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Abstract

Precision medicine involves a paradigm shift toward personalized data-driven clinical decisions. The concept of a medical
“digital twin” has recently become popular to designate digital representations of patients as a support for a wide range of
data science applications. However, the concept is ambiguous when it comes to practical implementations. Here, we propose
a medical digital twin framework with a data-centric approach. We argue that a single digital representation of patients cannot
support all the data uses of digital twins for technical and regulatory reasons. Instead, we propose a data architecture leveraging
three main families of digital representations: (1) multimodal dashboards integrating various raw health records at points of
care to assist with perception and documentation, (2) virtual patients, which provide nonsensitive data for collective secondary
uses, and (3) individual predictions that support clinical decisions. For a given patient, multiple digital representations may
be generated according to the different clinical pathways the patient goes through, each tailored to balance the trade-offs
associated with the respective intended uses. Therefore, our proposed framework conceives the medical digital twin as a data
architecture leveraging several digital representations of patients along clinical pathways.
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Introduction uses d.igital twins to model phy'sica.ll assets Computati(?nall.y. to
optimize procedures along their life cycles such as in silico
prototyping, production of regulatory evidence, and predictive
maintenance [3]. However, in health care, the term “digital
twin” may refer to 2 distinct frameworks. One is industrial
and aims at representing medical devices digitally and their
physiological environments [4]. The other is medical and
aims at representing patients digitally in the context of a
medical procedure [5]. As such, medical digital twins embody

Much has been published about digital twins as a landmark
of the digital transition of medicine and as a technology to
address the uniqueness of patients in a precision medicine
framework [1]. The digital twin concept combines engineer-
ing technologies attempting to represent objects digitally
while maintaining a continuous connection with the physi-
cal object in the real world [2]. The manufacturing industry
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a paradigm shift in the intentionality of health data, from
health records to actionable digital representations of patients

Demuth et al

supporting various data science applications in health (Figure

1).

Figure 1. Intended data uses related to digital twins in precision medicine. They rely on various ways of representing patients digitally. Each one may

be designated as a “digital twin” in the literature, yielding ambiguity.
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Representing patients digitally involves 2 major challenges
compared to engineering: the complexity of the represented
system and the sensitivity of patients’ data. As the term
“digital twin” gains popularity, confusion arises from its
use to designate a wide range of data usage in health [6],
summarized in Figure 1. As mentioned, from an industrial
viewpoint, it may designate models of medical devices along
their product life cycle [7] or patients in a virtual cohort to
run in silico trials [8]. From a management viewpoint, it may
designate software agents for care coordination during trauma
management [9]. In a patient-centric view, it may designate a
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multi-stakeholder documentation system, enabling health care
providers (HCPs) and patients to visualize multimodal data
comprehensively [10]. In data management, it may designate
the most similar record to a patient found by a matching
algorithm in a reference database [11,12]. In modeling, it may
designate a biomechanistic model of a body part, such as
circulatory systems [13,14] or digital hearts [15]. Such broad
usage of the term led to ambiguity about the nature of a
medical digital twin in practice.
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Here, we propose a framework for the implementation
of medical digital twins from a data-centric perspective. We
explain why digital representations of patients are limited
due to technical and regulatory constraints. We propose three
main families of digital representations (Table 1 and Figure
2) and outline their purposes and limitations: (1) multimo-
dal dashboards integrating raw health records at the points
of care to assist with perception and documentation; (2)

Table 1. Definition of the 3 types of digital representations.

Demuth et al

virtual patients, which provide nonsensitive data for collective
secondary uses; and (3) individual predictions that sup-
port clinical decisions along clinical pathways and medical
procedures. We conclude that a single digital representation
of patients cannot support a medical digital twin. Instead, we
recommend designing data architectures, leveraging multiple
digital representations of the same patient, whose characteris-
tics would be determined by predefined data uses.

