Users Data Base
(BDU) and clinical data from the electronic health record system DIRAYA. JSON: JavaScript object notation; RT: radiotherapy.

Motivated by the capabilities of LLMs, we aimed to investigate
their potential application in extracting and structuring
information from clinical reports. Our overarching objective is
to integrate LLM-based tools into our information system,
enhancing the richness of our real-world datasets. Specifically,
in this study, we assess the capability of the GPT-3.5 turbo and
GPT-4 models as tools for data mining applied to the
identification and classification of comorbidities and relevant
lifestyle risk factors in oncological texts. We compare their
performance against that of specialized human evaluators to
gauge their efficacy and suitability for clinical use.

Methods

OpenAI Models
The application programming interface (API) of OpenAI [16]
allows interaction with their advanced LLMs, facilitating various
language processing tasks such as generating automatic textual
responses, conducting sentiment analysis, and summarizing
texts. In our study, we leveraged the chat completions API
function of the API to extract structured information from
unstructured clinical reports.

OpenAI offers a comprehensive library of natural language
processing models. Each model features unique characteristics
in terms of size, language comprehension ability, speed, and
cost. In our study, we have used 2 models from the library:
gpt-3.5-turbo-1106 and gpt-4-1106-preview, with the latter
being the most advanced model available at the time the study
was conducted. While the GPT-3.5 model is a faster and more
economical option for general tasks, GPT-4 stands out for its
higher accuracy, contextual understanding, and ability to handle
more complex and specific applications.

For this study, we used clinical reports in Spanish, exclusively
interacting with OpenAI's LLMs in this language. Although
LLMs typically exhibit superior performance in English [17],
owing to the predominance of this language in training data,
recent comparisons indicate notable effectiveness in other
languages, including Spanish. The GPT-4 technical report [7]
highlights this multilingual capability, demonstrating that
performance in Spanish closely approaches that of English, with
a minimal difference of only 1.5 percentage points in the MMLU
evaluation [18].

Prompt Generation
To interact with the LLM models, we first created a prompt that
will guide the model through the specific task. The context
provided to the model establishes a scenario in which it is asked
to assume the role of a specialist in radiation oncology. This
setting serves as a reference framework, enabling the model to
adopt the appropriate perspective and apply its natural language
understanding capabilities in a manner consistent with the
medical domain.

Our request is a direct instruction to the model, directing it to
process the text of the provided clinical report and return the
relevant information in a structured format. Specifically, the
model is instructed to use the clinical report provided at the end
of the prompt to complete a predefined dictionary in JSON
format. This dictionary contains keys related to comorbidities
and lifestyle risk factors. The model is tasked with updating the
values of these keys with “YES” or “NO” as appropriate. For
individuals who are ex-smokers, the model should use “EX”
instead. Additionally, the model must identify and add any other
relevant comorbidities not classifiable under the provided
categories, assigning them to the “Other” key.

The prompt generated for the task is shown in Textbox 1.
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The dictionary mentioned in the request is structured with keys
labeling the specific comorbidities and lifestyle risk factors we
seek to identify. These comorbidities, along with their potential
values, are outlined in Table 1.

During a postprocessing phase, we divided the category labeled
as “smoker” into 2 distinct categories: “smoker” (representing
current smokers) and “ex-smoker.” This division was
implemented to ease the subsequent analysis of the results.

It is important to highlight that the prompt does not provide
context or additional instructions regarding how the specified
comorbidities of interest should be interpreted.

The development of this prompt was achieved through an
iterative process applied to a group of 50 reports that were
specifically reserved for this purpose. The methodology included
the following steps (Textbox 2):

Textbox 1. Prompt generated for the task.

• Context: “Act as a specialist in radiation oncology.”

• Request: “Use the clinical report provided at the end of this prompt to return in JSON format the dictionary [...] with the values 'YES' or 'NO'.
For the 'Smoker' field: 'YES' if they smoke, 'NO' if they have never smoked, 'EX' if they are an ex-smoker. For the 'Other' field, return a list of
comorbidities found that cannot be classified in any of the categories of the keys of the provided dictionary, or empty if there are no other
comorbidities. Return only the dictionary with the updated values, DO NOT ADD OR MODIFY KEYS. Clinical report: [text of the clinical
report]”

Table 1. List of the labels, possible values, and description of the comorbidities and lifestyle risk factors considered in this study.

