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Abstract
Background: The two most commonly used methods to identify frailty are the frailty phenotype and the frailty index.
However, both methods have limitations in clinical application. In addition, methods for measuring frailty have not yet been
standardized.
Objective: We aimed to develop and validate a classification model for predicting frailty status using vocal biomarkers in
community-dwelling older adults, based on voice recordings obtained from the picture description task (PDT).
Methods: We recruited 127 participants aged 50 years and older and collected clinical information through a short form of the
Comprehensive Geriatric Assessment scale. Voice recordings were collected with a tablet device during the Korean version of
the PDT, and we preprocessed audio data to remove background noise before feature extraction. Three artificial intelligence
(AI) models were developed for identifying frailty status: SpeechAI (using speech data only), DemoAI (using demographic
data only), and DemoSpeechAI (combining both data types).
Results: Our models were trained and evaluated on the basis of 5-fold cross-validation for 127 participants and compared.
The SpeechAI model, using deep learning–based acoustic features, outperformed in terms of accuracy and area under the
receiver operating characteristic curve (AUC), 80.4% (95% CI 76.89%‐83.91%) and 0.89 (95% CI 0.86‐0.92), respectively,
while the model using only demographics showed an accuracy of 67.96% (95% CI 67.63%‐68.29%) and an AUC of 0.74
(95% CI 0.73‐0.75). The SpeechAI model outperformed the model using only demographics significantly in AUC (t4=8.705
[2-sided]; P<.001). The DemoSpeechAI model, which combined demographics with deep learning–based acoustic features,
showed superior performance (accuracy 85.6%, 95% CI 80.03%‐91.17% and AUC 0.93, 95% CI 0.89‐0.97), but there was
no significant difference in AUC between the SpeechAI and DemoSpeechAI models (t4=1.057 [2-sided]; P=.35). Compared
with models using traditional acoustic features from the openSMILE toolkit, the SpeechAI model demonstrated superior
performance (AUC 0.89) over traditional methods (logistic regression: AUC 0.62; decision tree: AUC 0.57; random forest:
AUC 0.66).
Conclusions: Our findings demonstrate that vocal biomarkers derived from deep learning–based acoustic features can be
effectively used to predict frailty status in community-dwelling older adults. The SpeechAI model showed promising accuracy
and AUC, outperforming models based solely on demographic data or traditional acoustic features. Furthermore, while the
combined DemoSpeechAI model showed slightly improved performance over the SpeechAI model, the difference was not
statistically significant. These results suggest that speech-based AI models offer a noninvasive, scalable method for frailty
detection, potentially streamlining assessments in clinical and community settings.
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Introduction
Global population aging is undergoing a profound transfor-
mation as the number of older adults continues to rise at an
unprecedented rate. South Korea is undergoing an accelerated
aging trend coupled with one of the world’s most dwindling
birth rates. By 2025, South Korea is predicted to become a
superaged society, with the proportion of people aged ≥65
years making up 20% of the population. This demographic
shift is expected to continue, with estimates indicating that
nearly 44% of South Korea’s population will be older than 65
years expected by 2050 [1].

Among the older population, frailty is a very common
and significantly important geriatric condition because it
affects health-related status, quality of life, place of resi-
dence, and mortality [2]. Frailty is a common geriatric
syndrome characterized by a decline in physiological reserves
and increased vulnerability to stressors. Early diagnosis and
management of frailty are important not only for tailor-
ing care plans and predicting adverse health outcomes at
the individual level but also for strategizing public health
initiatives that meet the distinct requirements of the rapidly
growing older population [3].

Although the concept of frailty is universally recognized,
methods for measuring frailty have not yet been standardized.
The two most commonly used methods to identify frailty are
the frailty phenotype and the frailty index [4,5]. However,
these two methods have limitations in clinical application
as they require measuring the frailty phenotype through a
predetermined methodology or collecting various variables,
making them not easily adaptable and usable in clinical
settings. Another method for assessing frailty is the use of
questionnaires [6]. As measuring frailty involves time, cost,
and labor, it is necessary to develop a simplified, univer-
sally implantable, and convenient methodology to screen for
frailty.