Digital representation Definition Purpose Limits
Multimodal dashboard Comprehensive visualization of multimodal Perception and documentation aid e Only retrospective
data
® Regulatory obstacles to data
sharing
Virtual patient Computer-generated observations Collective value ® On-purpose generation
® [ oss of the connection to the
original patient
Individual prediction Results of predictive analytics and the input  Clinical decision support e Need of data preprocessing

preprocessed data

® Typically instantiated once

Figure 2. The proposed medical digital twin framework is a data architecture leveraging 3 main families of digital representations of patients.
Patients are encountered at points of care (green timeline). Their data are collected in different records from multiple stakeholders (physicians, nurses,
patients, etc) and modalities of investigation. These data are raw materials to be refined into different digital representations with different values.
(A) The comprehensive visualization of patient data into multimodal dashboards may provide perception and documentation aid. Such data are
strictly personal and confidential (orange). (B) Virtual patients may be generated as proxies of sensitive datasets to share their information content
as anonymous data (blue). Careful trade-offs about utility and privacy make them useful for collective secondary uses such as the development of
predictive analytics. (C) Individual predictions enrich multimodal dashboards with external information provided by predictive analytics. This data
architecture also enhances follow-up by structuring the collection of data during the procedures of the corresponding clinical pathways.
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Multimodal Dashboards to Provide
Perception and Documentation Aids

Definition and Purpose

The first family of digital representations is the multimodal
dashboard. It fetches the raw health records of a patient at
the point of care from various data modalities and dispa-
rate sources across an institution’s information system or
a national health system. These sources may be electronic
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health records (EHRs), imaging, laboratory tests, physiologi-
cal tests, medico-administrative claims, and more recently,
telemedicine through digital health technologies. The latter
may include wearable medical devices and web platforms to
collect patient-reported outcome measures. The comprehen-
sive collection of these modalities of data into multimodal
dashboards aims to provide HCPs with actionable visualiza-
tions to aid their perception of a patient’s health status and
history (Figure 2A).
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Capture of Deep Phenotypes

The state-of-the-art digital representation of patients is a set
of documents. Typically, general-purpose EHRs (also called
“documentation systems”) only capture medico-administra-
tive, treatments, or diagnosis codes in a structured fashion.
The history and phenotypic details of the patients are captured
as text data from documents and clinical notes, despite
efforts to encode them into interoperable concepts [16,17].
This limits dashboards to medico-administrative timelines.
Specialized EHRs encourage comprehensive structured data
collection, also known as deep phenotyping [18]. Their
dashboards can thus provide individual timelines relevant
to particular diseases, showing trajectories of specialized
concepts (eg, a disability rating scale or a specific bio-
marker) and histories of disease-modifying treatments. For
patients with multiple sclerosis (MS), this is featured by
the European Database for Multiple Sclerosis (EDMUS) and
Multiple Sclerosis Documentation System 3D (MSDS 3D)
[19,20]. The structured data collection about key features
of MS diagnosis and follow-up enables them to provide
neurologists with summary timelines. The collected data also
feed the French and German national MS registries, respec-
tively. Disease registries are currently an invaluable tool for
clinical research as they enable retrospective cohort studies
to be performed on high-volume databases with specialized
concepts that could not be extracted from general-purpose
EHRs [21-23]. A limit of the “registry era” is that patients
are typically represented only in tabular data. It is a loss of
granularity because it requires HCPs to extract the features
from raw imaging and signal data. It may also aggregate the
information such as representing a clinical phenotype as a
1D disability scale rating. The active data collection yields
a problematic amount of missing data, especially during
outpatient follow-ups. As such, completion and data quality
management by research assistants is usually required.

