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Abstract

Background: The field of digital health solutions (DHS) has grown tremendously over the past years. DHS include tools for
self-management, which support individuals to take charge of their own health. The usability of DHS, as experienced by patients,
is pivotal to adoption. However, well-known questionnaires that evaluate usability and satisfaction use complex terminology
derived from human-computer interaction and are therefore not well suited to assess experienced usability of patients using DHS
in a home setting.

Objective: This study aimed to develop, validate, and assess an instrument that measures experienced usability and satisfaction
of patients using DHS in a home setting.

Methods: The development of the “Experienced Usability and Satisfaction with Self-monitoring in the Home Setting” (GEMS)
questionnaire followed several steps. Step I consisted of assessing the content validity, by conducting a literature review on current
usability and satisfaction questionnaires, collecting statements and discussing these in an expert meeting, and translating each
statement and adjusting it to the language level of the general population. This phase resulted in a draft version of the GEMS.
Step II comprised assessing its face validity by pilot testing with Amsterdam University Medical Center’s patient panel. In step
III, psychometric analysis was conducted and the GEMS was assessed for reliability.

Results: A total of 14 items were included for psychometric analysis and resulted in 4 reliable scales: convenience of use,
perceived value, efficiency of use, and satisfaction.

Conclusions: Overall, the GEMS questionnaire demonstrated its reliability and validity in assessing experienced usability and
satisfaction of DHS in a home setting. Further refinement of the instrument is necessary to confirm its applicability in other patient
populations in order to promote the development of a steering mechanism that can be applied longitudinally throughout
implementation, and can be used as a benchmarking instrument.

(JMIR Med Inform 2025;13:e63703)   doi:10.2196/63703
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Introduction

The number of digital health solutions (DHS) has increased
rapidly, with the potential to significantly enhance the way
health care is delivered [1]. DHS include, among others, tools
for self-management of clinical data such as blood pressure

measurements, for medication adherence, and for education on
health-related behaviours such as diet, smoking, and exercise
[2]. These tools present the opportunity to increase access to
health care and optimize disease management, and they
ultimately aim to alleviate health care expenditure [3].
Self-management, as per the World Health Organization,
encompasses the capacity of individuals to support and sustain
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their own health, prevent diseases, and cope with illness and
disability, whether independently or with the assistance of a
health care professional (HCP) [4,5]. The use of DHS serves a
dual purpose in patient self-management: (1) facilitating
proactive engagement of individuals in their health journey to
optimize treatment outcomes and (2) enhancing prevention of
negative health outcomes [6,7]. Consequently, ensuring
accessibility and adoption of DHS among target users is crucial
for effective implementation [8]. The experienced usability of
DHS is pivotal to their adoption, especially for individuals with
disabilities or those living with chronic diseases who need to
make frequent use of a DHS within their care journey [9-11].
Measuring DHS usability and patient satisfaction is crucial to
understand and improve accessibility and use of DHS, thereby
fostering patient engagement.

The international organization for standardization defines
usability, as comprising effectiveness, efficiency, and
satisfaction, given a specific user in a context [12]. In the context
of DHS, effectiveness refers to the capacity for thorough and
accurate task completion, such as logging into a patient portal
or setting personal preferences for medication reminders.
Efficiency, on the other hand, involves accomplishing these
tasks with minimal effort. Finally, satisfaction is expressed as
the comfort and acceptability experienced by patients when
using a DHS tool. Usability is often measured by (validated)
usability and satisfaction questionnaires, as they allow efficient
collection and structured assessment of data from a large number
of individual users [13,14]. Usability questionnaires originate
from the field of human-computer interaction and user-centered
design and have emerged as a means to evaluate the
effectiveness, efficiency, and satisfaction of interactive systems,
particularly software and digital interfaces from the perspective
of end users [15]. Therefore, existing well-known and applied
usability questionnaires, such as the System Usability Scale
(SUS) and mHealth App Usability Questionnaire (MAUQ)
apply software terminology such as the “various functions in
this system,” or “navigation between screens” [16-18]. These
statements are difficult to interpret for individuals lacking
familiarity with software terminology, particularly for patients
with low levels of digital literacy [19]. These statements are
therefore not suited to measure the usability of self-management
tools in healthcare practice by all users.

In addition, introducing DHS in a self-management care journey
may increase disparities, as it requires particular skills to use it
that comprise both health and digital literacy [20]. In terms of
patient characteristics, patients with high health literacy, a higher
educational level, and patients who are familiar with DHS find

it easier to use these tools [21]. Variability in digital literacy
skills among patients are well-recognized, posing challenges in
its utilization [22]. Comprehensive research on the specific
patient groups for which DHS is relevant, and our understanding
of usability in this domain are still in the nascent stages.
Disparities arising within groups due to the utilization of
technology might lead to one group adopting the technology,
while the other group opts not to use it. With the increasing
availability and reliance on DHS [26], these tools should be
usable for the majority of the patient population. Evaluations
of patient experiences with DHS should therefore also be
accessible to diverse groups of patients. Thus, to optimize health
outcomes and to deliver high quality care, evaluating patients’
experienced DHS usability and satisfaction in a home setting
is imperative for health care organizations and HCPs [1,23]. In
order to ensure patient inclusivity, a general and accessible
instrument is needed, which can be applied as a steering
mechanism, deployed at multiple points in time to measure
usability and satisfaction of DHS in a home setting.

The aim of this study is to develop, validate, and assess the
reliability of an instrument that measures experienced usability
of and satisfaction with DHS use, taking digital (language)
literacy into account. When developing the Experienced
Usability and Satisfaction with Self-monitoring in the Home
Setting (GEMS) questionnaire, our goal is to find a middle
ground between innovation and familiarity, drawing from
established statements and questionnaires while tailoring them
to be able to evaluate patients experiences with DHS from an
inclusive perspective. In doing so, we aim to advance DHS
implementation and expand our understanding of end users’
needs, for efficient, effective and satisfied DHS use.

Methods

Ethical Considerations
The Medical Ethical Committee of Amsterdam University
Medical Center (Academic Medical Center) declared that this
study was not subject to the Medical Research Involving Human
Subject Act and that further approval was not required (W22
291 # 22.352).

GEMS Questionnaire Development
To develop and validate the questionnaire
“Gebruiksvriendelijkheid en Ervaring met Monitoren in de
ThuisSetting,” translated as Experienced Usability and
Satisfaction with self-monitoring in the Home Setting, we
followed several steps, as depicted in Figure 1.
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Figure 1. Flowchart of the development of experienced usability and satisfaction with digital health solutions in a home setting.

Step I: Content Validity - Collecting User Experience
Statements
To design the GEMS questionnaire, we first searched for
published literature on user experience questionnaires in the
context of DHS in PubMed using the keywords “Digital Health
Solutions,” “Digital Health Technologies,” “Self-Management
tools,” “Digital health apps,” “mHealth apps,” AND (“Usability”
OR “Satisfaction”) [24]. We searched for questionnaires that
measured end-user experiences, and restricted our search to
studies published in the last 5 years due to the rapidly evolving
nature of the field.

After the literature review, an expert meeting was held, for
which we invited several usability experts in the field. We went
through the domains and statements from the validated
questionnaires retrieved from the literature search. The outcome
of this meeting was a list of requirements for domains with
items that should be included in the GEMS questionnaire. This
is in line with the 6 domains of usability, according to the
general guidelines for usability assessment [12,25]:
“Effectiveness,” “Efficiency,” “Satisfaction,” “Learnability,”
“Perceived value,” and “Privacy and Security Issues.”

After the selection of the items during the expert meeting, we
translated the items that were only available in English into
Dutch. We applied a forward-backward translation (English to
Dutch) procedure for each item. This procedure was executed
by 2 people who were native proficiency speakers of both Dutch

and English (DPN and Stephanie Medlock). A formal
assessment of each item’s linguistic complexity using the
Common European Framework of Reference for Language was
conducted, including translating items as required to B1 level,
by an expert that had experience in making patient instructions
accessible (Marieke van Maanen) [26,27]. Items from 6
individual (validated) questionnaires were collected (Table S1
in Multimedia Appendix 1). In addition, insights from the article
of the authors Berkman and Karahoca [28] were integrated into
the process, as they describe that the change in sensitivity of a
scale varies due to the responses, while in human-computer
interaction, a scale is expected to be sensitive to the differences
between systems instead of people. This insight enriched the
questionnaire development with current research findings and
best practices in usability metrics. We therefore maintained the
item scores consistent with the current scoring methodology
across responses. This has resulted in sufficient differentiation
at the system level; however, further refinement is required to
optimize the scoring of the GEMS.

Step II: Face Validity - Pilot Testing, Item Selection,
and Adaptation
We recruited participants to take part in the evaluation of (1)
the questionnaire itself, and (2) the evaluation of DHS using
the draft GEMS instrument (Figure S1 in Multimedia Appendix
1). Round I consisted of an appreciative inquiry, to get feedback
from stakeholders, to ensure that the instrument reflected their
perspectives and values and that questions were understandable
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[29]. We presented the questionnaire to the patient panel from
the Amsterdam University Medical Center (n=8; Table S2 in
Multimedia Appendix 1). After this round, an expert meeting
including all authors (and Thomas Engelsma) was held to make
adjustments to the language and wording of the questions.

Step III: Construct Validity - Psychometric Analysis
Round II consisted of the validation of the questionnaire by
applying it with users of two self-management tools within the
Amsterdam University Medical Center patient portal, which
are available from the electronic health record for patients under
the nephrology department: (1) entering home measurements
of kidney transplant patients’ vital statistics such as blood
pressure, pulse, and temperature and (2) medication reminders.
Patients were included when they participated in home
measurements, or in the use of medication reminders, could
read and understand the Dutch language, and downloaded the
app from the patient portal in order to use one of these
functionalities. Patients were invited to participate in this study
by their HCP (physician or nurse practitioner). Informed consent
of the participants was provided online (e-consent). Patients
who agreed to participate were contacted by a researcher (SJO
or a supportive researcher) to administer the GEMS
questionnaire by email. Data were collected using Castor EDC
[30]. Patients who did not return the questionnaire or did not
fully complete the questionnaire received a reminder after 2
weeks, and, if necessary, a phone call after 4 weeks. After
psychometric analysis, an expert meeting was held to discuss
the findings, and if necessary, adjustments were made to the
instrument.

Assessing Acceptability
The data from the questionnaire were analyzed using SPSS
statistics (version 28.0.1.1, IBM) [31]. Respondents who missed
more than one item of the GEMS were removed from the data
set. Records missing other data, such as demographics, that
were not part of the core of the GEMS questionnaire were not
excluded. All items were recoded so that “1” was the most
negative value on the Likert scale. In order to be able to perform
factor analysis, the questions with scales ranging from “1-10”
were recoded to “1‐5” (1 and 2 were recoded to 1, 3 and 4
recoded to 2, and so on). The question with a Likert scale from
“1-7” was recoded to “1‐5,” where the extremes are taken
together (1 and 2 were recoded to 1; 6 and 7 were recoded to
5).

The Single Ease Questions (SEQ) is a single-item measure that
assesses the complexity of a task for a user, such as entering
home blood pressure measurements into the patient portal
[32,33]. The SEQ aligns with the main features available in the
system [33]. The different tasks that patients have to fulfil for
the two separate DHS are difficult to compare, as logging into
the system is the only task that is consistent across our analyses.
Consequently, in psychometric evaluations, only the question
regarding the ease or difficulty of “logging into the system”
was included for both DHS assessments. For items where the
nonresponse rate reached or exceeded 90%, it was inferred that
patients chose not to answer the respective question.
Consequently, the item in question was deemed unnecessary
and was subsequently removed from the GEMS questionnaire

[34]. With regard to the distribution of item scores, a skewness
of 90% was considered to indicate redundancy for inclusion of
the item in the GEMS questionnaire [34].