A recent study explored the integration of machine
learning to enhance frailty detection, demonstrating that
the choice of classifier and feature selection significantly
impacted model performance, particularly when combining
clinical and nonclinical data [7]. Voice biomarkers have
been successfully used to identify acute diseases such as
COVID-19, cognitive dysfunction, Parkinson disease, and
psychiatric disorders [8-11]. Early research on detecting
frailty using voice biomarkers often relied on simple methods,
such as brief, predetermined vocal tasks [12]. Rosen-Lang et
al [13] demonstrated the feasibility of using more sophis-
ticated voice biomarkers for frailty classification, highlight-
ing their potential for improving diagnostic accuracy in
this population. Furthermore, the applicability of vocal
biomarkers extends beyond frailty detection. Kaufman et al
[14] demonstrated that acoustic analysis could effectively
predict type 2 diabetes using voice segments, highlighting

the versatility of voice biomarkers in noninvasive health
diagnostics across various conditions.

The aim of this study was to develop and validate a
classification model for predicting frailty status using vocal
biomarkers in community-dwelling older people based on
the voice recordings obtained from a picture description task
(PDT) conducted for 2 minutes via a tablet and modeling with
a machine learning algorithm.

Methods
Study Design
In this prospective cross-sectional study for developing and
validating an artificial intelligence (AI) model to predict
frailty status from vocal biomarkers, we recruited partici-
pants aged ≥50 years. We posted research promotion posters
at Seoul National University Bundang Hospital to recruit
participants. We enrolled those patients or their caregivers
who expressed interest after seeing the posters and consented
to participate in our study. Exclusion criteria were patients
who (1) were diagnosed with dysarthria; (2) had a score
of ≥10 on the Korean version of the Short Form Geriatric
Depression Scale (SGDS-K) score of ≥10; (3) had a history of
uncontrolled sleep disorders, anxiety, or behavioral disorders
within 3 months; and (4) were deemed unable to comply with
the study at the discretion of the researcher.
Ethical Considerations
This study received ethics review and approval from the
Institutional Review Board of Seoul National University
Bundang Hospital (approval number B-2107-698-302) for
the collection of data from participants in the clinical study.
All data used in the study were collected and processed in
accordance with the institutional review board guidelines.
Informed consent was obtained from all participants for the
collection of voice data. Participants were informed that their
data would be anonymized or deidentified to protect their
privacy and confidentiality.
Data Collection
Voices were recorded in an academic tertiary hospital. The
voice recording device, a Galaxy Tablet A7 LTE (SM-T505;
Samsung Electronics Co, Ltd), was located between the
participant and clinician at a distance of approximately 100
cm. The recordings were performed using an application
developed for the PDT by Silvia Health, Inc. The recorded
speech signals were digitized at a 48 kHz sampling rate.
Audacity (version 3.3.3; Audacity Team) was used to remove
noise other than participants’ voices.
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Development of the Korean Version of
the PDT
We conducted experiments to estimate the frailty status
from speech signals. We used the PDT, which is commonly
used for screening cognitive function impairments, to collect
speech data. In the PDT process, a picture is shown, and
the participants are asked to describe everything visible and
explainable in the picture for 2 minutes [15]. The participant’s
cognitive function is assessed based on which part of the
picture the participant observes and how they express the
situations in syntactic and semantic terms. The PDT is usually
used as a screening tool for Alzheimer disease, one of the
types of degenerative brain disease, and we adopted the PDT
as a tool to collect voice data for developing an AI model to
evaluate frailty status [16,17].

The Boston Cookie Theft picture has been commonly
used in the PDT to assess cognitive function; however, it
does not fit South Korea’s culture [18]. For this reason, we
developed a Korean version of the PDT, which contains
Korean cultural references and could thus feel familiar to
Koreans. The illustration was designed according to the
following principles [19]: (1) salience of information, (2)
semantic categories, (3) referential cohesion, (4) causal and
temporal relations, (5) mental state language, (6) structural
language, and (7) general cognition and perception. Detailed
descriptions for each principle are represented in Multimedia
Appendix 1.