DescriptionValuesLabel

Elevated blood glucose levelsYes or noDiabetes

High blood pressureYes or noHBP

Smoking habit.Yes or no or exSmoker

Lipid metabolism disorderYes or noDyslipidemia 

Liver diseaseYes or noLiver disease

Chronic obstructive pulmonary diseaseYes or noCOPD

Mood disorderYes or noDepression

Kidney diseaseYes or noKidney disease

Use of WHO step 3 analgesics (opioids)Yes or noFentanyl

Heart diseaseYes or noHeart disease

Thyroid disease with increased thyroxineYes or noHyperthyroidism

Thyroid disease with decreased thyroxineYes or noHypothyroidism

Patient in need of continuous careYes or noDependent

Other past comorbidities detected not listed aboveText listOther

Textbox 2. Prompt development methodology.

• Prompt definition: Establishing the parameters and structure of the prompt to guide the model's responses.

• Information extraction: The developed prompt was applied to 50 reports using the gpt-4-1106-preview model.

• Verification of structure: It was ensured that the model's responses adhered to the requested structure, with previous steps being repeated in
case of deviations.

• Accuracy evaluation: A specialist physician (AW) verified the accuracy of the model's responses. This process was repeated until the accuracy
met or exceeded that of a manual analysis performed by the same physician.

Python Script
The Python script developed uses the OpenAI API to
automatically structure textual clinical information. All the code
developed for this work is publicly available in a GitHub
repository [19].

Clinical Report Acquisition Procedure
The clinical reports for our study were provided by the hospital's
Innovation & Data Analysis department. These reports were
delivered in an Excel spreadsheet format, organized into 2
essential columns: one containing the clinical history number
of each patient and another with the text of the medical personal
history report. The department responsible for data collection
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undertook a process of anonymization and randomization of
the reports to ensure an unbiased selection.

Sample Selection Criteria
For estimating the sample size, we relied on the proportion of
comorbidities (80%) obtained from a prior analysis of a dataset
of 5257 personal history reports from patients treated in our
service between May 2018 and October 2022.

The comorbidities selected for the study were chosen based on
prior knowledge of prevalences in the general population and
those presented by our patients according to the aforementioned
analysis. We also considered those that could most significantly
impact the clinical outcome of oncological treatments.

With these considerations, we conducted a preliminary
calculation that established the need to include 250 clinical
reports (see below in the statistical analysis section). Based on
this calculation, we selected the first 250 patients from the
provided list who had a nonempty personal history report.
Before proceeding with the analysis, we verified that our script
was capable of correctly interpreting an empty report as
equivalent to the absence of comorbidities, thereby avoiding
biases in the study results.

Ethical Considerations
The text processed by the selected LLMs is strictly confined to
personal history reports. These reports were stripped of any
information that could lead to patient identification, ensuring
confidentiality and anonymity. The model’s interpretation of
the texts focuses solely on identifying and structuring data
relevant to the study without compromising individual privacy.

The study's design, synthesized in Figure 2, and methodology
were previously communicated to and reviewed by the hospital's
ethics committee. The research received the necessary approval,
confirming that it adheres to the ethical standards required for
patient data research.

This retrospective study adheres to the guidelines outlined in
the seventeenth additional provision, specifically Health Data
Processing, Section d) of the Organic Law 3/2018, dated
December 5, on Personal Data Protection and Guarantee of
Digital Rights. This law governs the use of pseudoanonymized
personal data for health research purposes. The study was
granted an exemption from requiring informed consent due to
its exclusive use of nonidentifiable data.

On January 18, 2024, the Ethics Committee of the University
Hospitals Virgen Macarena and Virgen del Rocío issued a
favorable opinion for our study, under the reference EC_IA_V1
(version 1-Dec-2023).

Figure 2. Flowchart of the study design. COPD: chronic obstructive pulmonary disease; HBP: high blood pressure.

Data Extraction
For the manual data extraction, the 250 patient clinical reports
were divided into 5 groups, each consisting of 50 reports. These
groups were randomly assigned to 5 physicians, including 3
specialists in radiation oncology with more than 15 years of
experience and 2 medical residents in the same specialty, one
in their first year and the other in their fourth year.