Assessing Construct Validity
An item correlation analysis was performed using the Spearman
rank-order correlation coefficient. All items were compared
with each other to find inter-item overlap, with a score of rs>0.70
meaning that there could be singularity. Prior to performing a
factor analysis, we tested whether the data set was suitable by
assessing the Kaiser-Meyer-Olkin test of sampling adequacy
(>0.60), and Bartlett test of sphericity (α<.05) [35,36]. A
principal component analysis (PCA) with direct Oblimin rotation
was used for factor analysis (FA). In addition, a scree plot was
made of the PCA results. The number of values above the scree
plateau were taken as the number of factors the items contributed
to. In case of no clear scree plateau, a threshold of 1.0 was used.

Assessing Reliability and Internal Consistency
For all factors, extracted with PCA, the reliability and internal
consistency were assessed by using the Cronbach α (>0.70) and
item-total correlations (>0.40). Per factor, the items were
dropped one by one to see whether items had to be removed to
increase the Cronbach α to the threshold of 0.70. Finally, the
items were scrutinised in an expert meeting (SJO, LWDP, DPN,
SAN, HJM, and EMAS) using the results of the aforementioned
analyses to determine which items were to be dropped and which
should remain. In addition, we assigned labels to the constructs.

Results

Step I: Content Validity
In evaluations of DHS, researchers readily access numerous
validated questionnaires from the literature, using them as tools
for assessing usability and satisfaction in order to improve the
product or system. Drawing from our literature review, the SUS
is the most widely used usability evaluation instrument in the
digital health industry [10,11]. For a long time, it has been a
standard procedure to evaluate the usability of digital technology
using general benchmarking tools, which has led to the adoption
of generic tools like the SUS [11]. However, this questionnaire
was developed in the early stages of the human-computer
interaction field, at a time when digital health did not yet exist
[16,37]. Newer questionnaires in the field such as the MAUQ
and eHealth UsaBility Benchmarking Instrument try to be more
specific within their domain; however, these questionnaires are
still extensive, not easy to deploy, and using terminology derived
from human-computer interaction [11,18]. In addition, as
questionnaires such as SUS and Usability Metric for User
Experience (UMUX) are primarily designed for software
development, they use complex software-related terminology,
such as functionalities of a system, that is often not understood
by the general population [11].

We excluded statements regarding software interaction due to
their complexity, which could potentially hinder understanding.
We collected 14 unique statements from the identified
questionnaires [12,25]. We chose to incorporate the 4-item
UMUX (with Likert scale 1‐5), along with SEQ (Likert scale
1‐7). To include learnability, we added a question from the
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SUS on whether patients had to learn a lot about the specific
DHS before they could use it (Likert scale 1‐5). Regarding
perceived value, we added 2 questions from the MAUQ on
whether the DHS contributed to the patient’s health, and whether
patients had the feeling that the DHS improved health care (both
Likert scale 1‐7). Finally, for perceived value, we added a
question from Timmermans et al [38] on whether using the DHS
reminded patients of being sick (Likert scale 1‐5). To assess
privacy and security, we added a question from Timmermans
et al [38] (Likert scale 1‐5). Regarding satisfaction, we opted
to include the Net Promoter Score (NPS; Likert scale 1‐10),
the Customer Satisfaction Score (CSAT; Likert scale 1‐5),
and continued use, as we aimed to investigate whether
satisfaction had an influence on continued use and vice versa
(Likert scale 1‐10). We added demographics such as gender,
age, educational level, and health literacy [39,40]. At a later
stage, we also added one question on digital literacy. The final
GEMS questionnaire for validation consisted of 14 items (Table
S4 in Multimedia Appendix 1).

Step II: Face Validity
In total, 92 patients participated in the validation: 65.2% (n=58)
were male, 38% (n=35) were aged between 40 and 59 years,
and 32.6% (n=30) had a higher professional education (Table
S3 in Multimedia Appendix 1). A total of 92 patients were
included for the psychometric analysis. All items presented to
patients had a response rate of over 95%. For item skewness,
no score was answered more than 90% for any of the answered
questions. In the distribution of scores, we noticed that the
highest value not applicable was entered with 10.9% on Q5
(question 5; “Q#” represents the questions involved in this
study). The highest missing value with 17.4% was on Q13. No
items of the GEMS were removed. Not all patients completed
the question about digital literacy as this question was added to
the demographics later (n=43). Patients’ remarks and
suggestions for improvement mainly focused on Q5, with some
patients being unfamiliar with the nondigital method of filling
in home measurements on paper. Therefore, some patients were
unable to fill in this question. In addition, with Q8, patients
indicated that the disease process is much more intense for some
people than others, and that this question is difficult to answer
in the home setting (Table 1).
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Table . Description of each measurement instrument found in explorative literature search.

Reference where
questionnaire
has been used in
health care con-
text

ScalePopulation vali-
dated

Items, nAuthorAbbreviationMeasurement instrument

Usability

[42,43]1‐9150 users27Chin et al [41]QUIS    Questionnaire for User Interaction
Satisfaction

[44-46]1‐5184, aimed to in-
clude a diverse
range of partici-
pants

10Brooke [16]SUS    System Usability Scale

[47,48]1‐7128, majority in-
cluded were stu-
dents with a
bachelor’s de-
gree

20Zhou et al [18]MAUQ    mHealth App Usability Question-
naire

[50]1‐7255, not exten-
sively described

4Finstad [49]UMUX    The Usability Metric for User
Experience

[44,52]1‐748, and 210 in
second valida-
tion study

16Lewis [37]

Lewis [51]

PSSUQ    Poststudy System Usability
Questionnaire

[54]1‐7107 users12Davis [53]TAM    Technology Acceptance Model
questionnaire

[56,57]1‐5164 young peo-
ple

20Stoyanov et al
[55]

uMARS    User version of the Mobile App
Rating Scale

[59]1‐51299 mobile
health apps

23Terhorst et al
[58]

MARS    Mobile app rating scale

[60]1‐5148 persons18Broekhuis et al
[11]

HUBBI    eHealth Usability Benchmarking
Instrument

Satisfaction

[63,64]1‐10Not described1Reichheld [61]

Mekonnen [62]

NPS    Net Promoter Score

[66]1‐4Different popula-
tions, also in
health care set-
ting

8Larsen et al [65]CSQ-8    Client Satisfaction Questionnaire

[68]1‐5Various popula-
tions, in individu-
als with various
medical condi-
tions

50Ware et al [67]PSQ-III    Patient satisfaction questionnaire
III

Other

[69]1‐7Not described1Nielsen and
Molich [25]

SEQ        Single Ease Questionnaire

Step III: Construct Validity
Spearman’s rank correlation coefficient indicated Q8 as
redundant as it showed a negative correlation on almost all
items. The calculated UMUX score was also taken into
consideration but did not show a significant correlation with
items other than its own questions (Q1-Q4). None of the items
was extremely skewed. Since none of the items were completed
by less than 95% of the respondents, all items were included
for psychometric analyses. The data set consisted of 14 items

that were used for psychometric analysis (Table S4 in
Multimedia Appendix 1 presents the Dutch original items).
Kaiser-Meyer-Olkin was 0.72, and Bartlett Test of Sphericity
was P<.01. PCA suggested a 5-factor solution. However, the
fifth factor had an eigenvalue of 1.05, and we, therefore, decided
to not include this factor. Q1 did not load to any factor. Common
factor analysis using 4 factors with a factor loading threshold
of 0.40 resulted in Q1 and Q5 not loading to any factors. Q7
cross loaded into factors 3 and 4. Q7 was dropped from factor
4 because this lowered the Cronbach α. Q8, Q10, and Q13 were
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also dropped because these items lowered the Cronbach α for
the respective factor. As shown in Table 2, item-total correlation
was considered sufficient (>0.40) for all items. Factors 1 and 3

had the lowest Cronbach α (0.66 and 0.67, respectively) and
factors 2 and 4 the highest (0.77 and 0.78, respectively ).
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Table . Results of the GEMS validation.

Cronbach αeITCdCFAc loadingrs
b>0.70NAa≥25%Item description

Factor 1: Convenience of use (Cron-

bach α of scale=0.66; 95% CIf 0.49‐
0.78)

—0.520.85——i    Q2: “Using [this DHS]gis a frustrating

experience.”h

    Het is vervelend om [digitale tool] te
gebruiken.

—0.520.85——    Q6: “I needed to learn a lot of things
before I could get going with [this

DHS].”h

    Ik moest veel over [digitale tool] leren
voordat ik het goed kon gebruiken.

Factor 2: Satisfaction (Cronbach α of
scale=0.77; 95% CI 0.67‐0.84)

0.700.60−0.61——    Q11: “Overall, how satisfied were you

with [DHS]?”h

    Hoe tevreden bent u over digitale tool?

0.670.63−0.59——    Q12: “How likely is it that you would
recommend [DHS] to a friend or col-

league?”h

    Hoe waarschijnlijk is het dat u [digitale
tool] aan iemand anders die deze zorg
nodig heeft aanraadt?

0.700.62−0.44——    Q14: “I would use [this DHS] again.”h

    Hoe waarschijnlijk is het dat u de
[digitale tool] blijft gebruiken?

Factor 3: Perceived value (Cronbach
α of scale=0.67; 95% CI 0.51‐0.79)

—0.530.50——    Q7: “The [DHS] would be useful for

my health and well-being.”h

    Het gebruik van [digitale tool] draagt
bij aan mijn gezondheid.

—0.530.53——    Q9: “The [DHS] improved my access
to health care services.”

    Ik denk dat [digitale tool] de zorg ver-
betert.

Factor 4: Efficiency in use (Cronbach
α of scale=0.78; 95% CI 0.67‐0.86)

—0.65−0.62——    Q3: “[This DHS] is easy to use.”h

    [Digitale tool] is makkelijk te ge-
bruiken.

—0.65−0.43——    Q4: “I have to spend too much time

correcting things with [this DHS].”h

    Ik ben te veel tijd kwijt aan het gebruik
[van digitale tool].

aNA: “I do not know or not applicable” responses ≥25%.
brs:Spearman rank correlation coefficient between items >0.70.
cCFA: confirmatory factor analysis
dITC: item-total correlation.
eCronbach α of scale if item is deleted.
fSee Baumgartner and Chung [29].
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gDHS: Digital Health Solution.
hOriginal English item from questionnaire.
iNot applicable.

After PCA, a collaborate expert meeting was held to determine
the most appropriate labels for these factors based on existing
usability terminology: convenience of use, perceived value,
efficiency of use, and satisfaction. These constructs are known

in the field of human-computer interaction. A more complete
definition of the 4 factors applied to the home setting are shown
in Textbox 1. The final constructs of the GEMS are outlined in
Figure 2.

Textbox 1. Textbox 1. Description of the constructs of the GEMS questionnaire.

Constructs and their explanations

Convenience of use

This highlights the ease and comfort with which users can interact with the digital health solutions at home. Convenience of use is a component of
usability, emphasizing aspects that contribute to making the user experience more convenient, pleasant, and smooth [70]. This means tailoring it to
fit to patient preferences and expectations for self-management at home.

Perceived value

Perceived value refers to the extent to which a system or product fulfills users’ needs and goals, addressing the pragmatic utility it offers to its intended
users [70]. It encompasses the relevance and value of the digital health solutions features and functionalities in addressing user requirements in a home
setting. In a health care setting, perceived value ultimately determines the practical utility and adoption of the digital health solutions by patients
[71,72].

Efficiency of use

In a home setting, efficiency of use highlights how quickly users can perform tasks in a digital health solutions once they are familiar with it. Efficiency
of use is influenced by factors such as learnability, memorability, and error prevention, as it pertains to how quickly and effortlessly users can achieve
their goals when using a self-management tool in a home setting [12].

Satisfaction

According to International Organization for Standardization 9241, satisfaction is referred to as the degree to which users experience comfort and have
positive attitudes toward using the product [12]. For self-management tools, satisfaction goes beyond mere functionality and usability, extending to
factors such as efficacy, empowerment, and emotional well-being [73].
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Figure 2. Visual abstract of final results and named constructs of Experienced Usability and Satisfaction With Self-Monitoring in the Home Setting
Questionnaire.

