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Abstract
Background: Cohort studies contain rich clinical data across large and diverse patient populations and are a common source
of observational data for clinical research. Because large scale cohort studies are both time and resource intensive, one
alternative is to harmonize data from existing cohorts through multicohort studies. However, given differences in variable
encoding, accurate variable harmonization is difficult.
Objective: We propose SONAR (Semantic and Distribution-Based Harmonization) as a method for harmonizing variables
across cohort studies to facilitate multicohort studies.
Methods: SONAR used semantic learning from variable descriptions and distribution learning from study participant data.
Our method learned an embedding vector for each variable and used pairwise cosine similarity to score the similarity between
variables. This approach was built off 3 National Institutes of Health cohorts, including the Cardiovascular Health Study, the
Multi-Ethnic Study of Atherosclerosis, and the Women’s Health Initiative. We also used gold standard labels to further refine
the embeddings in a supervised manner.
Results: The method was evaluated using manually curated gold standard labels from the 3 National Institutes of Health
cohorts. We evaluated both the intracohort and intercohort variable harmonization performance. The supervised SONAR
method outperformed existing benchmark methods for almost all intracohort and intercohort comparisons using area under the
curve and top-k accuracy metrics. Notably, SONAR was able to significantly improve harmonization of concepts that were
difficult for existing semantic methods to harmonize.
Conclusions: SONAR achieves accurate variable harmonization within and between cohort studies by harnessing the
complementary strengths of semantic learning and variable distribution learning.

JMIR Med Inform 2025;13:e54133; doi: 10.2196/54133
Keywords: ensemble learning; semantic learning; distribution learning; variable harmonization; machine learning; cardiovas-
cular health study; intracohort comparison; intercohort comparison; gold standard labels

JMIR MEDICAL INFORMATICS Yang et al

https://medinform.jmir.org/2025/1/e54133 JMIR Med Inform 2025 | vol. 13 | e54133 | p. 1
(page number not for citation purposes)

https://doi.org/10.2196/54133
https://medinform.jmir.org/2025/1/e54133


Introduction
Data harmonization, the process that ensures the compatibility
of diverse datasets for their cogent integration, is an indis-
pensable tool in today’s data-driven research environment
[1-3]. The power of data harmonization lies in its capacity
to enhance the statistical robustness of studies, thereby
enabling the investigation of intricate research questions
unattainable within a single dataset’s limits. This ability to
pool data from existing sources expedites research processes,
reduces associated costs, and accelerates the translation
of knowledge into practical applications [4,5]. However,
despite the advantages of pooling data, the path to effec-
tive data harmonization is laden with challenges [6-9]. The
most pronounced among these is the discrepancies in how
individual datasets document and measure similar concepts
[10-12]. Even within datasets, documentation for analogous
concepts is not consistent, thereby further complicating data
integration.

Current data harmonization techniques mainly depend
on manual curation [10,13,14]. In spite of its widespread
use, manual curation is time-intensive, prone to human
error, and often constrained in scope, focusing predomi-
nantly on a single disease or condition. These drawbacks
limit the applicability and efficacy of manual curation in
broader, more complex contexts and highlight the need for
advanced harmonization methodologies [12,15-17]. Recently,
there has been a shift towards automated techniques, like
freely available mapping tools [18-20] and algorithms based
on corpora or lexicons [21-23]. These tools aim to map
terminologies across varied clinical domains. Yet, such
methods might still necessitate significant domain expertise
and depend on benchmark labels. Furthermore, many of these
methods cater to only one kind of medical code, for instance,
drug or lab codes.

Another promising approach for data harmonization is
through semantic learning. In a study by Zhou et al [24],
an automated harmonization algorithm was proposed to
cotrain embeddings for electronic health record codes from
multiple institutions by combining both electronic health
record co-occurrence information and textual information
from the code descriptions. As a technique that uses machine
learning to infer meaning from data, semantic learning
presents a promising avenue for enhancing data harmoniza-
tion. However, semantic learning’s applicability is limited
by its demand for extensive, high-quality training data, its
sensitivity to noisy or unreliable data, and the complexity
involved in manually crafting semantic features.

