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Abstract
Background: Chronic kidney disease (CKD) is a prevalent condition with significant global health implications. Early
detection and management are critical to prevent disease progression and complications. Deep learning (DL) models using
retinal images have emerged as potential noninvasive screening tools for CKD, though their performance may be limited,
especially in identifying individuals with proteinuria and in specific subgroups.
Objective: We aim to evaluate the efficacy of integrating retinal images and urine dipstick data into DL models for enhanced
CKD diagnosis.
Methods: The 3 models were developed and validated: eGFR-RIDL (estimated glomerular filtration rate–retinal image
deep learning), eGFR-UDLR (logistic regression using urine dipstick data), and eGFR-MMDL (multimodal deep learning
combining retinal images and urine dipstick data). All models were trained to predict an eGFR<60 mL/min/1.73 m², a key
indicator of CKD, calculated using the 2009 CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) equation. This
study used a multicenter dataset of participants aged 20‐79 years, including a development set (65,082 people) and an external
validation set (58,284 people). Wide Residual Networks were used for DL, and saliency maps were used to visualize model
attention. Sensitivity analyses assessed the impact of numerical variables.
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Results: eGFR-MMDL outperformed eGFR-RIDL in both the test and external validation sets, with area under the curves
of 0.94 versus 0.90 and 0.88 versus 0.77 (P<.001 for both, DeLong test). eGFR-UDLR outperformed eGFR-RIDL and
was comparable to eGFR-MMDL, particularly in the external validation. However, in the subgroup analysis, eGFR-MMDL
showed improvement across all subgroups, while eGFR-UDLR demonstrated no such gains. This suggested that the enhanced
performance of eGFR-MMDL was not due to urine data alone, but rather from the synergistic integration of both retinal
images and urine data. The eGFR-MMDL model demonstrated the best performance in individuals younger than 65 years
or those with proteinuria. Age and proteinuria were identified as critical factors influencing model performance. Saliency
maps indicated that urine data and retinal images provide complementary information, with urine offering insights into retinal
abnormalities and retinal images, particularly the arcade vessels, being key for predicting kidney function.
Conclusions: The MMDL model integrating retinal images and urine dipstick data show significant promise for noninva-
sive CKD screening, outperforming the retinal image–only model. However, routine blood tests are still recommended for
individuals aged 65 years and older due to the model’s limited performance in this age group.
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Introduction
Chronic kidney disease (CKD) is a pervasive and poten-
tially irreversible condition that afflicts more than 10% of
the global population [1,2]. It is diagnosed based on the
presence of decreased glomerular filtration rate (GFR) or
markers of kidney damage, such as proteinuria, persisting for
over 3 months [3]. In clinical practice, estimated glomerular
filtration rate (eGFR) is widely used and typically calculated
based on demographic factors and serum creatinine levels.
A drop in eGFR below 60 mL/min/1.73 m2 significantly
elevates the risk of cardiovascular diseases, mortality, and
progression to end-stage kidney disease [4-6]. Proteinuria,
indicative of kidney damage, further compounds these risks
and affects cardiovascular outcomes and patient survival
[6,7]. Efficient CKD screening is critical, as patients are often
asymptomatic until the disease reaches advanced stages [8].

Remarkably, the eye and kidney share developmental,
structural, physiological, and pathological similarities, hinting
at a potential link between ocular and renal diseases [9].
Notably, both organs are highly vascularized and suscepti-
ble to conditions affecting the vascular system, such as
aging, diabetes, and hypertension [10]. Evidence suggests that
individuals displaying retinal microvascular signs, includ-
ing retinopathy, arteriolar narrowing, and venular dilata-
tion, exhibit an increased predisposition for CKD, and vice
versa [1,11-14]. Fundus imaging allows for the convenient
assessment of the retinal microvasculature, making it a
potential screening modality for incident CKD. However,
conventional fundus photography analysis has limitations in
predicting CKD incidence or progression due to population
heterogeneity and sensitivity issues [1].

To address these limitations, the integration of artificial
intelligence, particularly deep learning (DL), with retinal
imaging has emerged as a promising approach. Recent studies
using DL models (convolutional neural networks, cConden-
seNet, or ResNet-50) have demonstrated moderate to good
performance in identifying individuals with decreased eGFR
or CKD based on retinal photographs [15,16]. Neverthe-
less, the performance diminishes when detecting isolated
proteinuria compared with overall CKD [16].

