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Abstract
Background: Health care is facing many challenges. The recent pandemic has caused a global reflection on how clinical and
organizational processes should be organized, which requires the optimization of decision-making among managers and health
care professionals to deliver care that is increasingly patient-centered. The efficiency of surgical scheduling is particularly
critical, as it affects waiting list management and is susceptible to suboptimal decisions due to its complexity and constraints.
Objective: In this study, in collaboration with one of the leading hospitals in Portugal, Centro Hospitalar e Universitário de
Santo António (CHUdSA), a heuristic approach is proposed to optimize the management of the surgical center.
Methods: CHUdSA’s surgical scheduling process was analyzed over a specific period. By testing an optimization approach,
the research team was able to prove the potential of artificial intelligence (AI)–based heuristic models in minimizing schedul-
ing penalties—the financial costs incurred by procedures that were not scheduled on time.
Results: The application of this approach demonstrated potential for significant improvements in scheduling efficiency.
Notably, the implementation of the hill climbing (HC) and simulated annealing (SA) algorithms stood out in this implementa-
tion and minimized the scheduling penalty, scheduling 96.7% (415/429) and 84.4% (362/429) of surgeries, respectively. For
the HC algorithm, the penalty score was 0 in the urology, obesity, and pediatric plastic surgery medical specialties. For the
SA algorithm, the penalty score was 5100 in urology, 1240 in obesity, and 30 in pediatric plastic surgery. Together, this
highlighted the ability of AI-heuristics to optimize the efficiency of this process and allowed for the scheduling of surgeries at
closer dates compared to the manual method used by hospital professionals.
Conclusions: Integrating these solutions into the surgical scheduling process increases efficiency and reduces costs. The
practical implications are significant. By implementing these AI-driven strategies, hospitals can minimize patient wait times,
maximize resource use, and enhance surgical outcomes through improved planning. This development highlights how AI
algorithms can effectively adapt to changing health care environments, having a transformative impact.
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Introduction
Background
The effective delivery of hospital services depends on
the efficient execution of several processes and is becom-
ing increasingly reliant on computer resources capable of
responding to specific situations [1]. Given the objectives
each health care organization must meet and the requisite
patient care, a system capable of improving, evaluating, and
preventing future situations is crucial [2,3]. Simultaneously,
the volume of patient-centered data in health care has been
burgeoning. An example of this is illustrated by Jayaratne
et al [4], which highlights the data-rich environment of the
intensive care unit, where extensive data streams continuously
emanate from patient monitoring and observation. These data
encompass various facets such as laboratory results, medical
prescriptions, therapeutic decisions, clinical observations by
health care providers, and others. The richness of these
systems depends on the available data, and the health care
system has a great scope at this level. In 2018, Feldman
et al [5] showcased the great diversity of these systems,
categorizing them into groups based on the data’s nature
and associating them with relevant areas of interest. This
wide range of systems, which includes clinical and organ-
izational data, makes it an area with a lot of potential.
Business intelligence systems are crucial for these entities,
which require tools capable of organizing data in a more
perceptible way [6,7]. The rise of artificial intelligence (AI)
has led to a profound reflection on these systems, allowing
them to be transformed to integrate future data and pro-
vide advice on optimal decision-making that affects organi-
zational management [3,8,9]. Improving the decision-making
process requires combining data storage with analytical tools,
applications, and methodologies, and it aims to incorpo-
rate and find relationships between existing data [10]. This
provides real-time access and facilitates the proper analysis
of historical and current data, obtaining insights that were not
possible before [11,12].