Discussion

Principal Findings
Our aim, was to develop a steering instrument that enables the
measurement of usability and satisfaction at various stages of
adoption, with constructs that are relevant for a home setting,
adapted to the language proficiency of the general population,
and which might serve as a benchmarking instrument for
usability and satisfaction with DHS. Following the initial
translation phase of this study, it became evident that the items
of the GEMS were easy to understand for patients. Although
we designed the questionnaire for a broad population, our
evaluation revealed that the majority of study participants had
a higher level of education. In research, it is a known challenge
to reach those with lower health and digital literacy levels for
evaluation [74]. The applicability of the DHS varies depending
on the specific needs and characteristics of different users. The
GEMS questionnaire has been tailored to a B1 language
proficiency level, which enhances its accessibility. However,
there is a risk of obtaining biased outcomes of the GEMS
depending on the demographic profile (eg, age, education, digital
literacy, and health literacy) of the respondents. Therefore,
collecting these demographic data are essential to understand
if DHS users with different profiles assess the experienced
usability and satisfaction differently. Gaining these insights
may help in ensuring tailorization of the DHS to the user needs
based on GEMS outcomes. This necessitates further refinement
of the DHS to ensure its suitability across diverse populations.

Internal consistency of the GEMS was sufficient and factor
analysis confirmed 4 factors, to which we have assigned the
following labels: convenience of use, perceived value, efficiency
of use, and satisfaction. Internal consistency of the GEMS, as
measured with the Cronbach α, was slightly lower compared
with the minimum value of 0.7 [75]. A possible explanation
could lie, in our sample characteristics, as several participants
also used similar applications, such as smartwatches that
provided reminders. This dual usage could have influenced their
responses, leading to expressed preferences or aversions towards
the usage of medication reminders.

Given that the NPS was integrated into our satisfaction metric
within the GEMS questionnaire, we opted to use the raw NPS
as a component within our scoring scale. This approach involves
incorporating the absolute values of promoters, passives, and
detractors, rather than calculating the traditional NPS by
subtracting the percentage of detractors from the percentage of
promoters [76]. In a manner similar to the SUS questionnaire,
we reversed the scales in our questionnaire to enhance reliability
and validity. This approach serves several key purposes: (1)
mitigating response bias, (2) maintaining participant attention
and engagement, (3) ensuring balance and consistency within
the questionnaire, and (4) detecting random responses on the
questions by participants [16]. For the factors and questions
derived from the factor analysis, we carefully examined whether
reversed scaling was still present in the questionnaire. We
concluded that reversed scaling was still present in 2 out of the
4 constructs.
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For the statements in the GEMS questionnaire, we decided to
adopt, translate, and adapt the statements from the UMUX and
adjust them to using DHS in a home setting. However, in some
cases, we have labeled the factors differently from those in the
UMUX. Specifically, the statement “It is frustrating to use this
digital tool” is classified under “Convenience of use” in the
GEMS questionnaire, while it is categorized under “Satisfaction”
in the UMUX. The interrelationship with the other questions in
GEMS aligns more closely with the definition of convenience.
We decided to address the experiences related to the context in
which the DHS are used, specifically the deployment of DHS
in a home setting. First, the difficulty in using the technology
due to lack of digital literacy or misunderstanding of
terminology. Second, ease of use, as the primary concern in a
home setting is how conveniently the DHS can be integrated
into daily routines. In addition, we translated and modified the
UMUX question “I spend too much time correcting things with
this system” to make it applicable at a higher conceptual level.
The revised question no longer concerns the correction of things
(errors), but instead evaluates whether the DHS is usable within
its intended context [28].

Closing the feedback loop between patients and HCP through
the utilization of DHS represents a pivotal strategy in enhancing
health care delivery with DHS. By enabling self-management
of patients through communication and data exchange, digital
tools foster a collaborative environment where patients can
actively participate in their care and providers can make
informed decisions [77]. Incorporating the GEMS questionnaire
as part of a comprehensive evaluation of DHS may enhance
usability and satisfaction, contributing to adoption and the
overall effectiveness of the DHS in improving health outcomes.
The GEMS is therefore of relevance and value to HCPs, decision
makers, health insurance companies, and public health
institutions. The outcomes of the GEMS can assist these
stakeholders to identify important issues as perceived by
patients, and to develop strategies to address these issues and
improve the quality of their DHS.

Strengths and Limitations
The strength of the GEMS questionnaire lies in the convergence
of the four factors: convenience of use, perceived value,
efficiency of use, and satisfaction, its concise questionnaire
format, its adaptation to the language proficiency of the general
population, and its utility as a steering tool as it can be used
longitudinally in DHS implementation. The main strength of
this study is that we applied a 4-step structured methodology
to develop the GEMS questionnaire, consisting of both
qualitative and quantitative evaluation phases. We also included
2 functionalities of our electronic health records in our
evaluation in order to assure that the GEMS is applicable to a
range of self-management tools. One of the limitations of this
study is that a subset of patients may have been unable to
participate in these (digital) evaluations due to requirements
such as internet access, concentration, self-confidence, and

proficient reading skills. We recognize that these evaluations
cannot be used without considering potential issues of inequality
[78]. According to the literature, this can be due to several
reasons. First, the DHS may currently not be usable enough,
for instance, by not involving the users during the design phase
[79]. Second, health care professionals might be unfamiliar with
the technology and not offering these tools to all patients [80].
Third, patients may feel having inadequate knowledge to use
these tools [81], or have low (digital) literacy and therefore
unable to use the tool [82]. Hence, we recommend further
evaluating and refining the GEMS questionnaire in populations
characterized by low (digital) literacy. Currently, we are
conducting such a validation study within a demographic
comprising individuals with low socioeconomic status and
chronic obstructive pulmonary disease using a self-management
tool. For these groups, we will conduct the evaluation on paper,
using concept cards and translating the questions to graphics
that visually support the questions [83]. By adopting this
method, we aim to facilitate a comprehensive understanding of
usability and satisfaction tailored to the needs and preferences
of this specific population.

Because we used statements from various questionnaires, during
the initial validation phase of the GEMS, some questions had
different Likert scales. In order to ensure consistency in the
analysis, the scales were converted. As a result, this might
impact the interpretation of results, as the participants may
interpret and respond to the items differently due to an expanded
or contracted range of options [84,85]. Literature supports
rescaling of 5- and 7-point scales for comparison, although it
is noted that these scales may produce higher mean scores
compared with a 10-point scale [84]. Finally, If the GEMS is
used in another cultural setting, correct linguistic and cultural
translation is needed to ensure content validity [86]. In order to
facilitate this, an ongoing study is being conducted to assess a
German translation of the GEMS questionnaire.

Conclusion
The GEMS questionnaire, comprising 9 items, has demonstrated
its reliability and validity in assessing the usability and
satisfaction of DHS within a home environment. It offers
valuable insights into patient experiences with self-management
tools, covering aspects of convenience of use, perceived value,
efficiency of use and satisfaction. This development and
validation study has been conducted with patient populations
using medication reminders and home measurements. Further
refinement is necessary in order to confirm the efficacy and
applicability of the GEMS questionnaire in patient populations
with low digital literacy. Using the GEMS questionnaire as a
steering metric reflects a dedication to improving usability and
satisfaction within DHS. In conclusion, the GEMS may promote
development of a robust DHS , which enriches experienced
usability and satisfaction and augments the efficacy of the DHS,
thereby fostering positive health outcomes.
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Abstract

Background: Machine learning models can reduce the burden on doctors by converting medical records into International
Classification of Diseases (ICD) codes in real time, thereby enhancing the efficiency of diagnosis and treatment. However, it
faces challenges such as small datasets, diverse writing styles, unstructured records, and the need for semimanual preprocessing.
Existing approaches, such as naive Bayes, Word2Vec, and convolutional neural networks, have limitations in handling missing
values and understanding the context of medical texts, leading to a high error rate. We developed a fully automated pipeline based
on the Key–bidirectional encoder representations from transformers (BERT) approach and large-scale medical records for
continued pretraining, which effectively converts long free text into standard ICD codes. By adjusting parameter settings, such
as mixed templates and soft verbalizers, the model can adapt flexibly to different requirements, enabling task-specific prompt
learning.

Objective: This study aims to propose a prompt learning real-time framework based on pretrained language models that can
automatically label long free-text data with ICD-10 codes for cardiovascular diseases without the need for semiautomatic
preprocessing.

Methods: We integrated 4 components into our framework: a medical pretrained BERT, a keyword filtration BERT in a
functional order, a fine-tuning phase, and task-specific prompt learning utilizing mixed templates and soft verbalizers. This
framework was validated on a multicenter medical dataset for the automated ICD coding of 13 common cardiovascular diseases
(584,969 records). Its performance was compared against robustly optimized BERT pretraining approach, extreme language
network, and various BERT-based fine-tuning pipelines. Additionally, we evaluated the framework’s performance under different
prompt learning and fine-tuning settings. Furthermore, few-shot learning experiments were conducted to assess the feasibility
and efficacy of our framework in scenarios involving small- to mid-sized datasets.

Results: Compared with traditional pretraining and fine-tuning pipelines, our approach achieved a higher micro–F1-score of
0.838 and a macro–area under the receiver operating characteristic curve (macro-AUC) of 0.958, which is 10% higher than other
methods. Among different prompt learning setups, the combination of mixed templates and soft verbalizers yielded the best
performance. Few-shot experiments showed that performance stabilized and the AUC peaked at 500 shots.
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Conclusions: These findings underscore the effectiveness and superior performance of prompt learning and fine-tuning for
subtasks within pretrained language models in medical practice. Our real-time ICD coding pipeline efficiently converts detailed
medical free text into standardized labels, offering promising applications in clinical decision-making. It can assist doctors
unfamiliar with the ICD coding system in organizing medical record information, thereby accelerating the medical process and
enhancing the efficiency of diagnosis and treatment.

(JMIR Med Inform 2025;13:e63020)   doi:10.2196/63020

KEYWORDS

BERT; bidirectional encoder representations from transformers; pretrained language models; prompt learning; ICD; International
Classification of Diseases; cardiovascular disease; few-shot learning; multicenter medical data

Introduction

Background
The International Classification of Diseases, 10th Revision
(ICD-10), is a universally recognized diagnostic categorization
system widely used in medical insurance reimbursements, health
reporting, mortality assessments, and related fields [1]. The
ICD-10’s automatic coding mechanism enables rapid and
accurate classification and statistical analysis of medical data,
offering a scientific foundation for effective hospital
administration and decision-making. In addition, the ICD-10
automatic coding system accelerates disease diagnosis and
treatment planning for medical practitioners, thereby improving
medical efficacy and quality. Compared with the original ICD
code, ICD-10 provides over 14,000 distinct disease codes (in
contrast to the thousands in ICD-9), enabling more detailed
disease classification. This comprehensive system offers
clinicians enhanced patient information, supporting the
development of more precise treatment plans and care programs,
ultimately improving the quality of care and patient satisfaction.
Moreover, as an internationally standardized code, ICD-10 is
essential for global public health surveillance, epidemiological
research, and international medical cooperation. Consequently,
ensuring accurate ICD coding remains a critical priority in
clinical practice.

In hospital settings, the assignment of ICD codes to unstructured
clinical narratives in medical records is a manual task performed
by skilled medical coders based on the attending physician’s
clinical diagnosis. Despite its critical importance, this process
is often hindered by inefficiencies such as time consumption,
susceptibility to errors, and high costs. Additionally, manual
coding cannot always ensure the accuracy of ICD codes due to
the complexity of code assignment, which requires a thorough
consideration of the patient’s overall health condition, including
medical history, coexisting conditions, complications, surgical
interventions, and specialized diagnostic procedures [2,3].