Navigation of Raw Multimodal Data

Multimodal dashboards aim at fetching data passively and
provide innovative interfaces. The MS BioScreen is an
iPad (Apple Inc)-based dashboard illustrating the passive
integration of the clinical, biological, and raw imaging
data relevant to the assessment of patients with MS [24].
This academic software fetched data collected for the EPIC
cohort at the University of California, San Francisco. In
addition to the specialized individual timeline, neurologists
could navigate the different modalities of raw data (imag-
ing, functional tests, genetics, etc) through the touchscreen
to obtain a comprehensive view of the patient’s status.
Likewise, the navigation of 3D reconstructions of imag-
ing data (sometimes called “digital clones” [25]) may
support surgery planning through augmented reality [26]
or robot-assisted procedures [27]. Current limits of secon-
dary data collection include the lack of interoperability at
the scale of national health systems [28]. There are efforts
to develop “EHR-agnostic” platforms such as BRIDGE
(University of California, San Francisco) [29]. It relies
on interoperable standards to first fetch data from multi-
ple sources and then provide customizable clinic-specific
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dashboards implemented as Substitutable Medical Applica-
tions and Reusable Technologies (SMART) on Fast Health-
care Interoperability Resources apps. Efficient and reliable
data linkage between the various sources is critical to
synchronize the records [30].

Management by Multiple Stakeholders
Through Connectivity

Interoperable web-based records promise to enable multiple
stakeholders to access dashboards and to contribute to the
data collection along with patient follow-up. In a participa-
tive approach, patients themselves may visualize their data
to support their self-management, as proposed by the open
version of the MS BioScreen project [31]. Medical proce-
dures may be continuously monitored by collecting data
streams, either during a surgery procedure to give real-time
feedback to the operator or along so-called “integrative digital
clinical pathways” for outpatients [32]. For instance, data
integration from multiple devices has been developed as an
agent-based care coordination framework along a clinical
pathway of severe trauma management [9]. Process-“digi-
tal twins” were developed as web microservices collecting
data from the prehospital and in-hospital phases and making
it accessible to the different stakeholders through their
respective software agents in a multi-agent system environ-
ment. In a quality management approach, the data collection
about medical procedures through MSDS 3D integrates the
concept of digital clinical pathways. Its interface generates
dynamically a quality matrix according to the patient’s
diagnosis and prescriptions [10]. Quality matrices are visual
summaries derived from a set of checklists completed by all
relevant stakeholders. They later support the optimization of
the clinical pathways.

Summary and Limits

Therefore multimodal dashboards would be the perceptive
side of the medical digital twin framework and would support
the connectivity between the twin and the patient. One
patient’s data could be displayed by multiple dashboards,
each one adapted to the role of each HCP in the relevant
clinical pathway. The first limit would be their retrospective
nature as external information is needed to give prospective
insights and support decisions [33]. The second limit is
the regulatory obstacles to sharing patient data, especially
for other purposes than the care of the respective patients.
Concerns about privacy and consent-restricted secondary uses
of patient data have led to regulatory frameworks such as
the general data protection regulation in Europe [34]. Patient
data are personal, sensitive, and parsimoniously collected
from and for the patient. Their collection remains centered
on their primary use (ie, personal care), disregarding other
secondary uses in research or clinical decision support for
other patients. As a consequence, the primary personal and
secondary collective uses of data are split (Table 2). The
first may be done individually and confidentially. The second
relies on the transfer of pseudonymized data between health
care and research structures. However, medical practice in
a medical digital twin framework would require continuous
access to external information through reference data and
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predictive analytics (Table 2). Data sharing is still under-
developed in health care because of the loss of usage

Table 2. Key distinctions made by the proposed data architecture.

Demuth et al

control and because pseudonymized data only prevents direct
reidentification [35].

Concept 1

Concept 2

Data processing Data collection (full granularity)

Data exchange and access
Data usage (and values) Primary (personal care)
Data privacy Pseudonymized (deidentified)

Purpose

Data transfer (restricted exchange between 2 organizations)

Epidemiology (optimize decisions at the populational-level)

Data preprocessing for a predictive analytic
(formatted for specific analytics)

Data sharing (continuously accessible data)
Secondary (research and care of others)
Anonymized (unlinked to the source patient)

Precision medicine (optimize decisions at the
individual-level)