The picture shown in Multimedia Appendix 2 was
developed on the basis of these principles for the Korean
version of the PDT. In our data acquisition phase, the picture
was provided to the participants through an app developed for
a tablet, and they were asked to describe it for 2 minutes.
While they explained the picture, the participants’ voices
were recorded using the application.
Short Form of the Comprehensive
Geriatric Assessment
The participants completed a short form of the Comprehen-
sive Geriatric Assessment (SF-CGA) to identify comorbid-
ities, functional status, cognitive function, and depressive
symptoms. Medical history, including hypertension, diabetes,
heart failure, atrial fibrillation, chronic kidney disease,
chronic liver disease, respiratory disease, cerebrovascular
disease, myocardial infection, Parkinson disease, demen-
tia, and depression, was assessed. Cognitive function was
assessed using the Korean version of the Mini-Mental State
Examination-2 (K-MMSE-2) [20]. In addition, the Clinical
Dementia Rating scale (CDR), a numerical scale used to
quantify the severity of dementia symptoms, was assessed
[21]. Functional status, including activities of daily living
(ADLs) and instrumental ADLs (IADLs), were assessed using
the Barthel index and the Lawton and Brody index, respec-
tively [22,23]. Depressive symptoms of the participants were
evaluated with the SGDS-K [24].

Outcomes and Definition of Frailty and
Prefrailty
Frailty status was defined using the Korean version of
the Fatigue, Resistance, Ambulation, Illnesses, and Loss of
Weight Scale (K-FRAIL) questionnaire [6]. We considered
K-FRAIL scale scores with ≥3 positive items to indicate
frailty. K-FRAIL scores of 1 or 2 were classified as prefrail,
and a K-FRAIL score of 0 was categorized as robust. In
this study, since the prefrail group is considered to exhibit
some physiological deficits, the prefrail and frail groups were
combined and compared with the robust group, which is
consistent with previous research [25-27].

Acoustic Features
Recent AI technologies have been used in speech recognition,
generation, and analysis. However, few studies have used
speech signals as biomarkers to evaluate frailty using machine
learning techniques. In our experiments, we considered using
voice recordings to evaluate the frailty. Specifically, we
converted raw speech data into acoustic features expressed
in the frequency domain for the input of an AI model. The
spectral characteristics of speech signals can be expressed
using mel-frequency cepstral coefficients (MFCCs) and are
well suited for various deep-learning methodologies [28].

In preprocessing using MFCCs, the audio signals are
transformed from the time domain to the frequency domain
via a Fourier transform after quantization to time-window-
ing segments. Subsequently, the mel scale is applied to the
spectrum to reflect the sensitivity of the frequency band.
The first “n” coefficients are then gathered after transforming
the mel spectrum through the discrete cosine transform. The
gathered coefficients are called MFCCs and represent the
unique characteristics of the audio signal. In general, studies
using MFCCs have considered not only the coefficients but
also their first- or second-order derivatives. In our study,
to develop an AI model for identifying frailty using speech
signals, we set the number of coefficients “n” to 20 and
used the first- and second-order derivatives. Consequently,
the acoustic features constructed using the MFCC technique
comprised 60 dimensions. To convert the speech signals
into acoustic features, we used Python 3.8 (Python Soft-
ware Foundation) and the Librosa library (Python Software
Foundation).

Prediction Model Development and
Validation
AI models using demographic and speech data were trained
and validated to predict the frailty status. Among the machine
learning methods, we trained the models using a supervised
learning scheme, and the dataset collected from the prospec-
tive cohort was used for training and validation. The entire
collected dataset was separated for training and validation
purposes; there was no overlap between the training and
validation datasets.

We explored and compared three types of machine
learning models to predict frailty. The first model, SpeechAI,
was constructed to predict the frailty status using only the
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acoustic features of speech signals. In the second model,
DemoAI, demographic data were used to predict the frailty
status, and in the third model, DemoSpeechAI, demographic
data and acoustic features were combined to predict the
frailty status. A total of 3 primary modules were designed
to construct these models. One was designed as a classifier
to identify frailty status from the data represented in the
embedding space. The others were designed to represent
demographics and speech data as embedding vectors.

The SpeechAI model was organized to predict frailty
using acoustic features extracted from voice signals and
was constructed with two modules: speech embedding and
classifier. The Transformer structure was used in the speech-
embedding module to express the acoustic features in the
vector space [29]. The vector expressed via the Transformer
model is passed to the classifier module, which consists of
one hidden layer to predict the frailty status. The SpeechAI
model shown in Figure S1 of Multimedia Appendix 3 had
approximately 612,000 deep-learning network parameters
to be trained. Among the parameters, approximately 96%
(587,520/612,000) belonged to the Transformer architecture,
and the classifier module had approximately 25,000 parame-
ters.