Machine Learning Techniques
The need to enhance efficiency and reduce errors has driven
the development of various machine learning techniques to
automate the medical ICD coding process. These techniques
can be broadly classified into 4 main categories: rule-based
systems [4,5], traditional supervised algorithms [6,7], gate
unit–based deep learning approaches [7-9], and pretrained
language models (PLMs) [9-19].

First, rule-based systems for automatic ICD coding rely on the
creation of explicit rules and knowledge bases to map medical
records to the appropriate ICD codes [4,5]. Although these
approaches have been used for decades and have provided a
foundation for more advanced techniques, they are limited by
their lack of adaptability and scalability.

Second, traditional supervised algorithms, such as
gradient-boosted trees, have been utilized for ICD coding due
to their efficiency in handling large-scale, high-dimensional
datasets. These algorithms rely on semistructured preprocessing,
which involves organizing and refining semistructured data into
a format suitable for analysis [6,7]. For example, Diao et al [6]
developed a light gradient boosting machine–based pipeline for
automatically coding 168 primary diagnosis ICD-10 codes from
discharge records and procedure texts, achieving an accuracy
of 95.2%. Another study integrated long short-term memory
networks with attention mechanisms to predict mortality in ICU
patients using electronic health records, achieving significantly
higher area under the receiver operating characteristic curve
(AUC) scores compared with traditional statistical models and
stand-alone long short-term memory networks [7].

Third, PLMs are neural network models with fixed architectures
trained on large corpora, which can be fine-tuned for specific
downstream tasks such as question answering and entity
recognition [10-13]. A notable example is bidirectional encoder
representations from transformers (BERT), a prominent PLM
designed to learn deep bidirectional representations from
large-scale unlabeled text data. BERT effectively captures
semantic relationships in clinical records and can be easily
adapted to various natural language processing (NLP) tasks
through task-specific layers [13]. Coutinho and Martins [14]
proposed a BERT model with a fine-tuning method for
automatic ICD-10 coding of death certificates based on free-text
descriptions and associated documents. Additionally, Yan et al
[15] introduced RadBERT, an ensemble model combining
BERT-base, Clinical-BERT, the robustly optimized BERT
pretraining approach (RoBERTa), and BioMed-RoBERTa
adapted for radiology. Liu et al [16] evaluated RadBERT across
3 NLP tasks: abnormal sentence classification, report coding,
and report summarization, demonstrating significantly better
performance compared with existing transformer language
models. Unstructured patient-generated health data can be
leveraged to support clinical decision-making, remote
monitoring, and self-care, including medication adherence and
chronic disease management. By applying named entity
recognition and customizable information extraction methods
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based on medical ontologies, NLP models can extract a wide
range of clinical information from unstructured patient-generated
health data, even in low-resource settings with limited patient
notes or training data [17]. Textual analysis presents numerous
opportunities for future medical applications. It can aid in
extracting information from various sources of medical data,
such as clinical reports, nursing notes, scientific literature, and
user-generated content. Additionally, vector-based
representation methods can transform textual data within clinical
documents into formats suitable for machine learning and can
be applied to sequence modeling tasks, including sentiment
analysis [18].

Finally, XLNet is another type of PLM that captures both
forward and backward contexts of text [19]. It combines the
advantages of autoregressive models and autoencoding models
while overcoming their limitations. XLNet utilizes a
permutation-based objective function that maximizes the
expected likelihood of a text across all possible word orderings.
It also incorporates the Transformer-XL
(Transformer-Extra-Long) architecture, which enables long-term
dependency modeling and improved memory efficiency. XLNet
has been shown to outperform BERT and other baseline models
on several natural language understanding tasks.

Prompt Engineering Techniques
By contrast, prompt engineering is a technique that involves
the careful construction of prompts or inputs for artificial
intelligence models to improve their performance on specific
tasks. This technique includes selecting appropriate words,
phrases, symbols, and formats to guide a large language model
in generating high-quality and relevant text. Numerous studies
have used prompts for model tuning to bridge the gap between
pretraining objectives and downstream tasks, demonstrating
that both discrete and continuous prompts can improve
performance in few-shot and zero-shot tasks [20,21].
Furthermore, this technique within PLMs has been shown to
outperform fine-tuning in various clinical decision-making tasks
[22]. It has the advantage of requiring less data and
computational resources, making it especially suitable for
clinical settings.

There are 2 primary categories of prompting methods: hard
prompts and soft prompts [22-25]. Hard prompts involve using
an actual text string as the prompt and include methods that
automatically search for templates within a discrete space, such
as mining-based, paraphrasing-based, and gradient-based
approaches [26-28]. The advantages of hard prompts are
interpretability, portability, flexibility, and simplicity. However,
designing effective prompts for specific tasks requires significant
effort and creativity.

Soft prompts, by contrast, are learnable tensors concatenated
with the input embeddings and can be optimized for a given
dataset. The main advantage of soft prompts is their ability to
achieve better performance than hard prompts by adapting to
the model and the data. However, they are not human-readable
and lack portability across different models.

Prefix tuning and P-tuning are 2 methods of prompt engineering
that can enhance performance beyond traditional fine-tuning

[22-24]. Prefix tuning is a lightweight approach that keeps the
PLM parameters unchanged while optimizing a sequence of
task-specific vectors called the prefix [23]. This prefix is added
to the input and interacts with the model’s hidden states at each
layer. Its success depends on how effectively the prefix is
initialized, particularly when data are limited. P-tuning is another
prompt tuning strategy that performs comparably to fine-tuning
across various tasks [24]. It reduces the number of PLM
parameters through self-adaptive pruning and tunes a small
number of continuous prompts at the beginning of each
transformer layer.

The verbalizer is the final layer that defines the answer space
and maps it to the target output. Typically, verbalizers are
manually created, which can limit their coverage due to personal
vocabulary biases [21,29]. To address this, some studies have
proposed automatic verbalizer search methods to identify more
effective verbalizers, also known as soft verbalizers [20,30-32].

Autonomous ICD Coding in Cardiovascular Disease
Cardiovascular disease (CVD) is currently a leading cause of
death worldwide, posing a significant risk of mortality among
patients [7]. Automatically labeling patients with CVD is
essential for clinical decision-making and resource allocation.
However, existing prediction models have limitations, including
low accuracy, limited generalizability, and an inability to capture
multicenter data. To address these challenges, we propose a
prompt learning real-time framework based on PLMs that can
automatically label long free-text data with ICD-10 codes for
CVDs without the need for semiautomatic preprocessing.

Our framework consists of 4 components: a medically oriented
pretrained BERT, a keyword filtration BERT, a fine-tuning
phase, and task-specific prompt learning facilitated by mixed
templates and soft verbalizers. To validate the efficacy of our
framework, we conducted comprehensive evaluations on a
Chinese multicenter cardiovascular dataset that includes data
from 13,000 patients with CVD. This deliberate choice of dataset
ensures the robustness and wide applicability of our framework.
We compared our framework with RoBERTa, XLNet, and
various BERT-based fine-tuning pipelines to highlight its
performance. Additionally, we conducted few-shot experiments
to demonstrate its resilience. This work promises to provide
valuable insights into enhancing medical knowledge extraction
and its effective application, underscoring the need for continued
research and development in this promising area. In future work,
we plan to implement this fully automated ICD coding pipeline
across various clinical applications, including clinical decision
support systems, cohort studies, and disease early warning and
diagnosis systems.

Methods

Ethical Considerations
The study was approved by the Ethics Committee of the Chinese
PLA General Hospital (S2023-325-02). Ethical approval
included a waiver for obtaining informed consent signatures
from participants. The study posed no potential harm to
participants and did not involve any compensation for their
participation. To protect patient privacy, we used regular
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expressions to parse and redact basic identifying information
from the medical records. As these records were created using
a standardized template, we ensured that the excerpts extracted
for this study did not contain patients’ names.

Overview
The overall framework of the model is shown in Figure 1. We
used a corpus dataset of 575,632 clinical notes to continue
training the original BERT model, which we named medical
domain refinement-BERT (MDR-BERT), as the PLM for our
work. For the classification task, we first applied Key-BERT
to filter the discharge summaries. This method extracts keywords
and splits long free-text data into shorter sentences.

We then constructed the input template for fine-tuning and
prompt learning using 3 components: the soft prompt, the
manual prompt, and the mask part. The manual prompt was a
handcrafted text prompt containing discrete tokens. The soft
prompt was a learnable pseudo-token with a few continuous
parameters. The mask part represented the ICD coding label.
Finally, we used a trainable soft verbalizer to compute and apply
the softmax function to the probabilities of the ICD classes,
producing the output. By designing specific prompts, it is
possible to incorporate the knowledge of medical experts into
the model, helping it better understand and perform ICD coding.
These prompts can direct the model to focus on critical sections
of the input text, thereby enhancing performance.

Figure 1. Overall framework of MDR-BERT, Key-BERT, and prompt learning pipeline. BERT: bidirectional encoder representations from transformers;
ICD: International Classification of Diseases; MDR: medical domain refinement.

Dataset Characteristics
The cardiovascular dataset used in this study was obtained from
the Cardiovascular Department of the Chinese PLA General
Hospital’s Medical Big Data Research Center in Beijing, China,
which includes 9 medical centers with data aggregated into a

comprehensive medical big data platform. Additionally, the
hospital is a key center for the treatment of CVDs, with
numerous specialized physicians and detailed medical records,
making its data highly practical and representative. To ensure
privacy, patient names and addresses were desensitized. The
data platform consists of electronic health records aggregated
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from 8 affiliated medical centers. A total of 584,969 clinical
notes with structured ICD labels were extracted from admission
records and discharge summaries in the Cardiovascular
Department. We ensured that each diagnosis included at least

50 cases and adopted a stratified sampling approach to divide
each disease category into training, validation, and test sets in
a 3:1:1 ratio. The detailed distribution and basic statistical
information of the dataset are shown in Figure 2.

Figure 2. Distribution and basic statistical information of the data set. ICD: International Classification of Diseases.

Based on the long-tailed distribution and clinician selection, 13
diseases were chosen for classification. These diseases include
atrial fibrillation, acute myocardial infarction, infective
endocarditis, acute left heart failure, acute coronary syndrome
(ACS), acute aortic dissection, hypertensive emergency, acute
pulmonary embolism, acute myocarditis, ventricular tachycardia,
cardiogenic shock, acute heart failure, and third-degree
atrioventricular block. The corresponding ICD-10 codes and
abbreviations for these diseases are listed in Table 1. Despite
the disparity in the number of cases for different diseases, the
imbalance inherent in medical data accurately reflects real-world
conditions, taking into account the clinical insights of medical
professionals. This imbalance represents the varying frequency
at which different diseases occur in clinical practice. By
preserving the raw data distribution and avoiding artificial
balancing, our training approach aligns more closely with
real-world medical practice. As a result, this enhances the
model’s generalization ability and its applicability in practical
scenarios.

To ensure task independence and prevent data leakage, all
clinical notes were divided into 2 parts: the pretraining corpus
dataset and the ICD coding dataset. The pretraining corpus
consisted of a total of 575,632 notes, while the ICD coding
dataset included 9337 discharge records. The data were stratified
by imbalanced ICD labels and randomly split into training,
validation, and test sets in a 3:1:1 ratio. The sample sizes were
as follows: 5734 in the training set, 1913 in the validation set,
and 2007 in the test set. We applied regularization to truncate
patients’basic information, as this information could negatively
impact the model’s fitting.

As shown in Figure 3, the distribution of the 13 ICD codes was
imbalanced and exhibited a long-tail pattern. The dataset for

ICD classification contains a total of 4.574 × 107 words, with
an average of 490 words per note. The maximum and minimum
lengths of the clinical notes are 5243 and 22 words, respectively.
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Table 1. Overview of target International Classification of Diseases (ICD) codes and disease names.