Virtual Patients for Collective Uses of
Health Data

Definition and Purpose

The second family of digital representations is the virtual
patient. It is an individual observation in a set of computer-
generated observations called “synthetic data” [36]. The
generation of synthetic datasets might be arbitrary, random,
rule-based, or simulated from statistical or machine-learning
models. Synthetic data have recently gained popularity as a
technology that could facilitate secondary data uses (Figure
2B) [36,37]. An example of external information supporting
medical practices is the use of normative datasets to define
reference ranges for quantitative biomarkers or to standard-
ize biomarker values according to a population distribution
[38,39]. They may also help interpret qualitative biomarkers
such as the pathologic significance of genetic variations.
However, precision medicine requires access to data of lower
granularity to personalize the assessment of patients. At the
scale of a single institution, the MS BioScreen illustrates the
personalization of various MS biomarkers’ reference ranges
according to subgroups of patients with similar profiles [24].
Reference data with individual granularity are also required
to develop data-driven predictive analytics. The utility of
synthetic datasets stems from (1) the structural similarity
(ie, the same level of granularity), (2) the veracity of the
information content (ie, the comparison with real data yields
the same aggregated results), and (3) indiscernibility (ie,
neither experts nor artificial intelligence can distinguish
synthetic data from original data).

Potential to Develop Predictive Analytics
Through Data Augmentation

Data-driven predictive analytics are developed through
machine learning. In cases where high-volume datasets are
not available, synthetic data may augment datasets as a
workaround for laborious data collection and expert-demand-
ing data labeling [40]. Data augmentation increases the
amount of training data either by generating additional
slightly modified data points [41] or by using generative
artificial intelligence models, such as generative adversarial
networks, variational autoencoders, or large language models
[42]. For instance, synthetic magnetic resonance imaging
(MRI) images with pathologic features of Alzheimer disease
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may be generated with a variational autoencoder, yielding
increased predictive performances of an analytic predicting
the diagnosis from the MRI images [43]. The augmentation
may also be restricted to data from specific prediction classes
to mitigate class imbalance. Synthetic Minority Over-Sam-
pling Technique (SMOTE) is a common technique to do so
[44]. In these cases, the utility of synthetic data comes from
the gain of predictive performance on an external validation
dataset [40.45].

Potential to Produce Evidence Through
In Silico Clinical Trials and Cohorts

Synthetic data may accelerate the production of scientific
or regulatory evidence through in silico studies, which rely
on fully synthetic study populations. The VICTRE (Vir-
tual Imaging Clinical Trials for Regulatory Evaluation) trial
illustrates the case when real datasets would be too expensive
to create [46]. This in silico cross-sectional study compared
the performances of a computational reader to detect breast
cancer on 31,055 synthetic full-field mammography versus
27,960 synthetic breast tomosynthesis images. Synthetic
cohorts may also be generated with longer follow-ups than
what could be available in real datasets. In MS, a study
generated a longitudinal synthetic cohort with a discrete event
simulation model of MS activity and forecast its evolution
with a lifetime horizon, although the treatment of interest
(ofatumumab) had only been approved in 2021 [47]. The goal
was to simulate its prescription as a first-line therapy against
a second-line therapy with various delays. The simulation
predicted better long-term benefits of ofatumumab when
prescribed as a first-line therapy. Such a synthetic dataset
makes statistical inference more interpretable. Instead of
analyzing the “black box” of the model itself, it uses the
model in a generative fashion to represent the information it
captured as a cohort of virtual patients, which can be analyzed
classically.

Potential to Share Information Through
Anonymization

Since synthetic data are computer-generated, they are not
linkable to a person and are thus assumed to be truly
anonymous, as opposed to pseudonymized data. Anonymous
data are shareable outside the constraints of regulatory
frameworks applied to potentially identifying data. How-
ever, synthetic data generators typically do not take privacy
protection into account. The generative model is indeed a link
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between the synthetic and the real data as the information
content of the sensitive dataset is represented as a new set
of individual observations. Concerns are rising about the risk
of linkage between a virtual patient and a real patient (ie,
membership inference attacks) [48-50]. Some synthetic data
generators are first designed as anonymization techniques,
such as the avatars [51]. The avatars take real data as input
to generate virtual patients with a probabilistic local model

Demuth et al

based on the nearest neighbors. The novelty of the method is
that it provides privacy metrics to assess that the avatars are
no longer identifiable records, even in the case of distance-
based membership inference attacks. This privacy-by-design
approach to synthetic data generation brings a trade-off [52].
The generation must be destructive enough to protect patients
from reidentification while keeping utility for the specific
intended use (Figure 3) [37].