The DemoAI model consists of a demographically
embedded module that projects demographic information
provided as a categorical type in an embedding space and
a classifier module that predicts frailty based on the infor-
mation expressed in the embedding space, as shown in
Figure S2 of Multimedia Appendix 3. The demographic
embedding module receives chronological age categorized
into 10-year intervals and sex as the input among demo-
graphic information. They are projected onto 2D and 4D
continuous embedding spaces, and the embedding vectors
are concatenated to express a joint vector. The classifier
module, which consists of one hidden layer, receives the joint
vector expressed by the demographically embedded module,
and serves as a binary classifier that distinguishes between
frailty and robustness. The DemoAI model had approximately
26,000 entire network parameters for training.

The DemoSpeechAI model shown in Figure S3 of
Multimedia Appendix 3 was constructed using demograph-
ics, speech-embedding modules, and a classifier module.
The demographics and acoustic features were projected onto
each embedding space through the embedding modules and
then combined as a joint embedding vector. Subsequently,
the joint embedding vector was passed to the classifier
module to estimate frailty. The embedding modules used in
the DemoSpeechAI model have the same structure as those
used in the DemoAI and SpeechAI models. The parameters
of the DemoSpeechAI model were approximately 621,000,
consisting of approximately 34,000 for the classifier and
587,000 for the embedding module.

To build and train the deep-learning model, we used
the PyTorch (version 2.0.1; PyTorch Team) library for
Python, and an early stopping technique was used to prevent
overfitting of the models in the training phase [30]. The
dataset was split into five folds for 5-fold cross-validation;

4 sets were used for training, and 1 set was used to analyze
the performance of the models. Each fold was divided into a
balanced number of robust and frail labels.
Pretraining Strategy Using Self-
Supervised Learning
We designed and modularized three types of models to
predict the frailty status of the participants using deep neural
networks. Among the modules constructing each model, the
speech-embedding module contained a significant number of
parameters to be trained compared with the amount of data
collected from participants, accounting for approximately
95% of the parameters in the SpeechAI and DemoSpeechAI
models. To address the risk of overfitting due to the limi-
ted data, we used a self-supervised learning (SSL) strategy
[31,32]. In the SSL strategy, an AI model is pretrained
on a different task before being fine-tuned for the primary
task. This involves pretraining the model on a different
dataset, which helps establish a robust parameter foundation.
As a result, there is no need to train the parameters from
scratch, allowing effective training with a relatively small
dataset. To implement the SSL technique, we used the AIHub
dataset from the Open AI Dataset Project (AIHub) for public
purposes [33]. The AIHub dataset includes voice recordings
of 1002 Korean participants, which we used for pretrain-
ing the speech embedding module of the SpeechAI and
DemoSpeechAI models. Consequently, only about 5% of the
parameters in these models, specifically those in the classifier
and demographics embedding modules, were trained using
the dataset collected from our prospective cohort.

Results
A total of 127 Korean participants aged ≥50 years were
recruited to collect data at Seoul National University
Bundang Hospital from June to December 2022. We acquired
demographics, SF-CGA results, and voice recordings and
developed an AI model for predicting frailty status. Among
the participants, 43 out of 127 participants (34%) were
female, the average number of years of education was 11.787
(SD 4.732) years, and the mean age was 69.2 (SD 10.9) years.

Among the 65 participants in the frail group (prefrail and
frail), 6 out of 65 (9%) had dependent ADLs, and 7 out of
65 (11%) had dependent IADLs. The mean scores for the
K-MMSE-2, standard total T-score, and CDR-Sum of Boxes
were 25.874 (SD 4.53), 44.748 (SD 13.4), and 0.591 (SD
1.3), respectively. In the CDR, 87 out of 127 participants
(68%) had 0 points, 37 out of 127 participants (29%) had
0.5 points, and 3 out of 127 participants (2%) had 1 point or
higher. The mean SGDS-K scores were 2.945 (SD 2.89).