In this paper, we propose SONAR (Semantic and
Distribution-Based Harmonization), an innovative data
harmonization approach that synthesizes the strengths of
semantic learning with patient data learning. Patient data
offers an alternative, unexplored source of learning for data
harmonization purposes. The patient-level values for each
variable provide information about the underlying concept
that a variable measures, separate from the textual infor-
mation in variable descriptions. By harnessing the context

comprehension and inferential power of semantic learning
and augmenting it with the capacity of patient data learning
to capture concept-specific trends and nuances, we propose
a more robust and accurate data harmonization strategy.
We demonstrate the implementation and advantages of the
proposed approach through its application across 3 major
National Institutes of Health cohort studies: the Multi-Ethnic
Study of Atherosclerosis (MESA) [25], the Cardiovascular
Health Study (CHS) [26], and the Women’s Health Initiative
(WHI) [27]. Our aspiration is that the method proposed here
will provide a valuable foundation for future studies aiming
to tackle the multifaceted challenges of data harmonization
between heterogeneous datasets.

Methods
Ethical Considerations
The data used in this study were obtained from 3 well-estab-
lished cohort studies, namely CHS, MESA, and WHI. Ethics
approval (IRB17-2059) was granted by the Institutional
Review Board of the Harvard Faculty of Medicine. Institu-
tional Review Board approval was secured for access to all
studies’ retrospective data. De-identified data was accessed
through a secure cloud storage platform. Participants were not
compensated for the use of their data in this study.
Data Sources
The CHS was a population-based longitudinal study initiated
to determine the risk factors for the development and
progression of clinically validated cardiovascular disease in
adults aged 65 years and older. Beginning in 1989, the
study enrolled 5888 participants from 4 US communities:
Forsyth County, NC; Sacramento County, CA; Washington
County, MD; and Pittsburgh, PA. The cohort consisted of
two recruitment waves: the original cohort (1989-1990) and
the African American cohort (1992-1993). Comprehensive
baseline examinations were conducted, including medical
history, physical examinations, laboratory tests, and others,
with annual follow-ups to ascertain cardiovascular events
[26].

The WHI was a long-term national health study that
focused on strategies for preventing heart disease, breast
and colorectal cancer, and osteoporotic fractures in postmeno-
pausal women. Launched in 1991, the WHI involved multiple
clinical trials and an observational study, enrolling a total of
161,808 women aged 50-79 years across 40 clinical centers
throughout the United States. The participants were ethnically
diverse, reflecting the demographic composition of the US
population. Extensive data on lifestyle, health, and medical
history were collected at baseline and at regular intervals
throughout the study, creating a rich source of information for
a variety of research endeavors [27].

The MESA study was a prospective cohort designed to
delve into the prevalence and progression of subclinical
cardiovascular disease among community-dwelling adults.
MESA assessed a diverse, population-based sample of 6814
asymptomatic men and women aged between 45 and 84
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years from 2000 to 2018. The participants were recruited
from 6 field centers across the United States, including
Wake Forest University, Columbia University, Johns Hopkins
University, University of Minnesota, Northwestern Univer-
sity, and University of California – Los Angeles. The MESA
cohort was made up of 38% White, 28% African-American,
22% Hispanic, and 12% Asian (primarily Chinese) individu-
als. Since its inception in July 2000, the study conducted 6
examinations, each occurring every 18 to 24 months [25].
Data Extraction
The process of data extraction necessitated the gathering
of documentation for variables within the CHS, MESA,
and WHI studies. This information was procured from
the Database of Genotypes and Phenotypes (dbGaP) [28].
We used dbGaP metadata to procure the following salient
information for each variable within the study: (1) variable
accession, (2) variable name, (3) variable description, and
(4) dataset accession. While the variable name and variable
description were not necessarily unique within or between
studies, the variable accession was a unique identifier across
all studies. We used the variable description strings as the
semantic data in our model. From the raw variable descrip-
tion strings, we further extracted and removed the temporal
period during which the variables were measured by parsing
for key temporal terms, such as visit and exam. This data
extraction process facilitated a comprehensive understanding
of the variables’ conceptual characteristics, thereby providing
the foundation for the subsequent data harmonization efforts.