Convenient and cost-effective proteinuria assessment can
be accomplished using a simple urine dipstick test [3].
Combining a retinal image deep learning (RIDL) model for
eGFR decline identification with urinalysis for proteinuria
detection would eliminate the need for invasive blood tests,
thereby significantly improving convenience and practical-
ity. In addition, XGBoost-based machine learning models,
including 7 features (age, sex, and 5 urine dipstick meas-
urements: protein, blood, glucose, pH, and specific grav-
ity), successfully detect eGFR decline, especially among
nondiabetic individuals younger than the age of 65 years [17].

In this study, we aimed to develop a multimodal deep
learning (MMDL) model using 2 noninvasive data sources:
retinal images and urine dipstick tests. We anticipate that this
integration will enhance the RIDL model performance. The
integration of fundus images with other data modalities in DL
classifiers has been shown to improve diagnostic accuracy in
some cases. For instance, a study demonstrated that combin-
ing retinal fundus images with participant metadata (such as
race, age, sex, and blood pressure) enhanced the accuracy
of anemia detection using DL, indicating that both metadata
and fundus images contributed significantly to the prediction
[18]. However, in the context of CKD detection, other studies
have reported that adding clinical data to fundus image–based
models does not necessarily improve performance. Further,
one study used a DL algorithm for CKD detection that
combined fundus photos with risk factors such as age, sex,
ethnicity, diabetes, and hypertension, while another study
combined fundus photos with clinical metadata such as age,
sex, height, weight, BMI, and blood pressure [15,16]. In both
cases, the additional data do not enhance the performance
compared to models using fundus images alone.

The synergy between retinal images and urine data was
assessed by comparing the performance of a urine-only model
and an MMDL model with that of an RIDL model. Addition-
ally, we comprehensively evaluated the model performance
across diverse subgroups defined by well-established risk
factors, such as age, diabetes, and hypertension [1,19-22].
Identifying data subgroups plays a critical role in model
testing and assessing model fairness, as these subgroups can
exhibit distinct or unexpected behaviors compared with the
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overall dataset [23]. Previous studies have explored DL and
machine learning model performance within subgroups with
varying outcomes. Some studies on DL models observed
improved performance in patients with diabetes or high
hemoglobin A1c, whereas others found consistent perform-
ance across diabetes and hypertension subgroups [15,24].
However, no assessment has been conducted for eGFR<60
mL/min/1.73 m2, a critical CKD diagnostic threshold [3].
The machine learning model, assessing eGFR<60 mL/min/
1.73 m² using urine dipstick tests, exhibited compromised
performance in diabetes, especially without proteinuria, but
performed well in hypertension, especially in those younger
than 65 years of age [17]. Therefore, our study systematically
evaluated the model performance in 4 subgroups, including
proteinuria, age ≥65 years, diabetes, and hypertension, to

provide a comprehensive understanding of its capabilities and
limitations in real-world scenarios.

Methods
Preparation of Study Data
Retinal images, serum creatinine levels, urine dipstick results,
and demographic data (age, sex, diabetes, and hypertension)
were collected from multiple departments at CHA Bun-
dang Medical Center over 12 years (2008‐2019; Figure 1).
External validation involved using identical datasets from the
Severance Checkup Health Promotion Center (SCHPC) for 8
years (2013‐2020).

Figure 1. Study flowchart from data preparation to deep learning modeling and validation. Images with abnormal brightness or haziness were
excluded. CHA: CHA Bundang Medical Center; eGFR: estimated glomerular filtration rate; eGFR-MMDL: multimodal deep learning model for
estimated glomerular filtration rate<60 mL/min/1.73 m²; eGFR-RIDL: retinal image deep learning model for estimated glomerular filtration rate<60
mL/min/1.73 m²; SCHPC: Severance Checkup Health Promotion Center.

The people aged 20‐79 years were selected without dupli-
cation. The age range for adulthood was defined as 20‐79
years, with outliers older than 79 years removed using the
IQR method. Macula-centered retinal images were taken from
CHA Bundang Medical Center using 1 of 2 cameras (TRC-
NW8, Topcon; nonmyd 7, Kowa) at the health promotion
center or endocrinology department without pupil dilation,
or using VX-10i (Kowa) at the ophthalmology department
with or without pupil dilation. The same style of retinal