According to the K-FRAIL results, 65 out of 127
participants (51%) belonged to the frail group. The partici-
pants in the prefrail to frail group were older (73.4 vs 64.9
years; P<.001), had lower education levels (10.2 vs 13.5
years; P<.001), lower cognitive function (K-MMSE-2, 23.9
vs 27.9; P<.001), more depressive symptoms (SGDS-K, 4.1
vs 1.7; P<.001), and dependent ADL and IADL levels (Table
1).
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Table 1. Clinical characteristics of the study population.
Characteristics All (N=127) Groups P value

Robust (n=62) Prefrail and frail (n=65)
Sex, n (%)

Female 43 (33.9) 17 (27.4) 26 (40) .19
Age (years), mean (SD) 69.2 (10.95) 64.9 (9.26) 73.4 (10.84) <.001
Education (years), mean (SD) 11.8 (4.73) 13.5 (3.33) 10.2 (5.28) <.001
K-MMSE-2a (points), mean (SD)

Total score 25.9 (4.53) 27.9 (2.07) 23.9 (5.31) <.001
Standardized T-score 44.7 (13.40) 49.5 (10.24) 40.3 (14.47) <.001

SGDS-Kb (points), mean (SD) 2.95 (2.89) 1.7 (2.27) 4.1 (2.93) <.001
ADLc independency, n (%) 121 (95.3) 62 (100) 59 (90.8) .04
IADLd independency, n (%) 120 (90.5) 62 (100) 58 (89.2) .02
CDRe, n (%) .003

0.0 87 (68.5) 51 (82.3) 36 (55.4)
0.5 37 (29.1) 11 (17.7) 26 (40)
≥1.0 3 (2.4) 0 (0) 3 (4.6)

CDR-SOBf (points), mean (SD) 0.59 (1.30) 0.15 (0.32) 1.02 (1.68) <.001
aK-MMSE-2: Korean version of the Mini-Mental State Examination-2.
bSGDS-K: Korean version of the Short Form Geriatric Depression Scale.
cADL: activities of daily living.
dIADL: instrumental activities of daily living.
eCDR: Clinical Dementia Rating scale.
fSOB: sum of boxes.

We explored and compared 3 AI models for predicting the
frailty status using speech only (SpeechAI), demographics
only (DemoAI), and a combination of speech and demograph-
ics (DemoSpeechAI). In this study, we used 5-fold cross-val-
idation to train and evaluate our models using a dataset
corresponding to 127 participants. The entire dataset was
randomly divided into 5 subsets, with each fold containing
approximately 20% of the total samples. Each fold was used
once as the validation set, while the remaining 80% of the
samples were combined to form the training set. This process
was repeated 5 times so that each fold served as the validation
set exactly once. Consequently, all data points were used
for validation once, and the performance metrics reported
are the average results from these 5 validation runs. This
approach ensures that the model’s performance is robust
and generalizable, avoiding overfitting and clearly defining

the proportion of samples used in the validation phase. The
accuracy, area under the receiver operating characteristic
(ROC) curve (AUC), sensitivity, and specificity were used
to analyze the performance of the model.

The mean accuracy of the SpeechAI model for the 5
validation results was 80.4% (95% CI 76.89%‐83.91%), with
minimum and maximum values of 75.05% and 86.93%,
respectively. The mean AUC was 0.89 (95% CI 0.86‐
0.92), with minimum and maximum values of 0.86 and
0.94, respectively. Furthermore, the average sensitivity and
specificity of the SpeechAI model for 5-fold validation results
were 0.75 (95% CI 0.67‐0.83) and 0.86 (95% CI 0.84‐0.88),
respectively (Table 2). ROC curves were observed for 5-fold
cross-validation, and the results and means are shown in
Figure 1.

Table 2. The performance of the SpeechAI, DemoAI, and DemoSpeechAI models by 5-fold cross-validation.
Accuracy (%) AUCa Sensitivity Specificity

SpeechAI
Mean (95% CI) 80.40 (76.89‐83.91) 0.89 (0.86‐0.92) 0.75 (0.67‐0.83) 0.86 (0.84‐0.88)
Minimum 75.05 0.86 0.62 0.83
Maximum 86.93 0.94 0.88 0.88

DemoAI
Mean (95% CI) 67.96 (67.63‐68.29) 0.74 (0.73‐0.75) 0.65 (0.61‐0.69) 0.71 (0.68‐0.74)
Minimum 67.51 0.73 0.60 0.66
Maximum 68.44 0.75 0.71 0.75

DemoSpeechAI
Mean (95% CI) 85.60 (80.03‐91.17) 0.93 (0.89‐0.97) 0.89 (0.83‐0.95) 0.83 (0.77‐0.89)
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Accuracy (%) AUCa Sensitivity Specificity

Minimum 74.31 0.83 0.75 0.73
Maximum 92.29 0.98 0.95 0.91

aAUC: area under the receiver operating characteristic curve.