For a long time, one of the most discussed topics
in hospital organizations has been the surgical scheduling
problem (SSP). Surgical scheduling was worsened by the
COVID-19 pandemic, as numerous specialties had to halt
their treatments in order to prioritize the treatment of other
patients. There have been clear repercussions from this
management change, including an increase in the number
of patients on waiting lists and a need for managers to
find clinically and organizationally effective approaches to
reduce them. A study was carried out in collaboration with
the Centro Hospitalar e Universitário de Santo António
(CHUdSA) to determine whether a metaheuristic approach
could be implemented in a hospital organization as a strategy
to reduce waiting time.
Related Work
Room planning is a task that needs to be addressed in many
fields, particularly within health care, and it includes planning
operating rooms (ORs) for surgeries. Cost containment and
reduction have emerged as primary objectives in health care

management, with hospital managers and professionals trying
to understand each factor contributing to the total cost of
delivering better services. ORs are one of the areas that have
been gathering considerable attention since they are the most
critical cost center and consume a large proportion of the
hospital’s total expenses. Consequently, ORs have substantial
potential for cost savings, and the SSP has been studied and
has generated a variety of approaches and heuristics [13].
Currently, there is a growing trend in adopting computational
tools based on optimization methods. As outlined by Cortez
[14], optimization methods are divided into 3 main catego-
ries: blind search, local search, and population-based search.
Blind search assumes the exhaustion of all alternatives,
guaranteeing that all solutions are tested. It is only admis-
sible for discrete search spaces and is easy to implement.
The major disadvantage of this technique is its feasibility
when the search space is continuous or too large. It tends
to require more computational effort since the search is
performed through a set of candidate solutions rather than
a single solution. Local search is the most modern optimi-
zation technique and is based on new solutions that are
generated from existing ones. Several methods focus on a
local neighborhood through a given initial solution and use
previous searches to guide the next. Population-based search
presents a new approach to optimization algorithms, using a
set of candidate solutions instead of one [15].

Studies conducted by the scientific community suggest
that metaheuristic optimization models are promising as
a potential solution to the problem at hand, although
they diverge on the primary factors directly impacting the
performance of a surgical schedule. Some studies adopt
a more specific approach, such as the one developed by
Fügener et al [13], which introduces a variable called planned
capacity slack for OR days with the application of the
simulated annealing (SA) algorithm to minimize planned
slack and maximize OR use. The planned slack aimed to
minimize overtime by absorbing the variability of surgery
duration. Min and Yih [16] designed a calendar for patients
with uncertain surgical operations. The calendar accounted
for the uncertainty in the period of surgery and the availa-
bility of resources, such as the surgical intensive care unit,
using a stochastic approach to minimize the sum of costs
directly related to patients and the expected costs associated
with overtime work. Visintin et al [17] propose that creating
an effective surgical scheduling system requires grouping
patients into homogeneous surgical groups, developing an
approach solely focused on this constraint and scheduling
surgical groups rather than actual patients. Most authors state
that the performance of an OR depends mainly on how
surgical activities are scheduled. This perspective is reflected
in the study conducted by Su et al [18], which proposed
a self-organizing map-based optimization (SOMO) approach
to solve the SSP. Banditori et al [19] also introduced a
mixed integer programming model, assuming that a hospital’s
waiting list cases could be categorized into homogeneous
surgical groups based on their anticipated resources. Agnetis
et al [20] adopted a surgical scheduling model that was
updated on a weekly basis, allocating various specialties to
available sessions and considering only patients immediately
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eligible for surgery, and patients were selected from a waiting
list based on parameters such as surgery duration and waiting
time. More recently, a similar approach by Brit et al [21]
considered multiple factors (including surgeons, equipment,
ORs, and recovery ward beds) in their optimization strategy
to meet waiting time objectives by maximizing OR use.
Tyagi et al [22] explored various models and techniques
used for scheduling, emphasizing the importance of strategic
(long-term), tactical (medium-term), and operational (short-
term) scheduling levels and demonstrating that daily planning
and scheduling using detailed procedural times and sophisti-
cated algorithms substantially enhanced OR use. Wang et
al [23] proposed a fuzzy model, integrated with a hybrid
genetic algorithm for optimization, to address variability
and unpredictability in scheduling processes. The model
effectively balanced the costs and benefits associated with
using an overflow strategy, where patients were assigned to
undesignated departments to better manage capacity.