images was acquired from SCHPC using different camera
models without pupil dilation (CT-80A, Topcon; AFC-210).
Cases with unilateral retinal images were not collected to
create ensemble models using bilateral retinal images. Serum
creatinine and urine dipstick tests were performed on the
same day, and retinal images were selected within 35 days
before or after these tests. eGFR was calculated using a 2009
CKD-EPI (Chronic Kidney Disease Epidemiology Collabora-
tion) formula based on serum creatinine levels [25].
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In Supplementary Methods (Multimedia Appendix 1),
we outlined the criteria for diabetes and hypertension,
shared details about the urine analyzers used in the model,
explained the scoring method for urine dipstick tests, and
provided comprehensive information on image preprocessing,
including algorithms for excluding abnormal images based on
brightness and haziness.
Ethical Considerations
Ethical approval was granted by the institutional review
boards of the Bundang CHA Medical Center (2019-01-032)
and Severance Hospital (4-2020-0231), and written informed
consent was not required as the data were anonymized.
Model Training
This study aimed to predict eGFR<60 mL/min/1.73 m² using
retinal images and urine dipstick tests. The development
dataset was divided into train, validation, and test sets (Figure

1). Further, 2 Wide Residual Network (WRN) models were
built: eGFR-RIDL and eGFR-MMDL [26].

Macula-centered retinal images were processed through a
WRN-28-4 [26] and initialized with He initialization (Figure
2). Random left- and right-flip augmentation of the image was
performed. In the case of eGFR-RIDL, the 256-dimensional
feature vector from the convolutional layers was processed
through a fully connected layer with a sigmoid activation
function. Conversely, for eGFR-MMDL, the 256D feature
vector from the convolutional layers analyzing retinal images
was concatenated with a 12D vector representing age, sex,
and urinalysis measurements using a joint fusion approach.
This combined vector was then fed into a fully connected
layer with a sigmoid activation function (Figure 2) [27].
Standardization was performed by removing the mean and
scaling all numerical variables, except sex, before concatena-
tion.

Figure 2. Wide Residual Network architecture for detecting kidney function decline using retinal images. For the multimodal model, the urine
dipstick measurements, age, and sex were concatenated with the feature vector from the image. Conv: convolutional layer.

The binary cross-entropy function was used to calculate the
loss values, and the model parameters were updated using
the gradient descent method with the AdamW optimizer. To
overcome the issue of imbalanced data, where the eGFR<60
mL/min/1.73 m² class was outnumbered by the eGFR>60
mL/min/1.73 m² class, the loss function was scaled by a
“sample_weight” coefficient, which was calculated as the
ratio of cases with eGFR>60 mL/min/1.73 m² to those with
eGFR<60 mL/min/1.73 m². Model training was monitored
using plots of losses and area under the curve (AUC) from the
training and validation datasets to avoid overfitting, and the
best epoch was identified. Our model algorithm is deployed
on GitHub [28] in a runnable form, which takes in retinal
images and urine analysis data.
Development of Urine Dipstick Logistic
Regression Model
A logistic regression model was generated solely with
numerical variables, including urine dipstick measurements,
age, and sex, for comparison with the eGFR-RIDL model.
Standardized numerical values were used for training and
validation across both test and external validation datasets.
When building the logistic regression model, we used the
class_weight=“balanced” option to adjust for class imbalance,
ensuring that each class was appropriately weighted in the
analysis.

Validation and Subgroup Analysis of the
Model Performance
The probabilities from both eyes were averaged to calculate
the probability of eGFR<60 mL/min/1.73 m². If only 1 eye
image remained after excluding the other eye (Figure 1), the
probability of the eye was used. We evaluated the model
performance through internal and external validation. Internal
validation used the unseen test set from the development data,
whereas external validation used the SCHPC dataset. The
model’s performance was evaluated using AUC comparisons
against the AUC of eGFR-RIDL. Additionally, the perform-
ance across various subgroups was assessed by stratifying the
test set based on age, diabetes, hypertension, and proteinu-
ria status (trace or higher urine protein). Statistical compari-
sons of the AUCs were made using the DeLong test, with
Bonferroni correction applied when necessary.

The sensitivity and specificity were calculated by finding
the best threshold using the Index of Union method, and a
95% CI was determined using bootstrap resampling. Saliency
maps for retinal images and sensitivity analysis of numeri-
cal variables were used for model interpretation. Software
and calculation specifics are detailed in the Supplementary
Methods in Multimedia Appendix 1.
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Statistics
A statistically significant difference between the 2 statistics
was determined if the P value was below .05, or if there was
no overlap between the CIs.