To ensure uniform and accurate data collection, the physicians
were provided with a specially designed template for this task.
The template features a table where the first column contains
the full texts of the clinical reports. The subsequent columns of
the table are labeled with the comorbidities of interest. The cells
corresponding to each comorbidity only allow the selection of
predefined values, as stipulated in Table 1. This restriction
ensures consistent annotation and reduces the possibility of
errors or variations in the entries.
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For the automatic analysis, the 250 clinical reports in the sample
were analyzed using our script with the gpt-3.5-turbo-1106 and
gpt-4-1106-preview models. To maintain a consistent structure
in the study, these reports were organized into the same 5 groups
of 50 reports that were assigned to the physicians. The results
were recorded in a document that mirrored the structure of the
template used in the manual extraction. This uniformity in
documentation facilitates a direct comparison of results between
manual and automatic extraction methods.

Establishing the Ground Truth
To assess the comparative accuracy and effectiveness of the
LLMs used in this study against the evaluations performed by
physicians, it is crucial to establish a reference dataset containing
the ground truth. To construct this reference dataset, we first
compared the results obtained from the physicians and the
gpt-4-1106-preview model across all 250 reports, identifying
and recording any discrepancies between the 2 sources. The
radiation oncologist expert AW, with more than 30 years of
experience, reviewed several times the whole set of reports,
with a particular focus on these discrepancies. For each report
where discrepancies in the results were found, physician AW
assessed both responses (from the physician and the AI) and
determined which one was correct.

It is important to note that the ground truth in this study is based
solely on the information explicitly reported in the clinical texts.
This means that some patients may have unreported
comorbidities, or conversely, conditions may be mentioned that
are not actually present. This limitation reflects a common
challenge when working with RWD. However, for the purposes
of this study, these potential discrepancies are irrelevant, as our
primary focus is on evaluating the models' ability to accurately
interpret and extract information from the provided texts.

Assessing Reproducibility in Results
The nondeterministic nature of LLMs, such as GPT-3.5 and
GPT-4, means they can generate different responses to identical
requests [7]. This phenomenon, coupled with the potential for

periodic retraining of the models, significantly impacts the
reproducibility of results. Therefore, it is crucial to consider the
need for rigorous quality control for algorithms that use LLMs,
especially to assess the impact of any changes in the models.

A well-defined and explicit prompt can increase the
reproducibility of responses [14]. However, variability remains
a possibility, particularly in situations where the information is
ambiguous or the prompt is not clear or specific enough.

To measure the consistency of our automatic extraction method,
we repeated the analysis of the 250 clinical reports 10 times
over 10 consecutive days. This approach allows us to observe
the stability of the model responses to the same input.

Statistical Analysis
To ensure the statistical validity of the study, a significance
level of 5% (alpha error) and a power of 80% (beta error of
20%) were established. Additionally, a 5% error margin was
applied for 95% confidence intervals. With these considerations
in mind, it was determined that the sample size (n) should
include 245 patient records. To adjust the sample to a practical
number, it was rounded up, resulting in a final sample size of
250.

For a comprehensive analysis, we consolidated the results from
the 250 reports into a single category named “Physicians,”
representing the aggregated findings of the 5 doctors involved
in the study. Subsequently, we compared this category and the
results from the GPT-3.5 and GPT-4 models with the reference
dataset, considered as the ground truth. In this process, a
confusion matrix was created for each report and comorbidity,
from which several key statistical estimators were derived.

To assess the agreement, we used the κ index. The McNemar
test was used to determine if there were significant differences
in the proportions of discordance between the classifications.
We chose the F-score as a measure of balance between precision
and sensitivity, which is crucial in a classification model. The
calculated metrics are presented in Table 2.

Table 2. Metrics used in the study with their descriptions.

DescriptionMetric

True positivesTP

True negativesTN

False positivesFP

False negativesFN

TP/(TP+FN)Sensitivity

TN/(FP+TN)Specificity

TP/(TP+FP)Precision

(TP+FN)/(TP+TN+FP+FN)Prevalence

(TP+TN)/(TP+TN+FP+FN)Accuracy

(Pobs–Pesp)/(1–Pesp)Kappa

(2×precision×sensibility)/(precision+sensibility)F-score

Exact P value from McNemar test (binomial distribution)McNemar
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For some of these metrics, we calculated their CI using the
bootstrapping method [20]. This approach starts from the
frequencies of true positives, true negatives, false positives, and
false negatives to generate 1000 resamples. With these
resamples, we recalculated the metrics to obtain a distribution
that allows us to calculate the 95% CI.