Disease (abbreviation)International Classification of Diseases code

Atrial fibrillation (AF)I48.0

Acute myocardial infarction (AMI)I21.9

Infective endocarditis (IE)I33.0

Acute left heart failure (ALHF)I50.1

Acute coronary syndrome (ACS)I20.9

Acute aortic dissection (AAD)I71.0

Hypertensive emergency (HE)I10.1

Acute pulmonary embolism (APE)I26.0

Acute myocarditis (AM)I51.4

Ventricular tachycardia (VT)I47.2

Cardiogenic shock (CS)R57.0

Acute heart failure (AHF)I50.2

Third-degree atrioventricular block (TAB)I44.2

Figure 3. Distribution of ICD codes for the triage task. ICD: International Classification of Diseases.

Pretraining
Our study’s foundational framework is based on BERT, a
multilayer bidirectional transformer encoder known for its
conceptual simplicity and empirical effectiveness [33]. This
architecture consists of 12 layers, a hidden size dimension of
768, and 12 self-attention heads [13]. BERT’s inherent
self-attention mechanism provides the versatility to handle
various downstream tasks by allowing the interchange of
relevant inputs and outputs, making it well-suited for our task
involving ICD classification through clinical records.

To adapt BERT to the specific requirements of our task, we
continued training the PLM using an extensive medical corpus,
resulting in MDR-BERT. During the tuning process, we selected
a batch size of 32, considering the constraint of a maximum

sequence length of 512 tokens. The Adam optimization
algorithm was used with a conservative learning rate of 2 ×

10–5. The training was carried out over 15 epochs, an empirically
determined figure based on the characteristics of the clinical
dataset.

Key-BERT
The Key-BERT method offers a novel self-supervised
framework for extracting keywords and keyphrases from textual
content using deep learning techniques [34]. This approach
leverages the contextual and semantic features provided by
bidirectional transformers, with a particular focus on the
influential BERT model. The method’s architecture is designed
for end-to-end training, utilizing a contextually self-annotated
corpus that enables the model to develop a nuanced
understanding of the complex relationships between words and
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their semantic meanings. In the ICD coding task, Key-BERT
leverages BERT’s context-aware capabilities to extract
keywords from the document, quickly identify the sections
relevant to ICD coding, and reduce the risk of miscoding caused
by misinterpreting or overlooking critical information in the
text.

A distinctive feature of Key-BERT lies in its automated keyword
labeling process. This process effectively utilizes contextual
insights from bidirectional transformers to construct a carefully
curated ground truth dataset. This approach bypasses the
labor-intensive task of manual labeling and eliminates the need
for domain-specific expertise.

The repository of self-labeled data generated by Key-BERT is
partially shared with the NLP community, contributing to a
deeper and more comprehensive understanding of keyword
extraction techniques across various domains. This collaborative
effort enhances the landscape of knowledge and expertise,
driving advancements in the field of NLP and semantic
information extraction.

To extract keywords using Key-BERT, the contextual feature
vector for each word in a sentence is obtained by passing the
sentence through the pretrained BERT model. Let S = [w1, w2,
..., wn] be a sentence consisting of n words, where wi is the ith
word in the sentence and Ei is the contextual feature vector of
the ith word in the sentence. The sentence embedding vector,
denoted as Es, is obtained by averaging the feature vectors of
all the words in the sentence:

Ei = BERT_Embedding(wi) (1)

Es = (E1 + E2 + ···+ En)/(n) (2)

The cosine similarity metric is used to measure the similarity
between the sentence embedding vector and the feature vectors
of candidate keywords or keyphrases.

Cos_SIM(Ei, Es) = (Ei × Es)/(||Ei|| × ||Es||) (3)

The top-scoring keywords or keyphrases are returned as the
most relevant to the document. Additionally, key medical terms
are directly extracted using the medical diagnostic table,
ensuring that essential terminology is accurately identified and
applied.

Fine-Tuning and Prompt Learning
To fully leverage the clinical knowledge embedded within the
dataset, our fine-tuning approach mirrors the unsupervised task
used in the initial pretraining phase, known as masked language
modeling (MLM). MLM involves randomly masking a
predetermined proportion of input tokens, and the model then
attempts to predict these masked tokens based on context. This
process, commonly called a Cloze task, helps the model learn
contextual relationships effectively.

For the fine-tuning phase in this study, we maintained the MLM
framework to align with the pretraining procedure. A consistent
masking rate of 15% was applied across the dataset. In addition
to the fine-tuning process, we introduced prompt learning during
parameter tuning. This approach involved the construction of
a template comprising 4 distinct components: the input text, a
soft prompt, a manual prompt, and a masking component. The

manual prompt included discrete tokens that reflected the
downstream task expected by the PLM. By contrast, the soft
prompt comprised trainable continuous vectors, which enhanced
the model’s adaptability.

Formally, automatic ICD coding, as a text multiclassification
task, can be denoted as (x, y), where x is the set of discharge
summaries and y is the ICD code set of the 17 chosen discharge
diagnoses as labels. Given a clinical record x ∈ X, it can be

annotated with ICD codes of discharge diagnosis yx ∈ Y and a
sequence of discrete input tokens x = (x0, x1, ..., xk), where k is
the number of tokens in the sequence. Prompt learning can be
achieved via modifying the x to a prompt format x = fp(x), where
the template fp(·) will insert a number of extra embeddings to
x along with a masked token, denoted by <[MASK]>. Compared
with hard prompts, soft prompts replace some fixed manual
components with trainable embeddings (continuous vectors) of
the same dimension as the PLM. After that, x is fed into M, to
predict the masked token, which is in accordance with the
objective of M. The output of M will be a distribution over the
fixed vocabulary V of M. The next crucial step is to map tokens

in V to y for the downstream task with a mapping , known
as verbalization. In a word, there are 2 essential components to
be studied, the template of prompt x′ = fp(x) and the mapping

of verbalizer .

A mixed template of prompts in this paper is used. For
simplicity, the prompt function x′ = fp(x) is denoted as a
sequence template:

x′ = [P0, P1, …, Pj], x, [Pj+1, Pj+2, …, Pt], [MASK] (4)

where Pi refers to the ith token in the template and t is the
number of prompt tokens beyond x. Pi does not necessarily meet
Pi ∈ V other than manual hard prompt. As x′ is fed to the PLM,
the prompt tokens are also mapped to the embedding space,
where we can assume that the tokens denoted as <[soft]> in the
template can be tuned during training as pseudo-tokens. A
simple example of a prompt template for automatic ICD coding
could be as generated as follows:

x′ = <x><[soft]>be encoded as <[MASK]> (5)

Once these templates were formulated, the model inputs, along
with the established templates, were processed through the
trainable MDR-BERT model. Notably, in the final layer of the
most advanced pipeline, a soft verbalizer mode was used. This
mode manages the mapping process between the predicted
tokens and the final ICD codes. The innovative feature of the
soft verbalizer is its substitution of tokens in the verbalizer with
trainable vectors, each tailored to a specific class. Generally,
the verbalizer maps the probabilities of infrequent words in the
vocabulary to the probabilities of the labels. The set of label
words is denoted as V, the label space is Y, and Vy represents
the subset of label words for label y. The final estimation of the
probability for label y is calculated using equation 5, where g
is utilized to convert the probability of label words to the
probability of the label:

P(y|x_P) = g(PM([MASK] = v|X_P)|v ∈ Vy) (6)
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This strategy enhances the precision and semantic accuracy of
the generated outputs, enabling a more precise alignment
between predicted tokens and the definitive ICD codes.
Consequently, it is unnecessary to manually build an explicit

mapping . for the soft verbalizer, as the trainable vectors do
not have explainable semantic meaning. A matrix operator can

represent the soft verbalizer as [22-25], where n represents
the size of y and m represents the dimension of output
embeddings from M. For the verbalizer, θi denotes the ith row

of as the trainable vector of the ith class. The soft verbalizer
replaces the original decoder head of M by mapping the
embeddings of x′ from M, denoted as e(x′), to the distribution

over the classes of y. We denote the resulting mapping from 

to the prediction of the embedding of <[MASK]> as , where
l is the sequence length of x′. And then, the probability of class
y can be calculated as follows:

The loss from the automatic ICD coding task can be
backpropagated to tune only the embeddings for the prompt
template and the verbalizer. The loss function can be expressed
as follows:

Ultimately, the model learns to generate and map the most
appropriate ICD codes to the corresponding discharge record.

The experiments were conducted using the OpenPrompt
framework [22-25]. For prompt learning, we utilized the
Adafactor optimizer for soft and mixed prompt templates, while
the AdamW optimizer was used for the PLMs and soft
verbalizers. In conventional fine-tuning, we applied the AdamW
optimizer to the MLP heads and PLMs. To expedite the
experiments, we used 2 Nvidia TESLA V100 GPUs, each with
16-GB memory, and set the batch size to 32 due to memory
constraints.

The model’s performance is influenced by variations in
hyperparameters. In the comparisons presented, hyperparameters
were carefully optimized for each model. To determine the
optimal configuration, we used a random search strategy. This
approach involves generating multiple random combinations
of parameters, evaluating the performance of each combination,
and selecting the one that yields the best results. Accuracy and
AUC were chosen as the primary optimization objectives during
the random search, as they intuitively reflect the model’s
classification performance. The strategy involved 100 training
runs, each using randomly generated hyperparameters from the
defined search space. To effectively address model overfitting,
we carefully adjusted the dropout rate within a range of 0.1-0.5.
After numerous training iterations, we found that the optimal
dropout rate for the prompt learning phase is 0.382, while for
the prompt tuning phase, it is 0.1563. In the prompt learning
phase, a higher dropout rate contributes to improved
generalization, serving as an effective safeguard against
overfitting. In the subsequent fine-tuning phase, a lower dropout
rate is used to ensure the model retains its learned attributes
while enabling further performance enhancement. The optimal
hyperparameters for the models are detailed in Table 2.

Table 2. The optimal hyperparameters and their search space.

Optimal hyperparameterSearch spaceHyperparameters

Fine-tuningPrompt learning

0.01210.0048log.uniform [1*10-5, 3*10-1]Learning rate

444Batch size

34range[2,10]Gradient accumulation steps

0.15630.382range[0.1,0.5]Dropout

adafactoradamw[adamw, adafactor]Optimizer

—a0.3log.uniform[1*10-5, 3*10-1]Prompt learning rate

—0.007log.uniform[1*10-5, 1*10-1]Verbalizer learning rate

aNot available.

Evaluation Metrics
To thoroughly evaluate and compare the performance of the
models, we used a range of metrics, including micro–F1-score,
macro-AUC, and accuracy. The definitions for micro-averaged
precision and micro–F1-score are provided in equations 9-11,
while the macro-AUC is defined in equations 12 and 13.

Micro–F1-score = [2 × (micro-P) × (micro-R)]/[(micro-P) +
(micro-R)] (11)

where TPi, FPi, and FNi represent true positives (correctly
assigned instances), false positives (incorrect assignments by
automated methods), and false negatives (correct instances
omitted by automated methods), respectively, of code i, and l
is the size of the sample space. The micro–F1-score is the
harmonic mean of micro-P and micro-R, and a bigger value of
micro–F1-score indicates a better performance.
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where n is the number of thresholds and K is the number of
classes.

Data and Code Availability
Data acquisition requests can be made by contacting the
corresponding author (KH). Given the sensitive nature of the
hospital data, it cannot be released publicly. However, part of
the downstream subtask data is currently undergoing
desensitization and approval processes. The source code for this
study is publicly available on GitHub [35].

Results

Performance of Different Pipelines
To evaluate the performance of different methods, we
implemented 4 state-of-the-art algorithms: BERT [15], XLNet
[18], RoBERTa [19,36], and prompt learning [22]. These PLMs
were integrated with various algorithms to create 6 main
pipelines: BERT with fine-tuning, XLNet with fine-tuning,
RoBERTa with fine-tuning, BERT with prompt learning,
MDR-BERT with prompt learning, and MDR-BERT with both
fine-tuning and prompt learning. MDR-BERT is a PLM
developed by further pretraining BERT on our medical corpus.