Figure 3. The main trade-offs are addressed by the 3 families of digital representation. Real sensitive patient data may be formatted according to
interoperable data models to favor data portability for multimodal dashboards or preprocessed for a specific predictive analytic. Virtual patients must
balance privacy and similarity to the original data to be valuable proxies of real identifying records.
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Summary and Limits

In our medical digital twin framework, we argue that virtual
patients could be proxies of sensitive patient data to create
collective value by sharing the information contained in
sensitive datasets. The generation of synthetic data has to
be on purpose to prioritize the variables to be represented
in the virtual patients and to set the right trade-off between
similarity to the original data and privacy. Specific utility
for a given use would imply different generation settings
(Table 2 and Figure 3). It could be (1) closed-loop software
benchmarking with low-similarity synthetic data, (2) medical
education [53] or addressing population-level questions in
epidemiology (eg, performing a retrospective cohort study)

https://medinform jmir.org/2025/1/e53542

with an intermediate similarity, or (3) supporting individual
decisions in precision medicine with high-similarity synthetic
data. Therefore, multiple virtual patients could be generated
from the data of a given patient. Yet, the connection to the
original patient that would be expected from a medical digital
twin would be destroyed in all of them. This prevents virtual
patients from supporting personal health care and to support
individual predictions.
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Individual Predictions to Support
Clinical Decisions

Definition and Purpose

The third family of digital representations is individual
prediction. Individual predictions are the results of predic-
tive analytics that may use knowledge-based, data visualiza-
tion, or model-based algorithms [54]. They enable HCPs
to assess alternative scenarios to support clinical decisions
such as treatment selection, risk factor prevention, or surgery
planning (Figure 2C). The individual predictions of most
prognosis scores in medicine use population models [55,56],
meaning that decisions are optimized on average at the
scale of a population. Medical digital twins aim to optimize
decisions at the individual level with personalized analyses.

Personalization of the Context of Usage
of Predictive Analytics

Prognosis scores and predictive analytics in general are
validated in restricted contexts of usage [57]. In a chronic
disease such as MS, these contexts may be diagnosis, initial
prognosis, treatment selection, assessment of therapeutic
response, or assessment of the transition to a secondary
progressive phase [54]. Therefore management of 1 patient
would require the integration of multiple predictive analytics
to support different clinical decisions at different points of
care along its clinical pathway. Such an approach is conveyed
by the digital twin quality management framework of the
MSDS 3D [10]. The structuration of health care into digital
clinical pathways eases the description of the tree structure of
clinical contexts along the management of chronic diseases.
As such, different treatment-specific prognosis scores could
be used to assess the probability of a patient to respond to
each option. This could be further personalized according to
the stage or subtype of the disease.

Personalization of the Analytics to Run
Mechanistic Simulations

The most personalized analytics are those modeling the
individual. This is the case of organ-level biomechanistic
models, such as digital hearts. Their first layer is classi-
cally an anatomical mesh of an organ extracted from raw
imaging data. The coupling of other modeling layers such
as cell and tissue behavior yields an “embodiment” of a
generic organ model in each patient’s specific anatomy [5].
Atrial fibrillation (AF) is a case where such modeling is
in an early stage of clinical translation [58]. The Optimal
Target Identification via the Modeling of Arrhythmogenesis
procedure involves a computational model of the left atrium
[58,59]. Geometric, fiber orientation, and electrophysiological
tissue property layers are simulated to detect the topography
of AF re-entrant drivers, including latent ones that electro-
cardiographic imaging would not detect. It also predicts de
novo re-entrant drivers that may later perpetuate arrhythmia
according to alternative scenarios of virtual ablation patterns.
Thus, the Optimal Target Identification via the Modeling of
Arrhythmogenesis procedure integrates the outputs of these
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simulations to tailor the intervention plan by performing
preventive adjuvant ablations of the predicted re-emergent
targets [15]. The close-loop of the disease is approached
as a multi-scale system and the model enables to simulate
emergence phenomena (eg, reentrant drivers) that would not
be measurable, or that would occur under various therapeutic
scenarios.