Figure 1. ROC curves for each fold demonstrating the performance of the SpeechAI model. AUC: area under the receiver operating characteristic
curve; ROC: receiver operating characteristic.

The curves represent the trade-off between true positive
and false positive rates across different threshold values.
The AUC values reflect the ability to distinguish between
indviduals who were and were not frail.

On the other hand, the performance of the DemoAI model
using the validation dataset, which was equal to that used
for the SpeechAI model validation, was 67.96% (95% CI
67.63%‐68.29%) for the mean accuracy, and its minimum

and maximum values were 67.51% and 68.44%, respectively.
The ROC curves of each fold by 5-fold cross-validation
are shown in Figure 2, and the mean AUC was 0.74
(95% CI 0.73‐0.75), along with 0.73 and 0.75 for mini-
mum and maximum values, respectively. Moreover, the mean
sensitivity and specificity of the DemoAI model elicited from
5-fold cross-validation results were 0.65 (95% CI 0.61‐0.69)
and 0.71 (95% CI 0.68‐0.74), respectively (Table 2).
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Figure 2. ROC curves for each fold demonstrating the performance of the DemoAI model. AUC: area under the receiver operating characteristic
curve; ROC: receiver operating characteristic.

The curves represent the trade-off between true positive
and false positive rates across different threshold values.
The AUC values reflect the ability to distinguish between
individuals who were and were not frail.

The mean accuracy of the DemoSpeechAI model for
5-fold cross-validation was 85.6% (SD 6.35%, 95% CI
80.03%‐91.17%), and the minimum and maximum values

were 74.31% and 92.29%, respectively. Furthermore, the
mean AUC values of the DemoSpeechAI model elicited
from 5-fold cross-validation were 0.93 (SD 0.05, 95% CI
0.89‐0.97), and the mean sensitivity and specificity were 0.89
(SD 0.07, 95% CI 0.83‐0.95) and 0.83 (SD 0.07, 95% CI
0.77‐0.89), respectively (Table 2). Figure 3 shows the ROC
curves obtained from 5-fold cross-validation and their mean.
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Figure 3. ROC curves for each fold demonstrating the performance of the DemoSpeechAI model. AUC: area under the receiver operating
characteristic curve; ROC: receiver operating characteristic.

In the comparison between the SpeechAI and DemoAI
models, the SpeechAI (AUC 0.89, 95% CI 0.86‐0.92) model
showed superior performance to the DemoAI model (AUC
0.74, 95% CI 0.73‐0.75) in AUC values (t4=8.705 [2-tailed];
P<.001), and the DemoSpeechAI model (AUC 0.93, 95%
CI 0.89‐0.97) was superior to the DemoAI model in AUC
values (t4=7.978 [2-tailed]; P<.001). However, there was no
significant difference between the SpeechAI and DemoSpee-
chAI models (t4=1.057 [2-tailed]; P=.35).

To evaluate the effectiveness of our models using deep
learning–based acoustic features, we conducted a comparative

analysis with simpler machine learning models, specifically
logistic regression, random forest, and decision tree. For this
comparison, we used acoustic features extracted using the
openSMILE toolkit [34], a commonly used tool for extract-
ing audio features. The extracted features included frequency
domain characteristics such as MFCCs, pitch, and loudness.

We trained logistic regression, random forest, and decision
tree models using these acoustic features and compared
their performance with our model, which use a transformer-
based architecture for feature extraction. The results of this
comparison are summarized in Table 3.

Table 3. Performance metrics for machine learning methods using acoustic features extracted by the openSMILE toolkit.

Model Accuracy (%), mean (95% CI) AUCa, mean (95% CI)
Sensitivity, mean (95%
CI)

Specificity, mean (95%
CI)

Logistic regression 61.45 (46.54‐76.35) 0.62 (0.47‐0.77) 0.62 (0.52‐0.71) 0.62 (0.36‐0.87)
Decision tree 57.48 (40.11‐74.84) 0.57 (0.40‐0.75) 0.59 (0.31‐0.86) 0.56 (0.41‐0.72)
Random forest 66.09 (57.69‐74.50) 0.66 (0.58‐0.75) 0.69 (0.58‐0.81) 0.63 (0.42‐0.84)

aAUC: area under the receiver operating characteristic curve.
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The results in Table 3 compare with our model, SpeechAI,
which uses the deep neural network–based feature extractor.
SpeechAI significantly outperforms these traditional features-
based models. The performance metrics for SpeechAI are
as follows: accuracy: 80.40%, AUC: 0.89, sensitivity: 0.75,
and specificity: 0.86. This demonstrates the superiority of
our deep-learning approach, particularly in handling the
complex and high-dimensional nature of acoustic features.
The advanced feature extraction capabilities of the SpeechAI
model enable it to capture intricate patterns and nuances in
the voice data, which simpler models fail to exploit fully.