Despite the varied development approaches and the
implementations of algorithms, different perspectives have
emerged regarding the timescale and surrounding constraints,
highlighting the absence of standard approaches to the SSP
that conclusively prove effectiveness compared to current
hospital management practices. There is a scarcity of accurate
proposals to inform the establishment of standard rules and
guidelines to manage surgery scheduling without affecting
the organizational policies of different surgical specialties.
Therefore, this study aimed at demonstrating the effectiveness
of a selected set of optimization algorithms, customized to
time and resource allocation problems, in addressing common
scheduling constraints across various specialties. The primary
goal is to provide a more comprehensive solution applicable
to different health care organizations.

Methods
Ethical Considerations
This study was based exclusively on anonymous data
provided by the organization involved in this research and did
not involve sensitive personal information. Therefore, ethics
board review in accordance with the General Data Protection
Regulation (GDPR) was not required.
Study Design
An optimization model–based approach was developed to
demonstrate the application of heuristic algorithms. Our
analysis focuses on optimizing the temporal allocation of
surgeries, depending on the date they were placed on the
waiting list and their priority. For this, two methodologies
were followed: the design science research (DSR) and the
cross-industry standard process for data mining (CRISP-DM).
DSR consisted of 6 phases: identification of the problem and
motivation, definition of objectives of the solution, design
and development, demonstration, evaluation, and communi-
cation. These phases provided guidelines for a research
project [24]. To put DSR in action, it was necessary to
use a practical methodology for data mining projects. The
CRISP-DM method provided a global perspective on the life
cycle of a data mining project, and it comprised the follow-
ing 6 stages: business understanding, data understanding,
data preparation, modeling, evaluation, and deployment [25].
There were dependencies between the stages, and they did not
have a rigid structure [25]. Since both methodologies were
used concurrently, the relationship between them throughout
the project phases was described (Figure 1).

Figure 1. Crossover of the design science research (DSR) and cross-industry standard process for data mining (CRISP-DM) methodologies.

Problem Statement
Hospital administrators attempt to reduce costs while
providing the best care possible for their patients. To achieve
this aim, they take into account a number of factors that
directly affect the quality of surgery scheduling. These factors
include the number of professionals available for each day,

the specialty related to each type of diagnosis, the availability
of slots, and the ability to perform new admissions, with
an aim of continuously reducing waiting time. Under this
perspective, the surgical area of a hospital was the main
optimization target for the development of a metaheuristic
method. Each surgical area of a hospital was made up of S
ORs, a finite H number of days, and a group of N patients
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who were waiting for a surgical appointment. Thus, the
algorithm allocated patients to available ORs and determined
the sequence of surgeries to be performed. A surgery time ST
was assigned to each patient in {1, ...N}. This time included
the period of a procedure as well as extra time for preoper-
ative cleaning and preparation. Depending on the type of
study, an organization may establish different restrictions
that directly influence how the algorithm generates solutions,
which are referred to as hard (primary objectives) and soft
(secondary objectives) constraints.

Finally, the goal was to define a global optimization
strategy for more than one specialty. Hard constraints
included a maximum limit for the number of candidates
assigned to a vacancy, room capacity constraints, and time
constraints, so that the algorithms always considered shifts
that were available in certain time blocks. Simultaneously,
this included reducing the number of patients whose surgeries
exceeded the time limit of the guaranteed maximum response
time. Additionally, it was possible that not all ORs were
open every day, with some ORs only open during specific
times. Each shift therefore indicated the day and the OR. The
following points were design factors for this approach:

1. Each specialty was assigned one, more than one, or
no OR. These assignments were decided in the stage
before the block schedule.

2. Patient priority was defined based on medical and
waiting time factors, always considering a prioritized
patient list for surgeries.