Additionally, a detailed analysis was conducted on the groups
of 50 reports assigned to each physician. This analysis focused
on measuring the variability in evaluations among different
physicians. For each patient and comorbidity, Cohen κ index
was calculated in comparison with the ground truth for the
results of each physician.

The reproducibility of the GPT-3.5 and GPT-4 models was
assessed by quantifying the number of different responses for
each patient and comorbidity across the 10 repeated analyses
conducted on successive days.

Analysis of Discrepant Results
A detailed analysis of discrepancies between the evaluators'
results and the established Ground Truth was conducted by the
same physician who defined the reference dataset. This analysis
covered each report with discrepancies in the identification of
comorbidities, identifying the probable causes of each deviation.

Discrepancies were classified according to the nature of the
detected errors (Textbox 3).

Textbox 3. Nature of the detected errors.

• Differences in criteria: Variations in the interpretation of the relevance of reported pathologies.

• Incorrect interpretation: Misunderstandings caused by confusing wording.

• Incorrect inference: Erroneous deductions when the comorbidity is not explicitly mentioned.

• Ambiguous text: Textual ambiguity that allows for multiple interpretations.

• Error or hallucination: Unjustified errors, attributed to human distractions or AI hallucinations.

• Error in ground truth: Corrections made upon review that validate the evaluator's interpretation.

• Explicit omission: Overlooking direct mentions of comorbidities.

• Omission by context: Failure to notice comorbidities deducible from the context or medication.

• Unrecognized acronyms: Inability to interpret specific medical acronyms.

Results

Cost and Time Analysis
Table 3 details the cost and total time invested in analyzing the
250 reports using the GPT-3.5 and GPT-4 models. Given that
both the models and their associated costs can fluctuate over
time, it is important to note that the reported results are specific
to the usage period from January to February 2024. It is noted

that GPT-4, being a larger and more complex LLM compared
to GPT-3.5, incurs longer processing times and a cost
approximately 10 times higher. Extrapolating the costs to the
entire set of 7500 patients currently registered in our database,
processing with GPT-4 would require about 24 hours and would
cost approximately 76 dollars. On the other hand, using GPT-3.5
would reduce the processing time to about 9 hours, with a
significantly lower cost of around 7 dollars.

Table 3. Execution times and costs in dollars for the analysis of the 250 reports with each of the models used (usage period of the models: between
January and February 2024).

Cost (US $)Time (hour)N reportModel

0.230.31250gpt-3.5-turbo-1106

2.530.79250gpt-4-1106-preview

Prevalences
The analysis of our Ground Truth sample reveals a wide range
of prevalences in comorbidities and lifestyle risk factors among
oncological patients. These are detailed in Table 4, where both
the number of cases and the prevalence for each comorbidity
are reported. The most common conditions include high blood

pressure and dyslipidemia, present in almost half and a third of
the cases, respectively. On the other hand, conditions like
hyperthyroidism and liver disease show relatively low
prevalence. Categories related to smoking are also highly
frequent, accounting for almost 50% of the cases. Interestingly,
the proportion of ex-smokers significantly exceeds that of
current smokers.
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Table 4. Number of reports, out of the total 250 in the sample, that indicate each comorbidity and the corresponding prevalence.

PrevalenceCases, nCondition

25.6%64Diabetes

46.4%116HBPa

14.8%37Smoker

30.8%77Dyslipidemia

8.4%21Hypothyroidism

6.8%17COPDb

10.0%25Depression

15.6%39Kidney disease

7.6%19Fentanyl

17.2%43Heart disease

0.4%1Hyperthyroidism

5.2%13Liver disease

4.8%12Dependent

34.0%85Ex-smoker

aHBP: high blood pressure.
bCOPD: chronic obstructive pulmonary disease.

Evaluation Metrics
Table 5 displays the values of true positives, false positives,
true negatives, and false negatives, detailed by comorbidity,
derived from the comparison with the ground truth dataset.

Figure 3 illustrates the performance of the physicians, GPT-3.5,
and GPT-4 classifiers, broken down by comorbidity, across
various metrics. The “Total” category, which consolidates the

results for all studied comorbidities, enables direct comparison
between the 3 evaluators on each assessed metric (Textbox 4).