We used the dataset accession and variable accession
identifiers to access (1) variable metadata and (2) the
patient-level data for the set of variables already extracted
from dbGaP. To allow for relevant distribution comparisons
between variables, we kept only continuous data by filtering
variables using the continuous flag in the metadata.
Data Preprocessing
Our study scope was primarily focused on the harmonization
of continuous variables at the conceptual level. A “concept”
in this context was defined as the underlying notion or theme
that a variable represents, independent of the specific unit
or time point of measurement. For example, a biomarker
such as C-reactive protein, despite being reported in different
units across different visits, was treated as having the same
concept. Moreover, concepts were sometimes encoded in
natural language or questionnaire form, rather than standard
medical terms. We focused on conceptual level harmoniza-
tion for several reasons. Researchers conducting multico-
hort studies are often interested in identifying all variables
corresponding to a concept. Depending on the application,
they might be interested in further refining this concept-level
harmonization or also harmonizing the variable values across
different units or collection time periods. Removing temporal
information and units allowed us to focus on the essential
meaning or theme underlying the variable, thereby facilitat-
ing the primary task of concept-level harmonization, which
is manually challenging and resource intensive, paving the
way for further data harmonization. Moreover, doing so
enhanced comparability across studies, as variables with the

same concept were treated as equivalent, irrespective of the
units used. During the initial phase of data preprocessing,
we streamlined variable descriptions by eliminating temporal
information phrases. This practice not only simplified the
descriptions but also augmented their comparability.

We also applied filters to variables according to their
values. First, we removed variables with incomplete patient
data. To preserve a significant portion of variables, we
considered incomplete patient data at the subgroup level
rather than the individual patient level. We defined patient
subgroups using the anchor variables of age, race, and sex.
Per the characteristics of the study populations and data
availability, we defined 4 age buckets (≤59 years, 60 to
69 years, 70 to 79 years, and ≥80 years). For the categori-
cal anchor variables, we used 2 predefined race categories
(White and Black) and 2 predefined sex categories (female
and male), yielding a total of 16 possible patient subgroups
(calculated as 4×2×2). For each study, we removed variables
that had no patient data for one or more subgroups, consid-
ering only patient subgroups that were represented in the
cohort.

Second, we purged variables that had uniformly zero
values across all patients. This removal was necessary as
variables without variability do not offer predictive power and
thus, contribute little to subsequent analyses. Subsequently,
we identified variables within the same study with identical
descriptions and treated them as a single entity. Rather than
maintaining these as separate variables, we amalgamated their
distribution vectors by computing their element-wise mean.
This consolidation concurrently reduced redundancy and
bolstered the statistical power and robustness of downstream
analyses. The underlying principle driving these measures
was the emphasis on the core conceptual content encapsulated
within variables, a focus that lays the groundwork for a more
efficient and meaningful process of data harmonization.
Creation of Gold Standard Labels
To assess the harmonization accuracy of SONAR, we
manually created a set of gold standard labels. The proc-
ess began with the curation of a concept list, consisting
of common diseases, laboratory results, and medications,
consistent with the goal of harmonization at the conceptual
level (details in Multimedia Appendix 1, Section 4). With
the concept list in hand, each of the 3 independent reviewers
assigned raw variables from all 3 studies to the corresponding
concepts based on their descriptions. Not all variables had
labels, since the curated concept list was not comprehensive
of all underlying concepts present in the studies. To ensure
consistency and accuracy, we adopted a consensus-based
approach for handling any discrepancies among the review-
ers. In cases of disagreements, the reviewers discussed their
rationales for their assignments, and through a process of
discussion, literature review, and majority vote, they reached
a consensus on the appropriate concept assignment. This
rigorously prepared set of annotations, backed by consensus,
formed our gold standard labels. In particular, each pair
of variables corresponding to the same underlying concept
formed a gold standard pair (ie, a pair of variables that a
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harmonization algorithm should map to each other). Such
pairs consisted of variables from two different datasets
(intercohort) or the same dataset (intracohort), since multiple
variables from a single dataset could correspond to the same
underlying concept. These labels offered a reliable standard
against which we could validate our semantic learning and
patient data learning techniques.
SONAR (Semantic and Distribution-
Based Harmonization)
The proposed SONAR approach had 4 steps, including
semantic learning, distribution learning, concatenation of the
two learnings, and supervised training. Underpinning both
semantic learning and distribution learning was the idea that
variables with similar textual descriptions and patient-level
value distributions were more likely to encode the same
underlying concept.
Step 1: Semantic Learning
We combined two existing pretrained large language
models (LLMs) for semantic learning, CODER (Crosslin-
gual Knowledge-Infused Medical Term Embedding) [29] and
SapBERT (Self-Alignment Pretraining for Biomedical Entity
Representations) [30]. CODER, a semantic representation
learning tool, is a type of pretrained language model using
a contrastive learning framework [30,31]. It is particularly
suited to the biomedical terms and descriptions found in
clinical studies because it was trained on terms, concepts,
and their relations in the Unified Medical Language System
(UMLS) [32] knowledge graph. SapBERT is a pretrained,
masked learning model also trained on synonyms in the
UMLS knowledge graph. Both CODER and SapBERT create
embedding vector representations from textual input, which
were the variable description strings in our method. Com-
bining CODER and SapBERT, which use different pretrain-
ing algorithms and training sets within the same knowledge
graph, allowed us to increase the robustness of our semantic
embeddings. The advantage of using these existing language
models pretrained was a balance between saved training
time and specificity to the domain and task. The output
of this step was a CODER embedding vector (VAR_coder)
and a SapBERT embedding vector (VAR_sapbert) for each
variable. The goal of this process was to transform the
variable descriptions into a uniform, computable format that
captured their semantic essence.