3. Each surgical specialty managed its patients independ-
ently.

4. The hospital contained a specific set of ORs, which
each one being unique and adapted for certain types of
interventions.

5. A surgery that was programmed after its deadline
earned a penalty depending on the priority.

6. Each surgery had information regarding the time
required to clean the room and prepare it for next
surgery.

7. A patient could not be operated on more than once in
the same scheduling period.

For this algorithm, all surgeons were able to be assigned to
a surgery. Daily availability plans of the CHUdSA were also
considered so that a specific surgery allocation respected the
existing resources for each day, namely the number of ORs
and available medical professionals. The following sections
explain the heuristic approaches.
Data Understanding and Preparation
The surgery data analyzed was considered event-based.
Each surgery undergone by a patient represented an
event associated with a medical specialty at a specific
time, comprising the execution of all requisite procedures.
Additionally, data containing information related to the time
blocks available in each specialty were used. The data
were derived from medical specialties previously selected by
the CHUdSA interlocutors, including a scheduling process
carried out in 2019. This time frame was chosen since the
hospital administration did not take pandemic constraints into

consideration, making it possible to examine a scheduling
procedure under standard circumstances without any unusual
restrictions.
Proposed Metaheuristic Algorithms

Overview of Metaheuristic Algorithms
Metaheuristic algorithms are search procedures designed to
find better solutions to an optimization problem that is
considered complex to solve [26]. They are categorized
according to how they operate in the search space and
how new solutions will be discovered [14] such as nature-
inspired versus non–nature-inspired, population-based versus
local search, dynamic versus static objective functions, and
one versus multiple neighborhood structures [27]. The typical
structure is based on 3 main code sections: (1) initial solution,
representing the first structure of the problem and ensuring an
initial guess, often called a “starting point” for the algorithm;
(2) evaluation function, which analyzes a possible solution
in the context of the problem, comparing different solutions
and providing a ranking or a quality measure score; and (3)
objective function, which is composed of the implementation
of different optimization algorithms [28].

Hill Climbing
Hill climbing (HC) is a local optimization algorithm that
climbs a hill until a local optimum with the goal of maxi-
mization. The method iteratively searches for new solutions
inside the existing solution’s neighborhood, adopting a new
solution if it is better than the previous one [29]. The purpose
is to discover an improvement by running an extensive search
within the defined neighborhood borders and the ability of the
algorithm to produce successful results is determined entirely
by the initial solution [14,15].

Simulated Annealing
Metropolis et al [30] designed SA, which is primarily inspired
by a cooling operation in heating-based metallurgy. SA
begins with a randomly generated initial solution and a
high-temperature T. During the cooling phase, the algorithm
will converge to an estimated solution, moving away from
the local optimum to locate the near-optimal solution, and the
method will grow more accurate with each iteration to obtain
a better solution [14]. Another solution will be randomly
created near the initial solution and the difference in function
values is calculated as follows:

(1)∆ = f xn − f xc
If the Δ is smaller for the new solution, the new solution
automatically becomes the current solution from which the
search will continue [26].

Particle Swarm
In 1995, Kennedy and Eberhart conducted a study on the
social behavior of a group of animals and concluded that
being in a group increases one’s chances of surviving [14].
This is corroborated by the fact that species share informa-
tion, which increases the probability of finding the optimal
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hunting location. The particle swarm (PS) algorithm operates
on this conceptual foundation, attempting to identify the
best solution in a high-dimensional space. It aims at either
maximizing profits or limiting losses. There can be multiple
local maximums and minimums in a function but only one
global maximum and/or minimum. In summary, PS is a
population-based algorithm and can be defined by the direct
and indirect interactions between distinct sets of information
that affect the results obtained, consequently preserving an
organized pattern among the dataset [14].
Modeling the Initial Solution
By assigning one slot to each input operation, the initial
solution was obtained in random or sequential slots using
the list of specialist surgeries. Depending on the number of
slots and surgeries, the bottom and upper parameters were
defined as the highest and lowest values for each dimension.
The initial solution was obtained by assigning surgeries in
available slots for a specific specialty and was implemented
by the first fit approach [31,32]. The challenges with this
initial method were respecting the time limits connected with
each surgery and the turnovers associated with the addition
of surgeries to a particular slot. It was also decided that the
production of the first solution should include all potential
constraints. The graphical representation of how the first
solution was generated is included in Multimedia Appendix
1.