While traditional models provide a baseline performance,
the deep learning–based model’s ability to leverage large-
scale pretraining and complex feature extraction processes
leads to improved predictive accuracy. These results
underscore the effectiveness of deep-learning techniques for
this application and highlight their potential for broader
adoption in related research fields.

Discussion
Principal Findings
In recent years, several studies have investigated the use
of voice data to predict frailty among older adults. One
study explored the application of vocal biomarkers for
frailty classification, finding significant associations between
specific voice parameters and frailty levels [12]. Our study
builds on this by using advanced deep-learning techniques
to extract more nuanced features from voice data, poten-
tially improving the accuracy and reliability of frailty
predictions. In addition, a study demonstrated the feasibil-
ity of using voice biomarkers to classify frailty, focusing
on various acoustic parameters such as formant frequencies
and spectral energy ratios [13]. Our findings align with
these results, further validating the effectiveness of voice
biomarkers in predicting frailty. However, our approach
differs by incorporating a more extensive set of acoustic
features and using robust cross-validation methods to ensure
generalizability. Our study aligns with the growing body of
research that leverages vocal biomarkers to predict cognitive
and functional decline. Notably, a study demonstrated the
effectiveness of using spontaneous speech analysis to identify
cognitive function decline among older adults in a multilan-
guage cross-sectional study [35]. Their findings highlighted
that specific acoustic features could discriminate between
healthy individuals and those with mild to severe cognitive
impairment with high accuracy, supporting the viability of
voice as a noninvasive diagnostic tool.

Using acoustic features to predict frailty is promising,
particularly in the context we have adopted, where partici-
pants describe and explain a picture. Recent studies have
demonstrated that transformer models yield superior results
in various speech-related tasks, such as speech recogni-
tion, speech synthesis, and speech classification, surpassing
traditional methods. Transformer architectures significantly
improve the ability to capture complex patterns and long-

range dependencies in sequential data, which are crucial for
accurate speech processing [36].

In our study, we compared the performance of our
transformer-based SpeechAI model with machine learning
models that use acoustic features extracted by the open-
SMILE toolkit, which does not rely on deep neural networks.
The openSMILE toolkit is widely used for extracting features
such as pitch, loudness, and MFCCs. Our experiments
showed that the deep neural network–based model outper-
formed simpler models using acoustic features, demonstrating
the effectiveness of the transformer architecture in extract-
ing and leveraging high-level acoustic features for predicting
frailty.

The ability of the transformer architecture to model
long-range dependencies and process sequences in parallel
contributes to its enhanced performance [37]. This capabil-
ity allows the transformer-based SpeechAI model to capture
intricate patterns and nuances in the voice data, which
extractors that do not rely on deep neural networks fail to
exploit fully. The abilities can be experimentally observed by
the superior performance metrics of SpeechAI, such as higher
accuracy and better sensitivity and specificity, compared
with models based on traditional acoustic feature extraction
methods.