Results
Baseline Characteristics of the
Participants
We initially screened 73,158 people from CHA and 59,650
from SCHPC, excluding those aged <20 years, >79 years,
and those with low-quality images. This resulted in 128,938

images from 65,082 people with CHA and 113,279 images
from 58,284 SCHPC people, ensuring that each person had
at least 1 eligible image for analysis. Table 1 shows the
baseline demographics and laboratory parameters of the CHA
and SCHPC datasets. The developmental dataset exhibited
a greater proportion of individuals younger than the age
of 65 years, as well as a higher prevalence of diabetes,
hypertension, and eGFR below 60 mL/min/1.73 m² com-
pared to the external validation dataset. The distribution of
measurements for the 7 urine tests (blood, protein, glucose,
ketone, urobilinogen, bilirubin, and leucocyte) varied between
the developmental and external datasets, as evidenced by
the histogram plots provided in Figure S2 in Multimedia
Appendix 1.

Table 1. Baseline characteristics of study data.
Variables Development data (CHA)a External validation data (SCHPC)b P value
Age (years), mean (SD; range) 46 (12; 20-79) 48 (12; 20-79) <.001c

<65, nd (%) 60,195 (92.5) 53,081 (91.1) <.001e

≥65, n (%) 4887 (7.5) 5203 (8.9)
Sex, n (%) <.001e

Female 29,718 (45.7) 27,907 (47.9)
Male 35,364 (54.3) 30,377 (52.1)

Diabetes, n (%)f <.001e

Positive 6458 (14.2) 2567 (5)
Negative 38,977 (85.8) 49,067 (95)

Hypertension, n (%)f <.001e

Positive 11,172 (18.6) 7503 (14.1)
Negative 48,897 (81.4) 45,626 (85.9)

eGFRg (mL/min/1.73 m2)
Mean (SD) 100.5 (17) 100.4 (14.6) .20c

<60, n (%) 1085 (1.7) 492 (0.8) <.001e

<60 in age <65 y, n (%) 474 (0.8) 235 (0.4) <.001e

<60 in age ≥65 y, n (%) 611 (12.5) 257 (4.9) <.001e

Urine tests
Specific gravity, median (IQR; range) 1.02 (0.015; 1.005‐1.03) 1.025 (0.01; 1.005‐1.03) <.001h

Urine pH, median (IQR; range) 6 (1; 5‐9) 5 (0.5; 5‐9) <.001h

Blood, median (IQR; range) 0 (0; 0‐4) 0 (0; 0‐4) <.001h

Protein, median (IQR; range) 0 (0; 0‐5) 0 (0; 0‐5) <.001h

Glucose, median (IQR; range) 0 (0; 0‐5) 0 (0; 0‐5) <.001h

Ketone, median (IQR; range) 0 (0; 0‐5) 0 (0; 0‐4) <.001h

Urobilinogen, median (IQR; range) 0 (0; 0‐4) 0 (0; 0‐4) <.001h

Bilirubin, median (IQR; range) 0 (0; 0‐4) 0 (0; 0‐4) <.001h

Leucocyte, median (IQR; range) 0 (0; 0‐4) 0 (0; 0‐4) <.001h

Nitrite, n (%) 570 (0.9) 263 (0.5) <.001c

aCHA: Bundang CHA Medical Center.
bSCHPC: Severance Checkup Health Promotion Center.
cIndependent 2-sample 2-tailed t test.
dn: number of images.
eChi-square test.
fUnknown cases were excluded.
geGFR: estimated glomerular filtration rate.
hWilcoxon rank-sum test.
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Performance Difference Between
Unimodal and Multimodal Models
Despite the inclusion of numerical variables in the retinal
image data, the training curves revealed a faster learning
rate without overfitting in the eGFR-MMDL model than

in the eGFR-RIDL model (Figure S3 in Multimedia Appen-
dix 1). Figure 3 highlights the superior performance of the
eGFR-MMDL model over the eGFR-RIDL model on internal
and external datasets. Moreover, the eGFR-MMDL model
demonstrated a notable increase in AUC across all subgroups
compared with the eGFR-RIDL model (Figure 4).

Figure 3. ROC curves and AUC of low-eGFR detection models. The AUCs of the eGFR-MMDL and eGFR-UDLR models were compared with the
AUC of eGFR-RIDL in (A) the test set and (B) the external validation set (DeLong test with Bonferroni correction). *P=.002; ***P<.001. AUC:
area under the curve; eGFR: estimated glomerular filtration rate; MMDL: multimodal deep learning model; RIDL: retinal image deep learning model;
ROC: receiver operating characteristic; UDLR: urine dipstick logistic regression.