Step 2: Distribution Learning
In order to conduct comparisons of patient-level values
for pairs of variables, we constructed vectors encoding the
distributions of variables. For each study, we aggregated
patients into the previously defined 16 subgroups, using the
anchor variables of age, race, and sex. These anchor variables
were present in all studies and clinically relevant to most
of the other study variables. It was possible and permissi-
ble that the number of anchor groups varied across differ-
ent cohorts. For instance, in the WHI cohort that consisted
only of women, the number of anchor groups was reduced
to 8 (4×1×2). Then, we computed the subgroup quartiles
(ie, the 25th, 50th, and 75th percentiles), thus yielding a

numerical distribution vector for each variable (VAR_dist)
of up to length 48 (16×3). This process was designed to
capture the distribution characteristics of each variable within
defined anchor groups, thereby adding a computationally
efficient layer of contextual understanding to our harmoniza-
tion strategy. Moreover, the quartile distribution encoding
strategy allowed for greater flexibility in data handling by
preserving patient confidentiality.
Step 3: Concatenation
This stage combined the insights gained from semantic
learning and distribution learning. Specifically, for each
variable, we concatenated its VAR_coder, VAR_sapbert, and
VAR_dist vectors into a single VAR_concat vector. In order
to ensure standardized comparisons with VAR_concat vectors
of the same length, we kept only the variable distribution
dimensions in VAR_dist corresponding to anchor groups
present in both cohorts in each interdataset harmonization.
We kept all available variable distribution dimensions for
intradataset harmonization. Prior to concatenation, we also
normalized the VAR_coder, VAR_sapbert, and VAR_dist
vectors separately to ensure they operated on the same
scale. In particular, we took the absolute magnitude of each
element in a vector, selected the maximum value among
these values, then divided the original vector by the maxi-
mum absolute value. After normalization in this manner, the
elements in each vector were bound to the −1 to 1 range.
This was crucial because it ensured that no vector’s mag-
nitude dominated during the concatenation process, thereby
preserving the integrity of the information they conveyed. We
then concatenated the normalized VAR_coder, VAR_sapbert,
and VAR_dist vectors, resulting in a vector for each varia-
ble that we denoted as VAR_concat with dimension d. This
concatenated vector, containing both semantic and distribu-
tion information, formed the foundation of our automated
harmonization strategy.

Step 4: Supervised Training
We further refined the SONAR method through supervised
training of a d × d rotation matrix M through gradient descent
of a loss function (details in Multimedia Appendix 1, Section
1). The supervised embeddings were then the cross product
of the unsupervised SONAR embeddings and M. Overall, this
4-step process served to capture the nuances and complex-
ities of variable-concept relationships in a computationally
efficient and robust manner. The systematic integration
of semantic learning with distribution learning offered an
innovative approach to data harmonization, promising to
enhance accuracy, efficiency, and overall applicability of
harmonization strategies.
Evaluation Metrics
We assessed the performance of the proposed SONAR
approach both within individual cohorts (intracohort) and
between different cohorts (intercohort). We considered the
area under the curve (AUC) of the receiver operating
characteristic curve as the overall metric for harmonization
accuracy. Specifically, for each underlying concept, we first
computed the cosine similarity of the embedding vectors for
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known concept pairs (true positives) and an equal number of
randomly selected concept pairs (false positives), where the
cosine similarity measured the cosine of the angle between
2 vectors in a multidimensional space, effectively quantify-
ing how similar they are. The AUC was then calculated,
summarizing the overall accuracy of our method across
varying decision thresholds for a given underlying concept.
The overall AUC was the average of the concept-level AUC
values. To reduce the effect of outliers within the sam-
pled negative pairs, we averaged the 3 overall AUC values
calculated for 3 sets of sampled negative pairs.