Personalization of the Data Use Based on
the Matching With Similar Patients

In cases of statistical modeling, predictive analytics may be
personalized by fitting the model at query time only on
similar patients recorded in a reference database. The model
decision boundaries would thus be optimized in the subset of
similar patients matching the patient. The selection of similar
patients may be distance-based according to a patient-similar-
ity metric. This may imply a digital representation of patients
as data points in a latent reduced multidimensional space,
using linear or nonlinear dimension-reduction algorithms
[60,61]. On the other hand, the selection of similar patients
may be filter-based. The MS-VISTA (Nantes University)
prototype of the Projections in Multiple Sclerosis project
illustrates the querying of groups of similar patients in an
MS randomized clinical trial dataset and the computation of
a personalized prognosis to support treatment selection [62].
As such, these analytics personalize the use of continuously
accessible reference data.

Summary and Limits

Individual predictions in our medical digital twin framework
would therefore enrich patient data with external informa-
tion provided by predictive analytics. Unlike one-size-fits-
all population models, the analytic would be personalized
according to the patient’s characteristics to yield a patient-
specific embodiment of the model. One limit is that each
model is typically instantiated once at the point of care
corresponding to the respective context of usage. Even
organ-level models are typically not maintained in the long
run, which would be expected from medical digital twins
to remain connected to the patient and support further data
collection. Another limit is the need to preprocess patient
data to run analytics such as the extraction of an anatomi-
cal mesh from a stack of raw images. This may involve
feature extraction, feature selection, and feature engineer-
ing (eg, longitudinal aggregation, criteria fulfilments, events
definition from biomarker trajectories, etc). The preprocessed
digital representation of a patient therefore loses portability
for other data uses (Figure 3). It may require significant
computation costs and be subject to an analytic variability
that would make it unfit to support personal care outside
the context of usage of the analytic. Therefore, even if the
analytics are personalized, a medical digital twin would have
to leverage multiple shared predictive analytics, each one
informing a limited number of decisions or procedures along
a given clinical pathway.
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Recommendations

We covered the main digital-twin applications for precision
medicine and argued that they cannot all be supported by
a single digital representation of a patient due to techni-
cal and regulatory constraints. We believe that the clarifica-
tion of the different digital representations of patients is a
foundation for an effective data strategy leveraging various
concepts that are currently commonly confounded under the
term “digital twins.” We highlighted three main families of
digital representations (Figure 2): (1) multimodal dashboards
to assist with perception and documentation; (2) virtual
patients to facilitate secondary data uses; and (3) individual
predictions supporting clinical decisions. For a given patient,
multiple digital representations may be generated according
to the different clinical pathways the patient goes through,
each tailored to balance the trade-offs associated with the
respective intended uses (Figure 3).

Demuth et al

Therefore the proposed framework conceptualizes the
medical digital twin as a data architecture leveraging a
multitude of digital representations. It clarifies several
distinctions between the characteristics of data usages (Table
2): between data collection and data preprocessing for a
predictive analytic, between data transfer and data sharing,
between primary personal and secondary collective usages of
health data, between pseudonymized and anonymous data,
and between population models and personalized analyt-
ics. Raw health records are therefore raw material to be
refined into various digital representations of patients to fuel
precision medicine. Based on this clarification, we propose 3
strategic recommendations, that would ease data architecture
efforts to overcome the limitations of the different families of
digital representations (Textbox 1).

Textbox 1. Three recommendations to address the trade-offs of medical digital twin data architectures.

all-encompassing representation.

right trade-off when generating it.