In addition, the eGFR-UDLR (urine dipstick logistic
regression) performed better than the eGFR-RIDL and
was comparable to the eGFR-MMDL model, especially
in external validation (Figure 3). However, no significant
improvement was observed within subgroups in internal
validation (Figure 4).

Age influenced the performance of the eGFR-MMDL
model. For the overall population, the model performed better
in individuals without diabetes or hypertension compared
to their respective control groups, while proteinuria had no
impact on performance (Figure 4B, 4C, and 4D). When
stratified by the age of 65 years, no significant differen-
ces in AUC were observed between the nondiabetes and
diabetes groups or the nonhypertension and hypertension

groups (Figure S4 in Multimedia Appendix 1). However,
the AUC increased in the presence of proteinuria (Figure S4
in Multimedia Appendix 1). These changes appeared to be
driven by higher model performance in younger individuals
without diabetes, hypertension, or proteinuria (Figure 4A).

Table 2 presents the sensitivity and specificity of the
eGFR-MMDL model for both the entire study population
and its subgroups. The thresholds for the age group of 65
years and older, as well as for individuals with diabetes
and proteinuria, were significantly higher than the overall
threshold. Table S1 in Multimedia Appendix 1 provides case
counts for each subgroup.
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Figure 4. ROC curves and AUC of low-eGFR detection models in subgroups of the test set. (A) Age <65 years (solid line) and ≥65 years (dotted
line); (B) nondiabetes (solid line) and diabetes (dotted line); (C) no hypertension (solid line) and hypertension (dotted line); and (D) no proteinuria
(solid line) and proteinuria (dotted line). The AUCs of the eGFR-MMDL and eGFR-UDLR models are compared with the AUC of the eGFR-RIDL
(DeLong test with Bonferroni correction; P value indicators next to the AUC values); *P=.013, **P=.001, ***P<.001; NS: not significant. P value
indicators are added to the upper left corner of the eGFR-MMDL model curve to denote significant differences in AUCs between the 2 subgroups
(DeLong test); *P=.011, **P=.001, ***P<.001; NS: not significant. AUC: area under the curve; eGFR: estimated glomerular filtration rate; MMDL:
multimodal deep learning model; RIDL: retinal image deep learning model; ROC: receiver operating characteristic; UDLR: urine dipstick logistic
regression.
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Model Explanation Using Saliency Maps
and Sensitivity Analysis
To assess the ability of our algorithm to incorporate retin-
opathy findings in predicting eGFR decline, we examined
fundus photographs of patients with diabetic retinopathy
(Figures 5B and 5C). The saliency maps from the

eGFR-RIDL and eGFR-MMDL models displayed different
hot spot distributions. The eGFR-RIDL map highlighted
hot spots of retinal abnormalities (hard exudates, retinal
hemorrhages, and arteriovenous nicking), small arteries, and
veins. Conversely, the eGFR-MMDL map primarily featured
hot spots along the central vascular arcade.

Table 2. Sensitivity and specificity at the threshold of estimated glomerular filtration rate–multimodal deep learning.The 95% CIs were calculated
using bootstrap resampling. The threshold was obtained using the Index of Union method.

Sensitivity (95% CI) Specificity (95% CI) Threshold (95% CI)
All 0.86 (0.81‐0.91) 0.88 (0.81‐0.91) 0.53 (0.42‐0.62)
Age (years)
  ≥65 0.78 (0.7‐0.83) 0.71 (0.66‐0.79) 0.79 (0.77‐0.83)
  <65 0.88 (0.78‐0.93) 0.81 (0.77‐0.92) 0.35 (0.3‐0.52)
Diabetes
  Yes 0.86 (0.79‐0.9) 0.77 (0.74‐0.84) 0.77 (0.74‐0.82)
  No 0.88 (0.79‐0.95) 0.86 (0.8‐0.92) 0.38 (0.3‐0.48)
Hypertension
  Yes 0.8 (0.71‐0.88) 0.79 (0.71‐0.84) 0.52 (0.42‐0.58)
  No 0.88 (0.78‐0.93) 0.82 (0.81‐0.88) 0.32 (0.3‐0.4)
Proteinuria
  Yes 0.89 (0.84‐0.94) 0.9 (0.86‐0.92) 0.74 (0.65‐0.78)
  No 0.85 (0.78‐0.92) 0.86 (0.77‐0.9) 0.47 (0.33‐0.55)
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Figure 5. Saliency map results from the eGFR-RIDL and eGFR-MMDL models for eGFR decline detection. (A) A nondiabetes male aged 60
years with proteinuria level 3 (2+). (B) A male with diabetes and proteinuria level 4 (3+) aged 54 years. (C) A male with diabetes and proteinuria
level 4 (3+) aged 60 years. (D) A male without hypertension or diabetes aged 60 years, with a proteinuria level of 0 (negative). From left
to right: original retinal image, retinal image postpreprocessing via CLAHE and color normalization, eGFR-RIDL–generated saliency map, and
eGFR-MMDL–generated saliency map. CLAHE: Contrast Limited Adaptive Histogram Equalization; eGFR: estimated glomerular filtration rate;
MMDL: multimodal deep learning; RIDL: retinal image deep learning.