As shown in Figure 4, MDR-BERT with fine-tuning and prompt
learning achieved the highest performance across all evaluation
metrics, with a micro–F1-score of 0.838, a macro-AUC of 0.958,
and an accuracy of 0.838. MDR-BERT with prompt learning
alone performed slightly worse than the combined fine-tuning

and prompt learning approach, but both outperformed the other
pipelines by a significant margin. This suggests that continued
pretraining on clinical records can significantly enhance the
performance of the PLM for the task, while freezing parameters
may hinder the adaptation of smaller PLMs to the task.

Among the other pipelines, BERT with prompt learning
achieved the highest accuracy (0.67) and the highest
micro–F1-score (0.64), though its macro-AUC (0.79) was
slightly lower than that of RoBERTa with fine-tuning. This
suggests that prompt learning, as a lightweight tuning approach,
can match or even surpass traditional fine-tuning methods,
aligning with the findings of Taylor et al [22].

We also conducted a comparison with state-of-the-art methods
and selected 2 prominent models: mt5-xxl (11B) and
Qwen2.5-72B-Instruct. Among these, mt5-xxl demonstrated
the best performance in text classification, while
Qwen2.5-72B-Instruct excelled as a large language model. For
mt5-xxl, we fine-tuned the model using the training and
validation sets from our fine-tuning dataset, setting the
“prefix_text” to “Classify the following text:”. For
Qwen2.5-72B-Instruct, we conducted experiments using both
zero-shot and retrieval augmented generation methods. In the
zero-shot setting, we used prompts to constrain the diagnostic
scope, allowing the model to make inferences based on the input
information. For the retrieval augmented generation approach,
we first encoded the training set using BGE-M3 (BAAI general
embedding multilinguality, multigranularity, and
multifunctionality) and stored it in a Faiss vector database.
During the testing phase, we retrieved cases and classification
results relevant to the input content and concatenated them with
the prompt to enhance model performance.

Figure 4. The optimal hyperparameters and their search space. AUC: area under the receiver operating characteristic curve; BERT: bidirectional encoder
representations from transformers; MDR: medical domain refinement; RoBERTa: robustly optimized BERT pretraining approach; XLNet: extreme
language network.

The experimental results indicate that the micro–F1-score for
the mt5-xxl method is 0.846, and the AUC value is 0.945. In
comparison, the micro–F1-score for the Qwen2.5-72B-Instruct

method was 0.822, and the AUC value was 0.848. However,
the accuracy of both methods does not surpass that of our
MDR-BERT model (Figure 5). After a series of strategic
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optimizations, our MDR-BERT model achieved results
comparable to the fine-tuned mt5-xxl on specific tasks. This is
primarily due to the specific structure of the medical records,

which can be effectively captured by models with fewer
parameters, meaning that overly complex models are not
necessary to achieve good performance.

Figure 5. Micro-F1-score and AUC values for the MDR-BERT model versus the QWEN2.5 and mt5-xxl models. AUC: area under the receiver operating
characteristic curve; MDR: medical domain refinement; BERT: bidirectional encoder representations from transformers.

Performance of Different Prompt Learning Modes
We evaluated the performance of MDR-BERT under various
settings of prompt learning and fine-tuning, using 3 types of
templates (manual, soft, and mixed) and 2 types of verbalizers
(manual and soft) as hyperparameters.

For templates, both scripted and self-adaptive patterns performed
well independently, and their combination had a cumulative
positive effect on performance. For verbalizers, the self-adaptive
type outperformed the traditional manual vectors and had a
greater impact on overall performance. As shown in Figure 6,
the combination of mixed templates and the soft verbalizer
achieved the best results.

Figure 6. Comparison among different prompt combinations in verbalizer and template. AUC: area under the receiver operating characteristic curve.

Take the following prompt template as an example:

Mixed template: {“placeholder”: “text_a”} patient {“soft”:“
can be diagnosed as ”} {“mask”}.

For the following case:

The patient was discovered to have bradycardia and
unconscious disturbance 7 days ago as a result of
physical examination. After consultation with the
director, lipid-lowering drugs were added. No
diarrhea was detected, and no medication was
administered at home. Permanent cardiac pacemaker
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implantation under local anesthesia was carried out,
and after the surgery, cephalosporin for injection was
utilized to prevent infection.

The classification result by our model is as follows: “The patient
can be diagnosed as {third-degree atrioventricular block}.”

For the mixed template, the patient’s bradycardia requires
management through the implantation of a permanent
pacemaker, indicating that bradycardia is a major medical
concern. By applying soft verbalizers, we can guide the correct
diagnosis by emphasizing both the reason for the pacemaker

implantation and the underlying cause of bradycardia: “The
patient can be diagnosed with third-degree atrioventricular
block.”

Performance of MDR-BERT With Fine-Tuning and
Prompt Learning
We evaluated the performance of the MDR-BERT pipeline,
incorporating both fine-tuning and prompt learning, for each
ICD code using precision, recall, and micro–F1-score. Figure
7 presents the results for these metrics across the 13 ICD classes.

Figure 7. Precision, recall, and micro-F1 scores of every ICD code in the MDR-BERT pipeline with fine-tuning and prompt learning. BERT: bidirectional
encoder representations from transformers; ICD: International Classification of Diseases; MDR: medical domain refinement.

The pipeline achieved high scores for most ICD codes, although
the scores varied depending on the data distribution and sample
size for each code. We observed a weak positive correlation
between sample size and model performance, suggesting that
larger samples enhanced the model’s learning capability.
Conversely, smaller samples tended to have lower
micro–F1-scores, with a trade-off between precision and recall
for certain classes. Although our prediction accuracy for ACSs
is relatively low, further analysis revealed that in actual clinical
settings, ACS was frequently misdiagnosed as cardiac edema
(hypertensive emergency) and pulmonary embolism (acute
pulmonary embolism). These diseases exhibit similar clinical
manifestations and, therefore, require meticulous differential
diagnosis to rule out other possibilities. We believe that the
overlap of symptoms is a major cause of the difficulty in
classifying the model and that inconsistencies in medical
histories recorded by physicians further complicate the model’s
ability to differentiate similar pathologies. Despite these
variations, our pipeline demonstrated satisfactory performance
across the different ICD codes.

Few-Shot Learning
We conducted few-shot experiments to evaluate the performance
of the fine-tuned MDR-BERT with the prompt learning pipeline
using different sample sizes from the training set. We randomly

selected samples ranging from 1 to 4000 and evaluated the
models on the test set. Figure 8 shows the accuracy,
micro–F1-score, and macro-AUC scores for each sample size.

The objective of small-sample learning is to develop models
that can learn effectively and make accurate predictions with
only a small number of samples, such as 500 or fewer. As shown
in Figure 8, when the sample size reaches 500, the model’s
accuracy, AUC score, and other indicators not only achieve
relatively high scores but also reach an inflection point and
plateau. At this point, the model produces a relatively
satisfactory outcome. This indicates that for the task of ICD
coding using medical records, 500 samples may be sufficient
for the model to learn the key features needed to distinguish
between different diagnoses. It suggests that the model has
captured enough information to make effective predictions.
Additionally, the workload involved in annotating 500 medical
texts is manageable and feasible. This number strikes a balance
between the effort required for data preparation and the
performance gains achieved by the model. Given the complexity
and specialized nature of medical records, annotating 500
examples provides a comprehensive representation of the dataset
while staying within practical limits. This makes it a reasonable
and efficient choice for training the model to achieve satisfactory
performance in ICD coding tasks.
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Figure 8. Few shots experiments on MDR-BERT with fine-tuning and prompt learning. AUC: area under the receiver operating characteristic curve;
BERT: bidirectional encoder representations from transformers; MDR: medical domain refinement.

Discussion

Principal Findings
An automated ICD coding system for long free-text data is a
fundamental platform for clinical research and practice,
including clinical trials and pharmacoeconomic management.
In this study, we developed a framework based on Key-BERT,
a continuously trained and tunable PLM, combined with
task-specific prompt learning. We collected a total of 584,969
clinical notes from admission records and discharge summaries
in the cardiovascular departments of 8 medical centers.

We used most of the data to continue pretraining a medical
corpus and used an independent set of 9337 discharge records
with 13 ICD codes for CVDs in the ICD classification subtask.
Although the MDR-BERT model has some limitations, such as
restricted generalization capacity and constraints on the length
of context it can effectively process, it is important to note that
medical texts often have a consistent structure and are generally
less dependent on extensive contextual information. Given these
characteristics of medical literature, our model is designed to
avoid the errors commonly associated with the inherent
limitations of BERT’s methodology. The structured nature of
medical documents enables the MDR-BERT model to function
effectively within its designed parameters, mitigating potential
issues that could arise from the broader weaknesses of the BERT
framework when applied to more contextually complex or varied
text types. To remove irrelevant information and limit the input
token size, we filtered and truncated all the data for the ICD
task into keyword-based segments using Key-BERT. The data
were then stratified and split into training, validation, and test
sets, with the test set used independently for final evaluation.

This study primarily focused on transformer-based algorithms,
which have been widely applied and shown superior
performance in large-scale medical long free-text tasks
[4,11,16,17]. These algorithms can leverage PLMs that capture
the semantic and syntactic information of natural language from
extensive corpora, leading to significant performance
improvements through multicenter datasets.

We compared 6 pipelines for the classification downstream
task: BERT with fine-tuning, XLNet with fine-tuning, RoBERTa
with fine-tuning, frozen BERT with prompt learning, frozen
MDR-BERT with prompt learning, and tunable MDR-BERT
with prompt learning. The prompt learning setup included 3
types of templates and 2 types of verbalizers. Among these
pipelines, MDR-BERT with fine-tuning and prompt learning
achieved the best performance on the test set, attaining a
micro–F1-score of 0.838, a macro-AUC of 0.958, and an
accuracy of 0.838.

Compared with the pretraining models of RoBERTa and XLNet,
our model achieved superior performance in terms of final
accuracy and micro–F1-score. This improvement was primarily
due to the targeted optimization of the methods and the medical
data we selected, which substantially enhanced the model’s
performance. Although RoBERTa and XLNet have larger
pretraining corpora compared with BERT, our approach
benefited more from using a continuation training corpus built
from real electronic health records. This specialized data,
tailored to our specific requirements, provided a greater
enhancement to the model than more general pretraining data.
This is why MDR-BERT performs comparably to, or better
than, these alternatives in our settings. The favorable outcome
of this pipeline can be attributed to the use of a large-scale
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corpus-based PLM and the task-specific enhancements from
the combination of fine-tuning and prompt learning
[16,20,22-25]. Fine-tuning acts as a model adapter, aligning the
model distribution with the task distribution and addressing
domain shift and task mismatch issues inherent in PLMs. Prompt
learning, with its compact prefix representation and sparse
attention mechanism, augments the training data with diverse
and natural examples. This augmentation helps mitigate data
scarcity and label noise issues in small-sized datasets for
downstream tasks.

The combination of fine-tuning and prompt learning acts as a
regularization term that balances model complexity with data
quality, ultimately enhancing overall performance. This
integrated approach highlights the potential of leveraging
advanced transformer-based models and customized learning
strategies to improve automated medical coding and other
clinical tasks.

Among the different prompt learning setups, the mixed template
and soft verbalizer achieved the best performance. The soft
template method outperformed the manual templates method,
which can be attributed to the greater semantic and syntactic
information, broader search space, and reduced trial-and-error
process associated with the soft template method, making it
more effective and less time-consuming [23,24].

The mixed template method is a hybrid approach that combines
the advantages of both soft and manual templates. It uses a
manual template as a base prompt to provide human-readable
instructions and natural language labels, while a soft template
serves as an auxiliary prompt to provide tunable embeddings
that can adapt to specific downstream tasks. This way, the
manual template leverages existing knowledge, while the soft
template enhances expressiveness and flexibility.

For the verbalizer, the self-adaptive type had a significantly
greater impact on overall performance compared with traditional
manual vectors. The soft verbalizer adjusts to the optimal label
space for each task and the scale of the pretrained model, rather
than being limited by a fixed set of tokens [22,24]. This
enhances the accuracy and robustness of the predictions, as well
as the diversity and naturalness of the labels. Additionally, by
tuning the verbalizer alongside other continuous prompts, it
retains the benefits of prompt tuning over fine-tuning,
eliminating the need to maintain a separate copy of model
parameters for each task during inference.