The application of McNemar's test to the “Total” category,
comparing Physicians with GPT-3.5 and Physicians with GPT-4,

yielded P values of .79 and 10–6, respectively. This confirms
that the performance differences between the physicians and
the GPT-3.5 model are not statistically significant, while the
differences between the physicians and GPT-4 are significant.
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Table 5. Tables displaying the results for true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) for each comorbidity,
obtained by each of the evaluators (Physicians, GPT-3.5, and GPT-4).

GPT-4GPT-3.5Physicians

FNFPTNTPFNFPTNTPFNdFPcTNbTPa

1018663100186541118563Diabetes

211331143213211361133110HBPe

102133611212360420937Smoker

30173741011726710017367Dyslipidemia

122272020229192022919Hypothyroidism

122311620233151023316COPDf

322232245220210122425Depression

13208381802112124021115Kidney disease

012301911230181023118Fentanyl

3220540132205305020738Heart disease

002491102490102490Hyperthyroidism

03234131323412412369Liver disease

202381010238110423412Dependent

021638504161859016576Ex-smoker

181829135516719291250264122919505Total

aTP: true positive.
bTN: true negative.
cFP: false positive.
dFN: false negative.
eHBP: high blood pressure.
fCOPD: chronic obstructive pulmonary disease.
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Figure 3. Statistical metrics comparison between 3 evaluators (Physicians, GPT-3.5, and GPT-4) for individual comorbidities and overall totals.
Asymmetric error bars indicate the 95% confidence interval. GPT: generative pre-trained transformer. HBP: hypertension or high blood pressure; COPD:
chronic obstructive pulmonary disease.
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Textbox 4. Summary of the metrics evaluated.

• Sensitivity: The GPT-4 model (96.8%) outperforms both GPT-3.5 (88.2%) and the physicians (88.8%) in most categories, showing notable
effectiveness in detecting comorbidities. Although GPT-3.5 presents slightly lower results than the physicians, the difference is not statistically
significant, as indicated by the overlap of the 95% confidence intervals shown in Figure 3.

• Specificity: All evaluators achieve high specificity values, which is expected given the low prevalences of the studied comorbidities and the
relative ease of identifying the absence of a comorbidity in texts. The physicians (99.6%) excel in this metric, often achieving perfection, while
both models (99.4%) score slightly lower due to a higher rate of false positives.

• Precision: The physicians get the highest score (97.7% vs 96.4% and 96.8%) assessing the proportion of correct positive identifications, possibly
also influenced due to the models generating a higher number of false positives.

• F-score: Representing the harmonic mean between precision and sensitivity, the F-score is particularly relevant in asymmetric samples like in
our study. The GPT-4 model achieves the highest score (96.8%) on this indicator, surpassing both GPT-3.5 (92.1%) and the physicians (93%).

• Accuracy (Agreement): In the proportion of correct identifications, GPT-4 shows superior performance (99%), while GPT-3.5 (97.5%) and the
physicians (97.8%) achieve similar results.

• Cohen κ index: This index, measuring agreement adjusted for chance, reveals that GPT-4 reaches the highest scores (0.962), demonstrating
greater consistency compared to the ground truth. The GPT-3.5 score of 0.907, while marginally lower, does not significantly differ from the
physicians' score of 0.917.

Variability Among Physicians’ Performance
Table 6 displays the Cohen κ index values obtained in the
detection of various comorbidities for each of the 5 physician
evaluators. It is important to note that each physician analyzed
a different group of 50 reports.

Overall, there was considerable similarity in the physicians'
responses, except when the comorbidity to be detected was a
broader concept, as in the case of “kidney disease” (κ=0.51) or

“liver disease” (κ=0.77). It is important to note that no further
instructions or explanations were provided beyond finding the
comorbidity in the presented text. Therefore, some physicians
considered that renal lithiasis was not a relevant “kidney
disease” and reserved this category for conditions describing
an alteration in renal function (such as chronic renal failure, for
example).

Interestingly, the senior physicians scored lower than the
medical residents in the overall calculation for the κ index.

Table 6. Concordance values for each comorbidity, calculated using Cohen κ index for each medical evaluator. The “Total” categories summarize the
aggregated concordance across all comorbidities and medical evaluators. A dash indicates that the κ index could not be computed because the comorbidity
was not present in the corresponding set of reports.