The performance was evaluated using a function designed
for this purpose. Each solution examined the assigned
surgeries by specifying a total solution penalty (pt), calculated
using the sum of each penalty p earned in a surgery, as shown
mathematically below:

(2)pt = ∑i = 1i pi
Each penalty was calculated by multiplying the number of
days that the surgery was overdue by each deadline (ds) and
the priority associated with that same surgery (pr), presented
in the following equation:

(3)p = f ds − f pr
Modeling the Objective Solution

HC Implementation
Different algorithms were used to model the objective
solution, which through several iterations, search for a better
solution than the existing one. For each iteration, a total
penalty was given to the surgeries, making comparisons with
other solutions. The iterations ended at the defined limit,
returning the best solution. HC implementation was retrieved
and adapted from Cortez [14] and could be represented by the
following function: hclimbing (par, fn, change, control, type).
The input variables were presented as follows:

1. The initial solution (par) was obtained by allocating
the surgeries to available slots (explained in previous
section).

2. The evaluation function (fn) evaluated the total penalty
of the allocated surgeries.

3. A change function (change) was responsible for
generating the next candidate, creating minor distur-
bances in the initial solution by swapping surgeries
between different slots and evaluating if this was
profitable.

4. The variable control was a list that indicated the
number of interactions to execute and the information
to collect throughout the solution.

5. A last variable (type) indicated the main goal of
minimization.

SA Implementation
SA implementation was also adapted from Cortez [14].
It used a variable temperature as opposed to HC, which
chose a fixed value for this control parameter. Starting at a
high temperature, the method gradually lowered the control
parameter until it reached the desired minimum value or a
predetermined number of iterations. The following func-
tion represents the SA implementation: simulated_annealing
(func, par, niter, step). The input variables were presented as
follows:

1. The evaluation function (func) that computed the total
penalty, similar to HC.

2. The initial solution (par), also similar to HC.
3. Maximum number of iterations (niter).
4. Parameter to control the cooling speed of the model

(step).

PS Implementation
The implementation of PS followed a different perspective
from that presented in the other two models. It is an algorithm
that seeks to efficiently search within a specified boundary,
using the iterations between particles to find the best solution
possible [14,33]. The implementation of this method was
obtained by the psoptim method from the pso package [34].
The function described has 6 input parameters: psoptim (par,
fn, lower, upper, control, eval_func). These were represented
by the following:

1. Vector containing the initial list of surgeries to schedule
(par).

2. Penalty minimisation function (fn).
3. Lower bounds on the variables, belonging to the

minimum scheduling shift (lower).
4. Upper bounds on the variables belonging to the

maximum scheduling shift (upper).
5. List of control variables (control) belonging to the best

solution found, number of interactions, swarm size, and
continuous trace of solutions found.

6. Evaluation function to compute the total penalty
(eval_func), similar to the other methods.

Results
The number of surgeries performed by each specialty and the
number of surgeries performed after the established dead-
line could be used by the CHUdSA to categorize its OR
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management. Such variables determined the total penalty
of the hospital, which translated into costs that the hospital
would have to assume. Table 1 represents a general analysis
of the existing data, considering the specialties chosen for
this study, to understand the relationship between the number
of surgeries being allocated and the number of existing slots

for each specialty. For the specialties that were chosen, the
number of surgeries to be allocated was higher than the
number of existing slots. In this case, optimizing ORs was
required to handle the greatest number of surgeries with
available resources.