To explore the influence of sample size on the performance of
our pipeline, we conducted few-shot experiments with a range
from 1 to 4000 shots. The results showed unsatisfactory
evaluation metrics for small-scale shots, but performance
improved rapidly and stabilized at around 500 shots. This
suggests that for mid-sized language models, such as BERT,
the semantic understanding and representation capabilities may
not be strong enough. Therefore, tuning the parameters of the
PLM with an appropriate sample size is necessary to achieve
better performance on specific tasks.

Our research confirms that ICD classification tasks can be
effectively accomplished by continuously optimizing the BERT
model. Although this study used cardiology data for training,

our model development strategy is not limited to this specific
dataset; substituting the training data with data from other
departments would also yield the expected outcomes. Therefore,
our model demonstrates remarkable generalization capability.
We firmly believe that the model we have developed, combined
with the expertise of professional physicians, can effectively
address the challenges of ICD classification for various diseases.

Limitations
Despite the reasonable performance of our pipeline, this study
has certain limitations. First, we trained both the corpus part
and the classification task of the framework solely in the
cardiovascular department. As a result, the conclusions of this
paper may not be generalizable to other medical fields. Second,
the ICD classification subtask only involved 13 CVD codes,
which is not comprehensive enough for clinical practice. Future
research could expand to explore the automatic encoding of
additional critical heart diseases or even extend to the entire
clinical field. This could potentially enhance the applicability
and effectiveness of the proposed approach for a broader range
of clinical tasks. Third, our model aims to establish an automated
analysis system using medical text. However, medical data are
inherently multimodal, and modality augmentation can lead to
improvements in accuracy. In this context, models such as label
alignment for multimodal prompt learning [37] and multimodal
equivalent transformer [38] are designed to handle multimodal
data, demonstrating the greater potential for future
advancements.

Conclusions
We proposed a real-time framework for ICD coding from long
medical field–related text to ICD labels, eliminating the need
for semistructured preprocessing. This framework incorporates
Key-BERT, a continuously trained and tunable PLM, and
task-specific prompt learning with mixed templates and soft
verbalizers. We evaluated our model on a multicenter
cardiovascular dataset and applied it to predict 13 ICD codes
for CVDs, achieving high performance. Our model also
demonstrated transferability and generalization across different
centers.

Furthermore, we conducted few-shot experiments to investigate
the impact of data size on model performance. The results
showed that while the framework was effective on smaller
datasets, a certain sample size was necessary to achieve a
relatively stable performance level. This study serves as a
benchmark for exploring the feasibility and performance of
prompt learning in the subtask of large language models or
PLMs. Using a multicenter dataset, the approach demonstrated
robust performance across hospitals, highlighting its potential
for broad deployment.

Few-shot learning experiments demonstrated feasibility with
small-scale datasets, enabling applications for local training on
single centers or various single-disease databases. The real-time
model identifies ICD codes directly, accelerating automated
coding compared with semiautomatic approaches that require
segment preprocessing. This is particularly impactful for clinical
decision support systems that rely on real-time ICD coding data.
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Overall, the prompt learning paradigm achieved cutting-edge
ICD assignment accuracy while offering deployability, few-shot
learning capacity, and low latency—advantages that are highly
beneficial for health care applications. This automated ICD

coding pipeline could be further implemented in various clinical
applications, such as clinical decision support systems, cohort
studies, and disease early warning and diagnosis systems.
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Abstract

Background: In this study, we evaluate the accuracy, efficiency, and cost-effectiveness of large language models in extracting
and structuring information from free-text clinical reports, particularly in identifying and classifying patient comorbidities within
oncology electronic health records. We specifically compare the performance of gpt-3.5-turbo-1106 and gpt-4-1106-preview
models against that of specialized human evaluators.

Objective: We specifically compare the performance of gpt-3.5-turbo-1106 and gpt-4-1106-preview models against that of
specialized human evaluators.

Methods: We implemented a script using the OpenAI application programming interface to extract structured information in
JavaScript object notation format from comorbidities reported in 250 personal history reports. These reports were manually
reviewed in batches of 50 by 5 specialists in radiation oncology. We compared the results using metrics such as sensitivity,
specificity, precision, accuracy, F-value, κ index, and the McNemar test, in addition to examining the common causes of errors
in both humans and generative pretrained transformer (GPT) models.

Results: The GPT-3.5 model exhibited slightly lower performance compared to physicians across all metrics, though the
differences were not statistically significant (McNemar test, P=.79). GPT-4 demonstrated clear superiority in several key metrics
(McNemar test, P<.001). Notably, it achieved a sensitivity of 96.8%, compared to 88.2% for GPT-3.5 and 88.8% for physicians.
However, physicians marginally outperformed GPT-4 in precision (97.7% vs 96.8%). GPT-4 showed greater consistency,
replicating the exact same results in 76% of the reports across 10 repeated analyses, compared to 59% for GPT-3.5, indicating
more stable and reliable performance. Physicians were more likely to miss explicit comorbidities, while the GPT models more
frequently inferred nonexplicit comorbidities, sometimes correctly, though this also resulted in more false positives.

Conclusions: This study demonstrates that, with well-designed prompts, the large language models examined can match or
even surpass medical specialists in extracting information from complex clinical reports. Their superior efficiency in time and
costs, along with easy integration with databases, makes them a valuable tool for large-scale data mining and real-world evidence
generation.

(JMIR Med Inform 2025;13:e58457)   doi:10.2196/58457
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Introduction

Real-world data (RWD) holds immense potential for advancing
health care by providing a comprehensive view of patient health,
disease progression, and treatment outcomes [1]. However,
RWD presents significant challenges due to its diverse sources
and formats, such as electronic health records, medical imaging,
and laboratory results, each with different standards and
terminologies. Much of this data is unstructured, like free-text
clinical notes, which are difficult to process and analyze.
Additionally, missing information is common, leading to gaps
that hinder accurate analysis. Advanced methodologies and
technologies are needed to effectively extract, standardize, and
analyze RWD, ensuring its potential to improve health care
outcomes is fully realized.

Extracting information from clinical texts has traditionally relied
on manual methods, where trained health care professionals
review and annotate clinical notes to identify relevant
information such as diagnoses, treatments, and patient outcomes.
This manual process is not only time-consuming and
labor-intensive but also prone to human error, leading to
inconsistencies and inaccuracies. Additionally, statistical and
rule-based approaches have been used, which depend on
predefined patterns and keywords to extract information.
However, these methods often fall short in handling the
complexity and variability inherent in natural language, resulting
in incomplete or inaccurate data extraction.

The rise of artificial intelligence, driven by advances in
computing power, has propelled the development of natural
language processing (NLP). NLP algorithms can automatically
structure information from unstructured clinical texts, facilitating
analysis and integration with other clinical data [2-5]. Earlier
NLP systems often relied on rule-based systems and simpler
machine learning models, implying limitations such as the need
for extensive customization, deep computer science knowledge,
significant computational resources, and large volumes of
high-quality labeled data. These challenges hinder their
widespread adoption and optimal performance across different
applications.

Transformer models, a deep learning architecture introduced in
the paper “Attention is All You Need” by Vaswani et al [6],
have revolutionized the field of NLP, establishing themselves
as the foundation upon which modern large language models
(LLMs) have been developed. LLMs, such as OpenAI's
generative pre-trained transformers (GPTs), are models trained
on vast amounts of text to learn complex linguistic patterns.
This enables them to generate text, understand context, perform
translations, and carry out other tasks with unprecedented
accuracy and fluency. Thanks to this capability, users can
interact with these models, instructing them to tackle various
problems without the need for additional training.

The GPT-3 model, released in 2020, and its successor, GPT-4
[7], introduced in 2023, represent significant advancements in
the ability to understand and generate coherent text. The
progression from GPT-3 through GPT-3.5 to GPT-4 marks a
significant evolution in OpenAI's language model capabilities.
GPT-4 offers enhanced understanding and generation of text
due to its larger training dataset and more refined architecture,
resulting in responses that are more accurate, contextually aware,
and nuanced compared to its predecessors. This latest version
also demonstrates improved performance on a broader array of
tasks, including complex reasoning and problem-solving.
Additionally, it is multimodal, capable of processing not only
text but also images and audio. However, it is important to note
that these models are not specifically designed for medical
diagnostic purposes.

Currently, there are numerous LLMs available, such as LLaMA,
Mistral, Claude, or BioBERT. However, in the medical field,
the ChatGPT models have been the most extensively studied
[8], demonstrating strong capabilities in various applications,
including interpreting clinical guidelines and enhancing
evidence-based medicine [9], or table summarization in clinical
study reports [10]. Despite their potential, concerns about the
applicability of these general-purpose models in the medical
domain persist [11,12], particularly due to their lack of
transparency in training data, which remains largely unknown.
Therefore, it is essential to evaluate their performance for each
specific application.

In the context of extracting and structuring information from
free-text clinical reports, studies have shown promising results
with OpenAI models. For instance, Fink et al [13] demonstrated
the effectiveness of these models in extracting data from
computed tomography reports related to lung cancer, where
they outperformed traditional NLP models in classifying disease
progression.

Focusing on the significance of appropriate instructions
(prompts), studies such as that of Choi et al [14] highlighted
that the gpt-3.5-turbo model exhibited an accuracy rate of 87.7%
in extracting information from pathology and ultrasound reports
of breast cancer patients. Additionally, the LLM methods
demonstrated superior efficiency in terms of time and costs
compared to manual approaches.

In 2018, the Department of Radiation Oncology at Hospital
Universitario Virgen Macarena initiated the implementation of
the Mosaiq system, transitioning toward a paperless workflow
and centralizing all radiation therapy treatment data within the
application. As detailed by Bertolet et al [15], this data was
automatically exported to JSON files via Word documents and
Visual Basic for Applications code. Figure 1 depicts a diagram
illustrating the flow and organization of the described data.
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Figure 1. Representative diagram of the Web Oncological Information System (SIOW). It illustrates the integration of data from MOSAIQ and TPS
into the MongoDB database and its subsequent management through SIOW, including the collection of administrative data from the Users Data Base
(BDU) and clinical data from the electronic health record system DIRAYA. JSON: JavaScript object notation; RT: radiotherapy.

Motivated by the capabilities of LLMs, we aimed to investigate
their potential application in extracting and structuring
information from clinical reports. Our overarching objective is
to integrate LLM-based tools into our information system,
enhancing the richness of our real-world datasets. Specifically,
in this study, we assess the capability of the GPT-3.5 turbo and
GPT-4 models as tools for data mining applied to the
identification and classification of comorbidities and relevant
lifestyle risk factors in oncological texts. We compare their
performance against that of specialized human evaluators to
gauge their efficacy and suitability for clinical use.

Methods

OpenAI Models
The application programming interface (API) of OpenAI [16]
allows interaction with their advanced LLMs, facilitating various
language processing tasks such as generating automatic textual
responses, conducting sentiment analysis, and summarizing
texts. In our study, we leveraged the chat completions API
function of the API to extract structured information from
unstructured clinical reports.

OpenAI offers a comprehensive library of natural language
processing models. Each model features unique characteristics
in terms of size, language comprehension ability, speed, and
cost. In our study, we have used 2 models from the library:
gpt-3.5-turbo-1106 and gpt-4-1106-preview, with the latter
being the most advanced model available at the time the study
was conducted. While the GPT-3.5 model is a faster and more
economical option for general tasks, GPT-4 stands out for its
higher accuracy, contextual understanding, and ability to handle
more complex and specific applications.

For this study, we used clinical reports in Spanish, exclusively
interacting with OpenAI's LLMs in this language. Although
LLMs typically exhibit superior performance in English [17],
owing to the predominance of this language in training data,
recent comparisons indicate notable effectiveness in other
languages, including Spanish. The GPT-4 technical report [7]
highlights this multilingual capability, demonstrating that
performance in Spanish closely approaches that of English, with
a minimal difference of only 1.5 percentage points in the MMLU
evaluation [18].