To explore the factors used by our algorithm to predict eGFR
decline in the absence of definite pathological findings, we
analyzed fundus photographs of patients without diabetes
(Figures 5A and 5D). Hot spots were observed in the
branches of arteries and veins in both the eGFR-RIDL and
eGFR-MMDL models, with differing locations between the 2
models.

In the sensitivity analysis of eGFR-MMDL, age and urine
protein level were the most influential factors among the
numerical variables, followed by urine pH, specific gravity,
hematuria, and glycosuria (Figure 6).
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Figure 6. Sensitivity analysis: feature importance of age, sex, and 10 urine measurements in predicting the probability of eGFR decline by
eGFR-MMDL using a test set. The sensitivity analysis scores indicate the relative impact of each variable on the predicted probability. Higher
sensitivity analysis scores correspond to a greater influence. The error bars on the right end represent 95% CIs. 1e-08: 0.00000001; eGFR: estimated
glomerular filtration rate; MMDL: multimodal deep learning.

Discussion
Principal Findings
This study found that the eGFR-MMDL model, which
integrates retinal imaging with urine dipstick data, achieved
higher diagnostic performance for CKD than the retinal
image-only eGFR-RIDL model. The eGFR-MMDL model
demonstrated superior accuracy across subgroups, particu-
larly in younger individuals and those without proteinu-
ria. Sensitivity analysis identified age and proteinuria as
key factors from urine dipstick data, while saliency maps
indicated that retinal vessels provided additional diagnostic
information unavailable from urine dipstick data, demonstrat-
ing how each modality contributed unique and valuable
insights for CKD detection.
Addressing Variability in Fundus Images
for Robust DL Models
In practice, fundus images vary in size, quality, format, and
color across different devices [29]. This variability poses a
challenge for the creation of effective DL models. Training
a model based solely on data from specific devices can
limit its compatibility with others. To address this, we used
3 camera models from 2 companies for training and evalu-
ated the model using 2 different nontraining camera models.
We standardized the images across devices through prepro-
cessing techniques, including circular border adjustment,
boundary removal via cropping, Contrast Limited Adap-
tive Histogram Equalization–based quality enhancement, and
color normalization (Supplementary Methods in Multime-
dia Appendix 1). Nevertheless, the effectiveness of the
model diminished during the external validation, which
can be partially attributed to the diversity observed in the

retinal images. Notably, the eGFR-UDLR model, leverag-
ing numerical variables, exhibited enhanced generalization
compared with the eGFR-RIDL model using retinal images
(Figure 3B). Therefore, a multimodal approach incorporating
urine dipstick tests could partly address the generalization
problem of the eGFR-RIDL model.

In addition, when used on images of poor quality, there
is a notable decline in performance owing to the disruption
of both the structural and statistical properties of neighbor-
ing pixels caused by image degradation [30]. Therefore, our
workflow involved image quality management and prepro-
cessing for model accuracy and reliability [1]. Abnormal
images, defined as those with haziness, extreme brightness,
or darkness, were excluded (additional methods in Multi-
media Appendix 1). Our approach assesses clarity using
haze grading, which combines high-pass filtering and power
spectrum integration across spatial frequencies and gauges
intricate detail visibility [31]. Unlike previous methods that
manually exclude subpar images or use unspecified techni-
ques for DL, our innovation emphasizes practical, real world,
and applicable image quality control processes [15,16,24].
Enhancement of the Model Performance
in MMDL
During internal validation, the eGFR-RIDL model achieved
an AUC of 0.9 (Figure 3), indicating its statistical com-
parability with prior models of retinal images. For exam-
ple, AUCs were observed at 0.826 (95% CI 0.818‐0.833;
ResNet18 model) for eGFR<60 mL/min/1.73 m² with
diabetes [32], 0.911 (95% CI 0.886‐0.936; cCondenseNet
model) for eGFR<60 mL/min/1.73 m² [15], and 0.918
(95% CI 0.905‐0.933; ResNet-50 model) for eGFR<60
or>60 mL/min/1.73 m² with albuminuria [16]. However, the
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eGFR-MMDL model performed significantly better than the
eGFR-RIDL model during the internal and external valida-
tions (Figure 3).