Table 1. General analysis between number of surgeries in each specialty with available operating rooms.
Medical specialties Number of surgeries Number of time slots
Obesity 198 122
Urology 133 89
Pediatric plastic surgery 98 45

The first approach was carried out to understand which
algorithms obtained the best performance and considered the
optimization objective, which was the minimization of the

penalty and the maximization of the number of surgeries
scheduled within the deadline. Table 2 summarizes the values
obtained in implementing the algorithms described above.

Table 2. General analysis of optimization algorithms performance.
Algorithms Penalty score by medical specialty

Obesity (n=198) Urology (n=133) Pediatric plastic surgery (n=98)
Hill climbing 0 0 0
Simulated annealing 5100 1240 30
Particle swarm 42,702 30,000 53,108

Since this initial approach considered a first custom solution
with the defined scheduling rules, the local search algorithms
obtained better scheduling performances. Consequently, a
deeper examination of the HC and SA algorithms was done.

The implementation of these algorithms led to a set of results
presented in Tables 3 and 4. These values compared the
performance of the algorithms in response to SSP.

Table 3. Measure of the impact of the hill climbing (HC) algorithm.

Metrics by specialty Penalty score
Surgeries without penalty, n
(%)

Surgeries with penalty, n
(%) Unscheduled surgeries, n (%)

Obesity (n=198)
  CHUdSAa management 643,550 4 (2) 194 (98) 0 (0)
  HC optimization 0 190 (96) 0 (0) 8 (4)
Urology (n=133)
  CHUdSA management 37,030 91 (68.4) 42 (31.6) 0 (0)
  HC optimization 0 127 (95.5) 0 (0) 6 (4.5)
Pediatric plastic surgery (n=98)
  CHUdSA management 14,760 81 (81) 17 (17) 0 (0)
  HC optimization 0 98 (100) 0 (0) 0 (0)

aCHUdSA: Centro Hospitalar e Universitário de Santo António.

Table 4. Measure of the impact of the simulated annealing (SA) algorithm.

Metrics by specialty Penalty score
Surgeries without penalty, n
(%)

Surgeries with penalty, n
(%) Unscheduled surgeries, n (%)

Obesity (n=198)
  CHUdSAa management 643,550 4 (2) 194 (98) 0 (0)
  SA optimization 5100 164 (82.8) 1 (0.5) 33 (16.7)
Urology (n=133)
  CHUdSA management 37,030 91 (68.4) 42 (31.6) 0 (0)
  SA optimization 1240 128 (96.2) 4 (3) 1 (0.8)
Pediatric plastic surgery (n=98)
  CHUdSA management 14,760 81 (83) 17 (17) 0 (0)
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Metrics by specialty Penalty score
Surgeries without penalty, n
(%)

Surgeries with penalty, n
(%) Unscheduled surgeries, n (%)

  SA optimization 30 64 (65) 1 (1) 33 (34)
aCHUdSA: Centro Hospitalar e Universitário de Santo António.

Discussion
Overall Results
Through the implementation of these algorithms, compared to
CHUdSA’s manual scheduling process, several results were
found. First, the penalties for the optimization algorithms
developed were lower than the penalty of scheduling done
by CHUdSA professionals, and in certain situations, there
were no penalties for the algorithms. Therefore, both local
optimization algorithms can provide improvements to the
administration and organization of ORs. Second, the PS
algorithm was not a viable solution to the SSP, since its
ability to minimize the scheduling penalty was much lower
than the HC and SA algorithms. It was evident that local
search algorithms produced better solutions on all existing
criteria, compared to the population-based search algorithm.