We also evaluated the performance of SONAR on hard
concepts, defined to be concepts for which the benchmark
SapBERT AUC was below the threshold of 0.900. The hard
AUC was the average of the concept-level AUC values
for the hard concepts. This was an important metric for
demonstrating the added value of distribution learning and
more broadly the complementary effects of the two forms of
learning.

To further scrutinize the performance of our method, we
reported the top-k accuracy (acc@k) for mapping of codes
from Cohort A to Cohort B, where the cohorts were identical
for intradataset mapping. For variable a in Cohort A, we letBa be the set of variables within Cohort B with embeddings
that had the largest cosine similarity with variable a, and we
let Ga be the set of variables within Cohort B that were in a
positive gold standard pair with variable a. Then, the acc@k
for an underlying concept for the mapping from Cohort A to
Cohort B was the number of codes a such that Ba ∩ Ga ≠ 0
divided by the total number of gold standard variables in
Cohort A corresponding to the underlying concept. The
acc@k for the mapping from Cohort A to Cohort B was
then the average of the acc@k across all underlying con-
cepts. This prevented dominance by underlying concepts with
many corresponding gold standard variables. To calculate
the intracohort acc@k, we first computed the intracohort
acc@k for each underlying concept by averaging the acc@k
for that underlying concept across all 3 intracohort compar-
isons (intra-CHS, intra-MESA, and intra-WHI). Underlying
concepts were only averaged over the comparisons for which
they were relevant, so the intracohort acc@k for a concept
that had gold standard pairs in only CHS and MESA was
be the average of the CHS acc@k and the MESA acc@k
for the concept in question. Then, the intracohort acc@k was
the average of the acc@k across all underlying concepts.
The intercohort acc@k was calculated similarly, except across
the 6 intercohort mappings (CHS to MESA, CHS to WHI,
MESA to CHS, MESA to WHI, WHI to CHS, WHI to

MESA). Finally, the overall acc@k was calculated across the
9 total mappings for each underlying variable. We obtained
acc@k values for k values of 1, 3, 5, 10, 20 in order to
provide additional insight into SONAR’s effectiveness at
capturing true positives at different thresholds. These rigorous
evaluations allowed us to confidently assert the efficacy of
our harmonization method in both intracohort and intercohort
settings.

For the supervised portion of our method, we used
2-fold cross-validation. We pooled cosine similarity values
from both rounds of training before AUC calculations and
averaged the 2 resulting cosine similarity values for non–
gold standard pairs before acc@k calculations. To provide
a comprehensive understanding of our method’s performance,
we compared the AUC and other accuracy metrics obtained
by SONAR with those obtained when using semantic
learning (BioBERT [Bidirectional Encoder Representations
from Transformers for Biomedical Text Mining], CODER,
SapBERT) or distribution learning alone. We also obtained
metrics for the concatenated semantic portion of SONAR (ie,
CODER concatenated with SapBERT) to further highlight
the added value of distribution learning. This comparative
approach allowed us to illuminate the relative strengths and
contributions of the individual components of our method and
the added value achieved by their combination.

Results
Data Extraction and Preprocessing
The proposed SONAR approach had 4 steps, including
semantic learning, distribution learning, concatenation of
the two learnings, and supervised training (Figure 1). We
extracted metadata and semantic data from the dbGaP
for 14,717 CHS variables, 22,147 MESA variables, and
6207 WHI variables. Filtering for continuous, complete,
and nonzero variables using metadata and patient-level data
from Service WorkBench, as well as consolidating varia-
bles with identical semantic descriptions yielded 2076 CHS
variables, 2525 MESA variables, and 1328 WHI variables.
Patient data was available for 12 subgroups, 16 subgroups,
and 6 subgroups for CHS, MESA, and WHI, respectively.
This yielded distribution vectors of length 36, 48, and
18 for intra-CHS, intra-MESA, and intra-WHI harmoniza-
tion, respectively. Based on overlapping patient subgroups
between the cohorts, we used distribution vectors of length
36, 12, and 18 for intercohort CHS-MESA, CHS-WHI, and
MESA-WHI harmonization, respectively.
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Figure 1. Workflow of semantic and distribution based harmonization. (A) Overall workflow of semantic and distribution based harmonization.
(B) Workflow of the distribution learning step. CODER: Crosslingual Knowledge-Infused Medical Term Embedding; SapBERT: Self-Alignment
Pretraining for Biomedical Entity Representations; SONAR: Semantic and Distribution-Based Harmonization. Var: variable.