Total human
evaluators

M5 residentM4 seniorM3 seniorM2 residentM1 senior

0.980.951.001.000.951.00Diabetes

0.940.960.960.830.961.00HBPa

0.940.930.860.881.001.00Smoker

0.901.000.770.751.000.91Dyslipidema

0.951.001.000.901.000.66Hypothyrodism

0.971.000.661.001.001.00COPDb

0.981.001.001.001.000.93Depression

0.510.260.560.450.700.52Kidney disease

0.971.001.000.851.001.00Fentanyl

0.931.000.790.911.000.95Heart disease

0.000.00————Hyperthyroidism

0.771.000.650.631.00—Liver disease

0.85—0.880.910.660.66Dependent

0.921.000.760.871.000.95Ex-smoker

0.921.000.760.871.000.95Total

aHBP: high blood pressure.
bCOPD: chronic obstructive pulmonary disease.
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Reproducibility of Models’ Responses
In our reproducibility study, each report was analyzed 10 times
by the GPT-3.5 and GPT-4 models. For each comorbidity, we
counted the number of different responses generated in these
repeated analyses, as well as the total number of variations for
each report.

Figure 4 presents a histogram illustrating the number of reports
that generated at least the specified number of different
responses. This histogram reveals that, in all instances, the
GPT-4 model exhibited fewer differences in responses compared
to GPT-3.5, suggesting greater consistency and reliability in its
results.

Furthermore, it was found that 73.6% of the reports analyzed
with GPT-4 reproduced the same result across all comorbidities
during the 10 analyses, compared to 59.2% for GPT-3.5. This
notable difference in reproducibility underscores the superiority

of GPT-4 in maintaining consistency in its responses across
multiple executions.

Variability in responses often stems from ambiguous text, where
LLMs may assign values inconsistently. For example, a report
describing a patient as an ”active smoker (1 month since
quitting, 1 pack/day since age 14-16)“ resulted in GPT-3.5
identifying the patient as a smoker in 6 out of 10 analyses, while
GPT-4 made only 1 error across 10 analyses. However, in the
same report, regarding the comorbidity of COPD, GPT-4 shows
a split: in 5 instances, it identifies it as present and in 5 as absent.
The physician reviewing the results and establishing the ground
truth determined the absence of COPD, as it is not explicitly
mentioned in the report. Nonetheless, the mention of “mild
pulmonary emphysema areas” and the patient's prolonged
smoking history could lead GPT-4 to infer the presence of
COPD.Top of Form

Figure 4. The number of reports for each model, in which at least the number of differences indicated on the x-axis was obtained in the 10 analyses.

Discrepancy Analysis
Multimedia Appendices 1 and 2 display the distribution of
discrepant results categorized by the causes determined through
a detailed manual analysis of the reports.

A notable discrepancy arose in the ”kidney disease“ category
due to differences in criteria. Some physicians and GPT-3.5 did
not deem certain renal pathologies, such as renal lithiasis, as
relevant comorbidities in the context of oncology treatment,
unlike GPT-4, which aligned its results more closely with the
ground truth.

In analyzing cases interpreted as hallucinations, it was found
that this phenomenon occurred exclusively in 1 response from
GPT-4 and in 6 from GPT-3.5, particularly in the smoker and
ex-smoker categories, possibly due to the use of the label “toxic
habits,” even when referring to other habits like alcoholism.

The models, especially GPT-4, tend to infer comorbidities from
the context or reported medication more frequently than
physicians, who exhibit a more conservative approach. This
tendency leads to more false positives by the models,
particularly when the medication does not imply the presence
of comorbidity.

GPT-3.5 exhibited difficulties in interpreting common medical
acronyms such as “DM” for diabetes or “AF” for atrial
fibrillation, whereas GPT-4 demonstrated a superior ability to
recognize and correctly interpret most of these acronyms.

Interestingly, GPT-4 displayed some false positives when
encountering comorbidity labels followed by “:” without
additional information, a misinterpretation not common in
humans but observed in AI, particularly in GPT-4 more than in
GPT-3.5.

Human evaluators showed a greater tendency to overlook
comorbidities explicitly reported, likely due to distraction or
fatigue.

Only 3 errors were identified in the determination of the ground
truth, underscoring the reliability of the review process.

Finally, we identified a category of discrepancies exclusive to
the models, related to structural or formatting errors. This
includes situations where the models' responses do not follow
the guidelines specified in the prompt, resulting in outputs that
do not meet the expected JSON format or that incorrectly alter
and introduce comorbidity labels. Given that these incidents
were limited, affecting less than 10 cases, it was decided to
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manually correct these formatting errors for inclusion in the
subsequent analysis.