Third, Figures 2 and 3 represent the evaluation of schedul-
ing over time for each surgery, providing an understanding
of whether the respective algorithm scheduled a surgery for
before or after the day it was performed in the CHUdSA.
The majority of surgeries could have been scheduled and
carried out days earlier for either of the local HC and SA
optimization algorithms. Fourth, the number of surgeries that
remained to be scheduled occasionally exceeded the number
that the CHUdSA professionals had anticipated. Furthermore,
some surgeries could not be scheduled in this optimization
process because their minimum execution time exceeded the
maximum duration of an existing shift. These surgeries were
always handled as exceptional cases at the recommendation
of CHUdSA professionals. Therefore, from a management
perspective, the professionals personally should schedule the
surgeries in accordance with specific internal protocols.

Figure 2. Hill climbing evaluation and overall performance by surgeries.

Figure 3. Simulated annealing evaluation and overall performance by surgeries.
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Key Findings
Figures 2 and 3 highlight that it is possible to more effectively
allocate surgeries within the same time frame despite using
the same resources. Leveraging the specification of a set
of global variables for enhancing the scheduling process, 4
significant conclusions can be drawn. First, scheduling was
greatly improved when the initial solution was modeled using
a surgery allocation algorithm that took waiting list longevity
and priority into account. The final penalty was lowered,
demonstrating the potential to enhance surgical management
within the constraints of time and space. Second, the HC
algorithm had the best performance, with the SA algorithm
producing similar results. However, the PS algorithm was not
able to improve surgery allocation and occasionally arranged
surgeries worse in terms of time and space. For these reasons,
it was discarded.

Third, the HC and SA algorithms were particularly
noteworthy since they arrived at the ideal number of iterations
after 100 iterations. Thus, these algorithms could yield
significantly better planning than manual hospital allocation
with a runtime of approximately 30 seconds. These results
also supported the exclusion of the PS algorithm for future
implementations, as it was a more computationally demand-
ing model. Fourth, the application of AI-based heuristics
resulted in a notable enhancement in the quantity of sur-
geries allocated. Therefore, there is potential for improv-
ing OR management with a system capable of maximizing
the scheduling procedure for each speciality, demonstrating
how the scheduling solutions assigned by the HC and SA
algorithms differ significantly in terms of space and time.
In terms of a decision support system, it may be best to
offer the user a variety of scheduling solutions based on
these implemented optimization models, even though it is
not necessary to determine which is the better solution. As a
result, the user can select the planning that best fits the group
of surgeries that require scheduling.
Comparison With Prior Work
Based on the development and use of optimization algo-
rithms, the proposed research presents an innovative approach
for scheduling surgeries from waiting lists. It is crucial to
emphasize the primary objective of reducing costs, consider-
ing a variety of factors involving different medical spe-
cializations. In contrast to prior studies, the research by
Fügener et al [13] focuses on the integration of HC and
SA to optimize the use of ORs. Min and Yih’s study [16]
concentrates on a stochastic surgical calendar tailored for
patients with uncertain surgical needs. Similarly, Banditori
et al [19] categorized waiting list cases into homogene-
ous groups, offering a more adaptable solution for diverse
medical specialties. However, because the criteria used to
make decisions vary among medical specializations, research
so far has never produced conclusive and sufficient evi-
dence to support their widespread use in health care organ-
izations. This work stands out from other studies since it
uses global and specific variables that are readily applied
to any medical specialty without compromising the quality
of surgical scheduling, a key factor in reducing operating

costs in hospitals. By diverging from previous models and
overcoming their limitations, this study provides a more
precise and effective solution aimed at maximizing the
performance of ORs, benefiting both the patients and the
health care professionals involved in the surgical process.
Conclusions
The study of allocation and scheduling problems is consid-
ered complex. When it comes to health care, the responsibil-
ity to create an effective solution is even more significant
since the priority must always be the care that is provided
to patients, while also being aware of the existing resources.
The approach developed in this study not only provides a
solution to this scheduling problem but also conceives a
generic adoption for any health care organization and for a
considerable number of medical specialties.