Gold Standard Labels
We identified a total of 123 concepts with continuous data,
consisting of 112 laboratory test concepts, 6 disease concepts,
and 5 medication concepts. A total of 531 variables across
all cohorts were identified as gold standard representations of
these concepts. These yielded 606, 318, and 89 gold standard

concept pairs for intradataset harmonization evaluation within
the CHS, MESA, and WHI, respectively. For interdataset
harmonization evaluation, we had 352, 325, and 133 gold
standard concept pairs for CHS-MESA, CHS-WHI, and
MESA-WHI, respectively. Detailed numerical summaries of
gold standard labels are provided in Table 1.

Table 1. Data preprocessing and gold standard labels.
Variables Intracohort, n Intercohort, n

CHSa MESAb WHIc CHS-MESA CHS-WHI MESA-WHI
dbGaPd variables 14,717 22,147 6207 36,864 51,581 28,354
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Variables Intracohort, n Intercohort, n

CHSa MESAb WHIc CHS-MESA CHS-WHI MESA-WHI
Preprocessed variables 2076 2525 1328 4601 3404 3853
Distribution dimensions 36 48 18 36 12 18
Gold standard concepts 53 39 32 53 54 48
Gold standard variables 204 125 86 242 229 146
Gold standard pairs 606 318 89 352 325 133

aCHS: Cardiovascular Health Study.
bMESA: Multi-Ethnic Study of Atherosclerosis.
cWHI: Women’s Health Initiative.
ddbGaP: Database of Genotypes and Phenotypes.

Intracohort Evaluation
Supervised SONAR achieved a strong performance across
all intracohort AUC (Figure 2 and Table S1 in Multime-
dia Appendix 1) and acc@k (Figure 3 and Table S2 in
Multimedia Appendix 1) measures, exceeding or meeting
all benchmark comparisons. The number of hard concepts
for each intracomparison was 13 concepts, 5 concepts,
and 5 concepts for intra-CHS, intra-MESA, and intra-WHI,
respectively. It is notable that the distribution-only AUC
was significantly higher than the semantic-only methods for
the intra-CHS and intra-WHI hard concepts, illustrating the
advantage of incorporating both semantic and distribution
learning in SONAR. While the addition of supervised training
only improved overall AUC performance for the intra-WHI

comparison, it improved intracohort AUC performance on
hard concepts for all 3 intracohort comparisons, exceeding all
benchmark methods. The addition of supervised training also
improved acc@k performance of SONAR across different
values of k. Across intracohort evaluations, distribution
learning provided a clear added value to semantic learning, in
spite of a weaker distribution-only performance in compari-
son to the semantic components of SONAR (CODER only,
SapBERT only, CODER + SapBERT). Moreover, there was
not a single best semantic learning method between CODER
and SapBERT using the various AUC and acc@k metrics,
providing support for the use of both semantic learning
methods in SONAR.

Figure 2. Comparison of areas under the curve for different methods in intracohort comparisons. AUC: area under the curve; BioBERT: Bidirectional
Encoder Representations from Transformers for Biomedical Text Mining; CHS: Cardiovascular Health Study; CODER: Crosslingual Knowledge-
Infused Medical Term Embedding; MESA: Multi-Ethnic Study of Atherosclerosis; SapBERT: Self-Alignment Pretraining for Biomedical Entity
Representations; SONAR: Semantic and Distribution-Based Harmonization; WHI: Women’s Health Initiative.
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Figure 3. Comparison of top-10 sensitivities for different methods in both intracohort and intercohort comparisons. acc@10: top-10 accuracy;
BioBERT: Bidirectional Encoder Representations from Transformers for Biomedical Text Mining; CODER: Crosslingual Knowledge-Infused
Medical Term Embedding; SapBERT: Self-Alignment Pretraining for Biomedical Entity Representations; SONAR: Semantic and Distribution-Based
Harmonization.