Discussion

Principal Findings
Our study categorizes observers as ”Physicians,“ ”GPT-3.5,“
and ”GPT-4,“ reflecting the synergy between specific models
(gpt-3.5-turbo-1106 and gpt-4-1106-preview) and the prompts
designed for this research. The effectiveness of GPT models in
generating responses is inherently linked to the quality and
structure of the prompts [14,21,22], indicating that results may
vary significantly with prompt redefinition. Similarly, physician
performance is influenced not only by clinical competence but
also by the clarity of instructions and the quality of the materials
provided. Offering more detailed and specific guidelines, along
with access to additional sources within the electronic health
records, could potentially improve the accuracy of their
responses.

It is important to emphasize that even if LLMs demonstrate
superiority in the specific task of processing large volumes of
reports to extract information, this should not be extrapolated
to other tasks, such as decision-making. In such cases, these
tools should always be used as support tools, requiring ongoing
physician oversight and intervention.

Based on the results obtained, we can conclude that the GPT-4
model is notably better at identifying present comorbidities,
with fewer false negatives, while physicians exhibit slightly
higher precision in their diagnoses, resulting in fewer false
positives. The GPT-3.5 model generally performs slightly below
the physicians, though the differences found are not statistically
significant. These results are consistent with findings from other
studies, such as Hoppe et al [23], which highlight the potential
of ChatGPT models to enhance diagnostic accuracy in
emergency medical settings. In their study, GPT-4 also
outperformed both resident physicians and GPT-3.5 in
diagnostic accuracy.

The superior sensitivity of GPT-4 in our study is particularly
noteworthy, demonstrating its advanced ability to accurately
identify reported comorbidities, even when not directly evident
in the text. However, both GPT-3.5 and GPT-4 generate a
comparable number of false positives, which is significantly
higher than those recorded by physicians. Physicians' false
positives typically result from specific circumstances such as
ambiguity in clinical reports, variations in interpretation among
professionals, and occasional errors in the template filling
process.

In contrast, false positives from the GPT models seem to stem
from a less conservative approach in determining comorbidity
presence based on inferred context. These cases are also more
likely to produce less reproducible responses due to the

nondeterministic nature of LLMs. In these instances, physicians
adopted a more conservative criterion to establish the ground
truth, considering an unreported comorbidity only when the
medication or context necessarily implied it. Whether this
conservative approach is preferable to the criteria used by GPT
models requires an analysis of complete medical histories to
confirm or refute the presence of the comorbidity.

Discrepancies arising from variations in criteria interpretation
could be mitigated by using prompts with clearer instructions
on interpreting different comorbidities. This underscores the
importance of refining prompts to enhance the consistency and
accuracy of LLM-generated responses in clinical contexts.

Despite the remarkable capacity of current LLMs as potential
tools for data mining in clinical reports, questions arise regarding
the practical utility of this RWD for research and the generation
of real-world evidence [24]. The variability, subjectivity, and
lack of structure in these reports can compromise the quality
and reliability of extracted data, affecting its applicability in
clinical research contexts. Therefore, while LLMs represent a
promising innovation to address the limitations of unstructured
data, implementing more structured clinical recording practices
could provide a more sustainable and reliable solution for
generating real-world clinical evidence. This duality emphasizes
the need for a balanced approach that integrates advanced AI
technology with robust clinical data management practices.

Future research should concentrate on refining prompt design
and expanding the applications of LLMs across various medical
fields. Additionally, exploring the performance of new
open-source LLMs that can be run locally is essential, as this
approach helps to avoid data protection and privacy issues
associated with transmitting clinical data outside of the local
infrastructure.

Conclusions
This study has shown that, with carefully designed prompts,
the OpenAI LLMs examined demonstrate competence
comparable to, and in some cases superior to, that of medical
specialists in interpreting and extracting relevant information
from clinical reports, even when dealing with complex and
ambiguously written texts. Considering their superior efficiency
in terms of time and costs, along with their seamless integration
with databases and other applications, these models emerge as
a preferable option for data mining and structuring information
in large collections of clinical reports. This highlights the
potential of LLMs to enhance RWD usage by efficiently
extracting structured information from extensive volumes of
clinical texts, which is crucial for generating high-quality
real-world evidence. Nonetheless, continuous evaluation of
these models is essential to enhance their accuracy and
applicability, while also emphasizing the importance of
advancing toward more structured clinical records.
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