Considering a general constraints model for any health
care organization and considering the same constraints for
the generation of the initial solution, the implementation of
an automatic allocation algorithm proves the ability to find
better solutions for surgery scheduling. The HC and SA
algorithms demonstrate the capacity to improve the use of
ORs and consider, as a reference, the scheduling limit without
accumulating penalties. The PS algorithm proved that it needs
a greater computational effort. The fact that it does not use an
initial solution, according to previously defined programming
rules, can explain its unclear results.

Taking into consideration all of the limitations of
scheduling and the high level of organizational complexity,
this study’s approach can be considered as a possible solution
to the SSP as it contributes to the organization of surgeries
based on time and cost control, which are crucial to opti-
mize operating costs. HC and SA show extremely satisfactory
results, decreasing the number of surgeries with penalty (ie,
surgeries with a scheduled date higher than the deadline date).
Additionally, these models provide a near optimal solution,
reaching a stabilization point after 100 iterations, since the
initial solution had already produced very satisfactory results.
In addition, from a total of 429 surgeries and considering
all specialities, the HC algorithm managed to schedule 415
(96.7%) surgeries, and the SA algorithm scheduled a total of
362 (84.4%) surgeries. The majority of these surgeries were
special cases where their duration exceeded the maximum
time available each day. In some cases, the number of
surgeries not scheduled by the algorithms was higher than
the scheduling performed by the hospital, although this is not
considered a negative point of this solution.

The proposed application has addressed multiple chal-
lenges, offering a scalable solution across diverse organi-
zational frameworks. However, to deepen the utility and
precision of our approach, several topics about limitations
and future work have been identified. First, testing this study
in other health care organizations will be a crucial step to
understand if our approach works in different contexts. In
addition, it is necessary to improve the accuracy of each
estimated surgery time to increase the reliability of the
schedule. In this study, an interquartile mean was used to
associate each type of surgery through time history, but a
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more accurate method is needed for an optimal accuracy.
Machine learning models could be used to predict the times of
each surgery for greater reliability, which is a crucial factor in
the allocation of surgeries.

Second, it is also possible to consider more constraints,
including subspecialties, in this mapping. This is consid-
ered a significant step since the division of ORs includes
an allocation to each subspecialty and requires a complete
mapping between specialties and the International Classifica-
tion of Diseases, Tenth Revision (ICD-10) codes. Third, a
deeper study on the nullification of the scheduling penalty
may be considered. While a hospital would like to pay the
least amount related to surgeries scheduled after the dead-
line, it may be pertinent to identify whether a proposal with
a higher penalty will better serve the scheduling interests.
Fourth, another even more complex proposal is to condition
the surgical mapping by considering the human resources
available for each period. While this is not possible in the
current context considering the available data, an annual
organization of medical professionals (surgeons, nurses,
anesthesiologists) in real time is necessary. Last, improv-
ing the efficiency of the optimization method by exploring
more models and their configurations is another direction to
consider in future research.

The results of this study are summarized below, highlight-
ing the key messages and anesthesiologists that underline
the transformative potential of this approach in health
care scheduling. First, the integration of AI-based heuristic
algorithms improves the efficiency of surgical scheduling,
leading to a reduction in patient waiting times. Second, the
HC and SA algorithms have demonstrated a higher perform-
ance than the scheduling performed by CHUdSA, and either
model make it possible to reduce costs in the scheduling
process by reducing the penalties associated with surgeries
scheduled beyond the deadline. Third, the models developed
do not compromise scalability and adaptability, as they
can be adapted to various contexts and medical specialties,
and a generalized implementation is possible by adding or
removing restrictions. Last, the potential of a system that is
capable of integrating these models in any organization is
proven, optimizing the inherent management processes and
consequently the health care provided to patients.

Adopting this approach following these research direc-
tions promises to further refine the metaheuristic optimiza-
tion models for surgery scheduling, ultimately seeking more
optimized and agile health care systems that are patient-cen-
tered and cost-effective.
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