Through this study, the picture, Silvia Train Station,
was developed for the Korean version of the PDT. It was
designed according to the appropriate principles, contain-
ing Korean cultural references that would feel familiar to
Koreans. We recruited a prospective cohort that included
various clinical, medical, and demographic information and
voice data encompassing the frailty status of 127 individu-
als. We developed and validated a model to predict frailty
using AI techniques in conjunction with voice data from
a prospective cohort and public AIHub dataset. Our study
showed that 3 modularized models can be used to predict the
participants’ frailty status using deep neural networks, which
showed excellent performance.
Evaluation With Imbalanced Validation
Set
In our study, we investigated whether speech data could be
used to classify frailty and observed meaningful results. We
conducted experiments to classify between robust individu-
als and a combined group of individuals with prefrailty and
frailty. We trained the model using a balanced class distribu-
tion between the two groups to ensure effective learning and
avoid bias toward the majority class. Balancing the dataset
during training is crucial, as it prevents the model from
favoring the majority class, leading to improved perform-
ance across both classes and enhancing the model’s general-
ization capability. However, recognizing that the real-world
prevalence of frailty is approximately 20%, we conducted
an additional sensitivity analysis with the SpeechAI model
to better reflect real-world conditions by using a validation
set where the frailty group constituted 20% of the data.
The results showed an accuracy of 74.80% (95% CI 69.36%‐
80.25%), an AUC of 0.79 (95% CI 0.71‐0.88), a sensitivity of
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0.77 (95% CI 0.67‐0.87), and a specificity of 0.63 (95% CI
0.39‐0.88). These results indicate that the model maintained
strong predictive accuracy with the imbalanced validation set,
demonstrating its robustness. While this approach provides
meaningful insights, future research should aim to include
more diverse and representative cohorts to fully validate the
model’s applicability to real-world scenarios.
Strengths and Limitations
Our study had several strengths. First, we developed and
validated a model that successfully estimated the frailty state
by showing a picture and obtaining voice recordings that
freely described the picture using a tablet. Previous meth-
ods to diagnose frailty consumed a lot of time, space, and
manpower or required much effort to process existing medical
data. According to the methodology used in this study, older
adults can check their risk of frailty in a way that can be
performed on their own without having to visit a hospital
or research institution. Second, voice data predicted frailty
well, and it was experimentally confirmed that the acous-
tic features extracted from the voice recordings played an
important role in predicting frailty. Based on these results,
we demonstrated the possibility of developing many acoustic
feature–derived models that can identify many health-related
characteristics of older people, such as cognitive function,
certain disease status, morbidity, and mortality. Third, despite
statistical challenges, the model was developed and validated
using a limited dataset, providing effective performance, even
with a small sample size. The model efficiently leveraged
voice data, omitted frailty-related variables, and demonstra-
ted robust predictive capability while avoiding unnecessary
complexity.

Our study had several limitations. First, in research using
voice data, there are inevitable limitations in noise processing.
The data collected for this study contained various noises
as they were collected in a routine hospital environment.
To remove noise, it was necessary to remove sounds other
than the participants’ voices. So, it is necessary to provide
an automatic noise removal process using technologies such
as noise canceling, speaker recognition, and voice activity
detection in further studies. Second, in the PDT, which was
performed in our study, cognitive function could be assessed
by the participants’ understanding of the causal relationship
or the importance of the PDT. However, during the PDT, the

participants had some difficulty explaining the given picture
for 2 minutes, which made it difficult to collect complete and
diverse sound characteristics from the participants. Therefore,
if the PDT can be developed to be more specialized and
suitable for the older population and to extract acoustic
features, the accuracy of AI technology will further increase.
Third, the relatively small sample size may not fully represent
the diversity of each group, and biases introduced during
participant selection could have affected the generalizability
of the results. In addition, the study involved only Korean
participants, thus caution should be taken in generalizing the
results to populations from different regions or ethnicities.
Furthermore, there is a significant age difference between
the robust and prefrail and frail groups in our cohort. Due
to this existing significant difference in age between the
two groups, the DemoAI model, which was trained using
only age and sex, also showed relatively high performance.
Nevertheless, the model using speech data demonstrated
statistically superior performance compared with the DemoAI
model, highlighting the effectiveness of incorporating vocal
biomarkers in frailty prediction. Future work should include
more diverse participants to address these limitations and
ensure the broader applicability of the findings. In addition,
developing advanced noise processing techniques to improve
the clarity of voice data collected in natural environments is
essential. Expanding the use of vocal biomarkers to pre-
dict various health conditions and integrating these models
into mobile health apps will make health monitoring more
accessible. This approach could lead to noninvasive, efficient,
and widely applicable health assessment tools for older
adults.
Conclusions
We developed and evaluated 3 types of models, DemoAI,
SpeechAI, and DemoSpeechAI, to predict participants’ frailty
status using deep neural networks with SSL techniques based
on voice recordings collected via a tablet during the PDT.
This was successfully developed using voice data collec-
ted from the recruited participants, assisted by an independ-
ently released voice database (AIHub). The next possible
step would include applying the model to electronic health
records, which can assist in decision-making, additional
perioperative evaluation, and supportive care to prevent
adverse outcomes after surgery.
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