The eGFR-UDLR model demonstrated performance
comparable to the eGFR-MMDL model (Figure 3), and the
superior performance of eGFR-MMDL over eGFR-RIDL
can be attributed to the inclusion of urine dipstick data.
However, in the subgroup analysis, the eGFR-MMDL model
outperformed eGFR-RIDL across all subgroups, while the
eGFR-UDLR model showed no significant improvement
across subgroups (Figure 4). This suggests that the synergy
between the 2 modalities in the eGFR-MMDL model likely
resulted from the effective integration of multimodal data
through joint fusion (Figure 2) [33]. This method combines
feature representations from neural network layers with data
from various sources, such as retinal images and urine
analysis, thereby enhancing the model performance. Type
2 joint fusion in eGFR-MMDL improves the correlation
across modalities, facilitating more efficient shared repre-
sentation learning [33]. This approach continually updates
the feature representations, thereby enhancing its effective-
ness [33]. Furthermore, research has consistently emphasized
the advantages of multimodal approaches over unimodal
approaches [27]. Multimodal models leverage information
from different sources and create comprehensive and robust
data representations [27]. This overcomes the limitations
associated with individual modalities, including noise [27].

The subgroup analysis highlighted the improved perform-
ance of eGFR-MMDL, especially in those aged <65 years
without proteinuria (Figure 4). This is crucial because this
age group often skips check-ups because of perceived good
health and lack of symptoms [34]. Detecting CKD in
young individuals is vital, as it can be linked to rare con-
ditions, such as glomerulopathy, where treatments greatly
impact outcomes [35]. Furthermore, the good performance
of the eGFR-MMDL model in individuals without proteinuria
indicated its ability to identify nonproteinuria CKD cases,
which usually necessitates invasive blood tests for screening
purposes. Thus, eGFR-MMDL may replace blood tests with
retinal images and urine dipsticks, offering a convenient,
noninvasive screening method for newly diagnosed CKD in
young patients.

Unveiling the Role of Retinal Features
and Numerical Variables in Model
Prediction
To elucidate these models, we used saliency maps for retinal
images and conducted a sensitivity analysis of numerical
variables. Kang et al [24] reported that a DL model using
saliency maps from retinal images successfully identified
common retinal abnormalities, aiding the assessment of
renal function. These features, which are routinely used
by ophthalmologists for diagnosing retinal diseases, were
similarly observed in eGFR-RIDL saliency maps (Figure 5).
However, the eGFR-MMDL saliency map notably accentu-
ated arcade vessels over exudation or hemorrhage, which
could be attributed to the inclusion of numerical features,
such as urine data, age, and sex (Figure 5A). These

findings align with those of existing studies that emphasize
a strong association between retinal vascular changes and
CKD development [36-40]. Joo et al [41] also noted a
more pronounced presence of arcade vessels on saliency
maps in individuals with higher CKD risk. This suggests
that, while urine data provide insights into common retinal
abnormalities, retinal images, particularly those focusing on
arcade vessels, are pivotal for predicting kidney function.
The distinct information yielded by these 2 modalities likely
accounted for their complementary roles in the eGFR-MMDL
model.

The saliency maps further underscored the significance
of the retinal vessel features (Figure 5). Even in cases
with healthy retinal images, prominent retinal vessel features
indicate their value in predicting renal function (Figures
5A and 5D). These observations align with the findings
of Zhang et al [16], emphasizing the relevance of vascular
health through saliency maps. However, despite the presence
of these features, eGFR-MMDL outperformed eGFR-RIDL
(Figure 3), suggesting that retinal vessel features alone may
not be sufficient to predict eGFR decline accurately.