* Medical digital twin data architectures should relate several digital representations of patients, instead of a single
* Intended data uses should be clearly defined to identify the right family of digital representation to use and to set the

* For collective usages, real sensitive data should be substituted by synthetic data whenever possible.

Discussion

This paper proposes a data-centric approach to clarify the
practical digital representations at play in a medical digital
twin framework from the intended data uses. It does not
cover ethical, property, and usage control issues. Clarifica-
tion efforts about medical digital twins have already been
made from other perspectives. Ethical clarification has been
proposed about the benefits and risks of medical digital twins
[1], as well as about the conditions for medical digital twins
to take on ethically justifiable forms of representation [63].
The scope of digital twin applications in the whole health
care sector has been reviewed and led to advocate a global
collaboration between stakeholders [6]. Clarifications of the
means and objectives of the development of “supermodels”
have also been postulated [64]. Efforts are made to develop
the concept of medical digital twins in the form of computa-
tional modeling platforms [65]. In cardiology, a model-centric
framework has been formulated, seeking the synergy between
deductive and inductive reasoning, respectively conveyed by
mechanistic and statistical models [5]. In MS, the clarification
has been proposed in a quality management framework [10].

To highlight the perspectives of our framework, we
propose road maps for 3 fictional medical digital twin
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projects (Table 3). Taking the management of AF as an
example [58], the multimodal dashboard would collect and
integrate all health data relevant to the patient within the
clinical pathway of AF management. Second, synthetic
heart MRIs would be used to benchmark generic AF heart
models. Third, the patient-specific embodiment of an AF
heart model would be used to plan an AF ablation proce-
dure [59]. In epilepsy, the patient history and phenotype
could be navigated through an epilepsy-specific dashboard.
Synthetic electroencephalogram signals could help develop
a seizure forecast model [66] or fit a virtual brain model
[67] to the patient to support the planning of the ablation of
the epileptogenic zone [68]. In MS, patients could com-
plete symptom diaries on patient portals between the visits.
They would be integrated with their imaging and therapeu-
tic history in an MS-specific, ophthalmologist-specific, or
rehabilitation-specific dashboard depending on the point of
care [69]. Virtual patients generated with the avatars [51]
could enable the development of a statistical model detect-
ing transitional states to secondary progressive MS [70]. The
subset of virtual patients matching the patient characteristics
and planned therapeutic scenario could also be analyzed to
support treatment selection [62].
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Table 3. Road maps for fictional medical digital twin projects.

Input and output of predictive

Projects Multimodal dashboards Virtual patients analytics
a ; b :
AF ® Patient-centric dashboard with anticoagulant treatment Synthe.tlc heart MRI” for medical ® Virtual heart model for AF
education and to benchmark mecha- . .
plan ablation planning.

. A o nistic organ-level models
® AF-specific dashboard for the cardiologist

Epilepsy ® Patient-centric dashboard with antiseizure and Synthetic electroencephalogram ® Seizure prediction model

signals generated with the virtual brain
to train deep learning models

disease-modifying treatment plans ® Virtual brain to plan for the

® Epilepsy-specific dashboard tailored to the epileptic ablation of the epileptic zone

disease for the neurologist

¢ . T
MS ® Patient-centric dashboard with treatment plans and Syr}thetlc cohort of tabul.ar individual ® Statistical model for detection
. patient data generated with the avatars "
symptoms diaries . L. of transitional state to secondary
] N ) ) to fit statistical models
® Ophtalmologist-specific dashboard tailored to optic progressive MS
neuritis ® Matching with similar patients to
® MS-specific dashboard for the neurologist support treatment selection

® MS-specific dashboard for rehabilitation

3AF: atrial fibrillation.
PMRI: magnetic resonance imaging.
°MS: multiple sclerosis.

Conclusion T}}e generations of 41g1tal representations woulsl be deter-
mined by the technical and regulatory constraints of the
intended data uses as well as their positioning along clinical
pathways.

We propose a medical digital twin framework as a data
architecture leveraging several digital representations of
patients, instead of a single all-encompassing representation.
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