Intercohort Evaluation
Supervised SONAR also achieved a consistently high
performance in intercohort harmonization evaluation,
exceeding or meeting all benchmark comparisons except
for acc@3 and acc@20 (Figure 3). The number of
hard concepts for each intracomparison was 4 concepts,
11 concepts, and 5 concepts for the CHS-MESA, CHS-
WHI, and MESA-WHI comparisons, respectively. Similar
to intracohort harmonization, supervised training improved

AUC performance on hard concepts for all 3 comparisons,
exceeding all benchmark methods. In contrast with intraco-
hort harmonization, supervised training also improved AUC
performance on all concepts to above 0.99 for all 3 inter-
cohort comparisons (Figure 4). Notably, the CODER only
and SapBERT only AUC values were higher for interco-
hort harmonization as compared to intracohort harmoniza-
tion because identical variable descriptions were allowed for
intercohort semantic learning.
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Figure 4. Comparison of areas under the curve for different methods in the intercohort comparisons. AUC: area under the curve; BioBERT:
Bidirectional Encoder Representations from Transformers for Biomedical Text Mining; CHS: Cardiovascular Health Study; CODER: Crosslin-
gual Knowledge-Infused Medical Term Embedding; MESA: Multi-Ethnic Study of Atherosclerosis; SapBERT (Self-Alignment Pretraining for
Biomedical Entity Representations); SONAR: Semantic and Distribution-Based Harmonization; WHI: Women’s Health Initiative.

Discussion
The SONAR method provides a robust method for con-
cept-level data harmonization across and within longitudinal
cohort studies by efficiently constructing variable embeddings
from longitudinal cohort study variable descriptions and data.
We used a supervised algorithm to refine the concatenated
embeddings built from normalized distribution and semantic
vectors. When applied to harmonization within and between 3
National Institutes of Health cohort studies, SONAR achieved
enhanced performance compared to benchmark methods, with
notable improvements over semantic-only and distribution-
only methods. These results demonstrate the effectiveness
of learning from both semantic and patient-level data. Our
method is able to conduct this learning with relatively low
training costs by taking advantage of the one-time pretraining
of biomedical entity representation–based language models
using domain-specific UMLS terms.

There are some limitations to this study. We focused
only on continuous variables with complete data, excluding
categorical variables and variables with incomplete data.
Future studies can expand variable distribution learning
to categorical variables and develop methodologies for
comparing distribution vectors of differing lengths in the
case of variables with incomplete data, allowing for har-
monization of a greater range of variables. Moreover, we
focused on concept-level variable harmonization, which
may be inappropriate for certain applications that require
more granular harmonization, such as at the unit level or
comparisons between different temporal periods. SONAR
already drastically reduces the resources needed for concept-
level harmonization, which is a crucial first step for more
granular harmonization. Future studies could also automate

the manual process of unit and temporal harmonization
across variables corresponding to the same concept. Another
direction for future research is automating the underlying
concept identification process, perhaps by variable cluster-
ing using the newest generation of LLMs such as GPT-4.
While powerful LLMs like GPT-4 could further improve the
semantic learning aspect of our model, future research would
need to adapt these generally trained models to the biomedi-
cal domain and control for the monetary costs associated with
GPT-4 use. Additionally, although the current implementation
of intercohort SONAR involves harmonization of 2 studies, it
can be adapted to harmonize 3 or more studies.

SONAR paves the way for multicohort studies through
high-quality and efficient variable harmonization. Harmo-
nization at the concept-level is the crucial first step for
researchers seeking to identify all variables corresponding to
a disease, medication, or laboratory test of interest. Man-
ual curation of or simple keyword searches for such varia-
bles are resource intensive and error-prone. The automation
provided by SONAR is particularly helpful for harmoniza-
tion of thousands of variables between large-scale cohort
studies with heterogeneous variable encoding of underly-
ing concepts. Multicohort studies that draw upon existing
cohort studies are a resource-efficient method for studying
risk factors associated with diseases and their pathogenesis.
By effectively expanding the study population, multicohort
studies also allow for greater statistical power and diversity
in the study population, leading to greater generalizability of
results and an enhanced ability to study health disparities.
Beyond variable harmonization between cohorts, the variable
embeddings generated through SONAR can be used for
downstream analyses within multicohort studies, including
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for feature selection and the construction of knowledge
graphs.

In conclusion, SONAR provides an approach for investiga-
tors to integrate semantic and patient data for multicohort
variable harmonization. We demonstrate the robust added

value of distribution learning when combined with existing
semantic learning methods in variable mapping between
cohorts. This innovation will facilitate and expedite multico-
hort studies by building upon existing data from decades-long
cohort studies.
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