In our sensitivity analysis, we assessed the impact of
each numerical variable (age, sex, and 10 urine variables)
on eGFR<60 mL/min/1.73 m² predictions. The findings
on feature importance from the eGFR-MMDL model were
consistent with a previous study using XGBoost for eGFR
decline prediction, which highlighted urine protein, blood,
glucose, pH, specific gravity, and age as important fea-
tures [17]. In our study, age emerged as the primary con-
tributor, consistent with epidemiological studies, owing to
its association with GFR decline [42]. The second most
influential factor was urine protein positivity, supported by
evidence linking it to kidney function deterioration [43,44].
Urine pH and specific gravity, ranking third and fourth,
have been investigated as relevant CKD indicators, with
acidic urine pH (5‐5.5) positively correlated with CKD,
and low urine specific gravity indicating reduced kidney
function [45,46]. Hematuria, the fifth-ranked urine variable,
correlates not only with proteinuria but also with CKD risk
factors [45,47]. Additionally, glycosuria (urine glucose) may
be linked to kidney dysfunction in Fanconi syndrome and
diabetes, as indicated in a previous study [45].
Limitations
First, the performance of eGFR-MMDL in individuals
aged ≥65 years did not achieve a satisfactory AUC (Figure
4A), despite the high CKD prevalence in this group (Table
1) [48]. These findings corroborate with those of a previous
study, revealing limited predictive capabilities among those
aged 65 years and older using urine dipstick-based models
[17]. Potential reasons for this underperformance may include
issues with the retinal image quality, particularly haziness.
However, our analysis revealed no significant difference in
eGFR-MMDL performance between the high- and low-hazi-
ness groups in individuals aged ≥65 years (Figure S5 in
Multimedia Appendix 1).
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Furthermore, signs of organ damage, such as retinal
abnormalities or proteinuria, may not manifest in older
individuals with an eGFR<60 mL/min/1.73 m². This is
supported by a higher positive proteinuria ratio in individ-
uals younger than 65 years than in those aged 65 years
or older with eGFR<60 mL/min/1.73 m² (263/474, 55.5%
vs 243/611, 39.8%, respectively; P<.001, chi-square test
on the CHA dataset). In people younger than 65 years of
age, eGFR<60 was possibly linked to mechanisms causing
proteinuria, whereas in those aged 65 years or older, this
might be attributed to age-related GFR decline [20]. Given
the high prevalence of CKD and the limited performance
observed among individuals aged ≥65 years, we recommend
conducting routine blood tests for effective CKD screening in
this subpopulation.

Second, various medications prescribed for diabetes and
hypertension can influence urine dipstick test outcomes,
potentially impacting the predictive model accuracy. For
example, SGLT2 inhibitors, commonly used in diabetes
management, cause glycosuria and may alter urinary specific
gravity, while renin-angiotensin-aldosterone inhibitors can
decrease proteinuria [49,50]. Unfortunately, due to limited
information on specific medication classes, such as renin-
angiotensin-aldosterone inhibitors and SGLT2 inhibitors, we
were unable to conduct a thorough analysis of their effects on
the model performance. Although the eGFR-MMDL model
showed robustness to the presence of hypertension or diabetes
when age was controlled (Figure S4 in Multimedia Appendix
1), further investigation into medication effects is warranted.

Third, this study’s participants were exclusively Korean,
limiting generalizability to diverse ethnic populations. CKD
epidemiology and clinical presentations vary across countries,
possibly affecting the model performance [51]. Fourth, a gap
existed between the dates of retinal imaging and serum or
urine tests. However, the absolute difference in dates was
small, with a mean of 0.6 (SD 3.7) days.

Benefits of CKD Screening With Retinal
Imaging and Urine Dipstick
The use of noninvasive tests such as retinal imaging and urine
dipstick assessments significantly enhances the effectiveness,
accessibility, and efficiency of CKD screening, benefiting
both patients and health care providers. For patients, these
tests reduce discomfort and anxiety, leading to higher
compliance with regular screenings and enabling earlier
detection of CKD, which is crucial for preventing progression
to end-stage kidney disease. This is particularly valuable in
resource-limited settings where traditional blood tests may
not be readily available [2,52].

For health care providers, these models streamline the
screening process by reducing the time and resources needed
for blood collection and analysis. The multimodal approach
integrates retinal images with urine dipstick data, mirroring
the comprehensive assessments made in clinical practice,
such as evaluating diabetic or hypertensive retinopathy
alongside CKD [27]. This holistic view not only improves
diagnostic accuracy but also allows for concurrent evaluation
of eye health, providing a more complete picture of the
patient’s overall condition.
Conclusion
The MMDL model, incorporating age, sex, urine measure-
ments, and retinal images, improved the eGFR reduction
prediction of an RIDL model. This achievement stemmed
from the diverse features of the multiple sources. However,
the DL model using retinal images showed limited perform-
ance in old-age patients. Our model offers a noninvasive
and convenient screening tool for enhancing kidney health
in specific populations.
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