Prompt Generation
To interact with the LLM models, we first created a prompt that
will guide the model through the specific task. The context
provided to the model establishes a scenario in which it is asked
to assume the role of a specialist in radiation oncology. This
setting serves as a reference framework, enabling the model to
adopt the appropriate perspective and apply its natural language
understanding capabilities in a manner consistent with the
medical domain.

Our request is a direct instruction to the model, directing it to
process the text of the provided clinical report and return the
relevant information in a structured format. Specifically, the
model is instructed to use the clinical report provided at the end
of the prompt to complete a predefined dictionary in JSON
format. This dictionary contains keys related to comorbidities
and lifestyle risk factors. The model is tasked with updating the
values of these keys with “YES” or “NO” as appropriate. For
individuals who are ex-smokers, the model should use “EX”
instead. Additionally, the model must identify and add any other
relevant comorbidities not classifiable under the provided
categories, assigning them to the “Other” key.

The prompt generated for the task is shown in Textbox 1.

JMIR Med Inform 2025 | vol. 13 | e58457 | p.36https://medinform.jmir.org/2025/1/e58457
(page number not for citation purposes)

Wals Zurita et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


The dictionary mentioned in the request is structured with keys
labeling the specific comorbidities and lifestyle risk factors we
seek to identify. These comorbidities, along with their potential
values, are outlined in Table 1.

During a postprocessing phase, we divided the category labeled
as “smoker” into 2 distinct categories: “smoker” (representing
current smokers) and “ex-smoker.” This division was
implemented to ease the subsequent analysis of the results.

It is important to highlight that the prompt does not provide
context or additional instructions regarding how the specified
comorbidities of interest should be interpreted.

The development of this prompt was achieved through an
iterative process applied to a group of 50 reports that were
specifically reserved for this purpose. The methodology included
the following steps (Textbox 2):

Textbox 1. Prompt generated for the task.

• Context: “Act as a specialist in radiation oncology.”

• Request: “Use the clinical report provided at the end of this prompt to return in JSON format the dictionary [...] with the values 'YES' or 'NO'.
For the 'Smoker' field: 'YES' if they smoke, 'NO' if they have never smoked, 'EX' if they are an ex-smoker. For the 'Other' field, return a list of
comorbidities found that cannot be classified in any of the categories of the keys of the provided dictionary, or empty if there are no other
comorbidities. Return only the dictionary with the updated values, DO NOT ADD OR MODIFY KEYS. Clinical report: [text of the clinical
report]”

Table 1. List of the labels, possible values, and description of the comorbidities and lifestyle risk factors considered in this study.

DescriptionValuesLabel

Elevated blood glucose levelsYes or noDiabetes

High blood pressureYes or noHBP

Smoking habit.Yes or no or exSmoker

Lipid metabolism disorderYes or noDyslipidemia 

Liver diseaseYes or noLiver disease

Chronic obstructive pulmonary diseaseYes or noCOPD

Mood disorderYes or noDepression

Kidney diseaseYes or noKidney disease

Use of WHO step 3 analgesics (opioids)Yes or noFentanyl

Heart diseaseYes or noHeart disease

Thyroid disease with increased thyroxineYes or noHyperthyroidism

Thyroid disease with decreased thyroxineYes or noHypothyroidism

Patient in need of continuous careYes or noDependent

Other past comorbidities detected not listed aboveText listOther

Textbox 2. Prompt development methodology.

• Prompt definition: Establishing the parameters and structure of the prompt to guide the model's responses.

• Information extraction: The developed prompt was applied to 50 reports using the gpt-4-1106-preview model.

• Verification of structure: It was ensured that the model's responses adhered to the requested structure, with previous steps being repeated in
case of deviations.

• Accuracy evaluation: A specialist physician (AW) verified the accuracy of the model's responses. This process was repeated until the accuracy
met or exceeded that of a manual analysis performed by the same physician.

Python Script
The Python script developed uses the OpenAI API to
automatically structure textual clinical information. All the code
developed for this work is publicly available in a GitHub
repository [19].

Clinical Report Acquisition Procedure
The clinical reports for our study were provided by the hospital's
Innovation & Data Analysis department. These reports were
delivered in an Excel spreadsheet format, organized into 2
essential columns: one containing the clinical history number
of each patient and another with the text of the medical personal
history report. The department responsible for data collection
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undertook a process of anonymization and randomization of
the reports to ensure an unbiased selection.

Sample Selection Criteria
For estimating the sample size, we relied on the proportion of
comorbidities (80%) obtained from a prior analysis of a dataset
of 5257 personal history reports from patients treated in our
service between May 2018 and October 2022.

The comorbidities selected for the study were chosen based on
prior knowledge of prevalences in the general population and
those presented by our patients according to the aforementioned
analysis. We also considered those that could most significantly
impact the clinical outcome of oncological treatments.

With these considerations, we conducted a preliminary
calculation that established the need to include 250 clinical
reports (see below in the statistical analysis section). Based on
this calculation, we selected the first 250 patients from the
provided list who had a nonempty personal history report.
Before proceeding with the analysis, we verified that our script
was capable of correctly interpreting an empty report as
equivalent to the absence of comorbidities, thereby avoiding
biases in the study results.

Ethical Considerations
The text processed by the selected LLMs is strictly confined to
personal history reports. These reports were stripped of any
information that could lead to patient identification, ensuring
confidentiality and anonymity. The model’s interpretation of
the texts focuses solely on identifying and structuring data
relevant to the study without compromising individual privacy.

The study's design, synthesized in Figure 2, and methodology
were previously communicated to and reviewed by the hospital's
ethics committee. The research received the necessary approval,
confirming that it adheres to the ethical standards required for
patient data research.

This retrospective study adheres to the guidelines outlined in
the seventeenth additional provision, specifically Health Data
Processing, Section d) of the Organic Law 3/2018, dated
December 5, on Personal Data Protection and Guarantee of
Digital Rights. This law governs the use of pseudoanonymized
personal data for health research purposes. The study was
granted an exemption from requiring informed consent due to
its exclusive use of nonidentifiable data.

On January 18, 2024, the Ethics Committee of the University
Hospitals Virgen Macarena and Virgen del Rocío issued a
favorable opinion for our study, under the reference EC_IA_V1
(version 1-Dec-2023).

Figure 2. Flowchart of the study design. COPD: chronic obstructive pulmonary disease; HBP: high blood pressure.

Data Extraction
For the manual data extraction, the 250 patient clinical reports
were divided into 5 groups, each consisting of 50 reports. These
groups were randomly assigned to 5 physicians, including 3
specialists in radiation oncology with more than 15 years of
experience and 2 medical residents in the same specialty, one
in their first year and the other in their fourth year.

To ensure uniform and accurate data collection, the physicians
were provided with a specially designed template for this task.
The template features a table where the first column contains
the full texts of the clinical reports. The subsequent columns of
the table are labeled with the comorbidities of interest. The cells
corresponding to each comorbidity only allow the selection of
predefined values, as stipulated in Table 1. This restriction
ensures consistent annotation and reduces the possibility of
errors or variations in the entries.
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For the automatic analysis, the 250 clinical reports in the sample
were analyzed using our script with the gpt-3.5-turbo-1106 and
gpt-4-1106-preview models. To maintain a consistent structure
in the study, these reports were organized into the same 5 groups
of 50 reports that were assigned to the physicians. The results
were recorded in a document that mirrored the structure of the
template used in the manual extraction. This uniformity in
documentation facilitates a direct comparison of results between
manual and automatic extraction methods.

Establishing the Ground Truth
To assess the comparative accuracy and effectiveness of the
LLMs used in this study against the evaluations performed by
physicians, it is crucial to establish a reference dataset containing
the ground truth. To construct this reference dataset, we first
compared the results obtained from the physicians and the
gpt-4-1106-preview model across all 250 reports, identifying
and recording any discrepancies between the 2 sources. The
radiation oncologist expert AW, with more than 30 years of
experience, reviewed several times the whole set of reports,
with a particular focus on these discrepancies. For each report
where discrepancies in the results were found, physician AW
assessed both responses (from the physician and the AI) and
determined which one was correct.

It is important to note that the ground truth in this study is based
solely on the information explicitly reported in the clinical texts.
This means that some patients may have unreported
comorbidities, or conversely, conditions may be mentioned that
are not actually present. This limitation reflects a common
challenge when working with RWD. However, for the purposes
of this study, these potential discrepancies are irrelevant, as our
primary focus is on evaluating the models' ability to accurately
interpret and extract information from the provided texts.

Assessing Reproducibility in Results
The nondeterministic nature of LLMs, such as GPT-3.5 and
GPT-4, means they can generate different responses to identical
requests [7]. This phenomenon, coupled with the potential for

periodic retraining of the models, significantly impacts the
reproducibility of results. Therefore, it is crucial to consider the
need for rigorous quality control for algorithms that use LLMs,
especially to assess the impact of any changes in the models.

A well-defined and explicit prompt can increase the
reproducibility of responses [14]. However, variability remains
a possibility, particularly in situations where the information is
ambiguous or the prompt is not clear or specific enough.

To measure the consistency of our automatic extraction method,
we repeated the analysis of the 250 clinical reports 10 times
over 10 consecutive days. This approach allows us to observe
the stability of the model responses to the same input.

Statistical Analysis
To ensure the statistical validity of the study, a significance
level of 5% (alpha error) and a power of 80% (beta error of
20%) were established. Additionally, a 5% error margin was
applied for 95% confidence intervals. With these considerations
in mind, it was determined that the sample size (n) should
include 245 patient records. To adjust the sample to a practical
number, it was rounded up, resulting in a final sample size of
250.

For a comprehensive analysis, we consolidated the results from
the 250 reports into a single category named “Physicians,”
representing the aggregated findings of the 5 doctors involved
in the study. Subsequently, we compared this category and the
results from the GPT-3.5 and GPT-4 models with the reference
dataset, considered as the ground truth. In this process, a
confusion matrix was created for each report and comorbidity,
from which several key statistical estimators were derived.

To assess the agreement, we used the κ index. The McNemar
test was used to determine if there were significant differences
in the proportions of discordance between the classifications.
We chose the F-score as a measure of balance between precision
and sensitivity, which is crucial in a classification model. The
calculated metrics are presented in Table 2.

Table 2. Metrics used in the study with their descriptions.

DescriptionMetric

True positivesTP

True negativesTN

False positivesFP

False negativesFN

TP/(TP+FN)Sensitivity

TN/(FP+TN)Specificity

TP/(TP+FP)Precision

(TP+FN)/(TP+TN+FP+FN)Prevalence

(TP+TN)/(TP+TN+FP+FN)Accuracy

(Pobs–Pesp)/(1–Pesp)Kappa

(2×precision×sensibility)/(precision+sensibility)F-score

Exact P value from McNemar test (binomial distribution)McNemar
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For some of these metrics, we calculated their CI using the
bootstrapping method [20]. This approach starts from the
frequencies of true positives, true negatives, false positives, and
false negatives to generate 1000 resamples. With these
resamples, we recalculated the metrics to obtain a distribution
that allows us to calculate the 95% CI.

Additionally, a detailed analysis was conducted on the groups
of 50 reports assigned to each physician. This analysis focused
on measuring the variability in evaluations among different
physicians. For each patient and comorbidity, Cohen κ index
was calculated in comparison with the ground truth for the
results of each physician.

The reproducibility of the GPT-3.5 and GPT-4 models was
assessed by quantifying the number of different responses for
each patient and comorbidity across the 10 repeated analyses
conducted on successive days.

Analysis of Discrepant Results
A detailed analysis of discrepancies between the evaluators'
results and the established Ground Truth was conducted by the
same physician who defined the reference dataset. This analysis
covered each report with discrepancies in the identification of
comorbidities, identifying the probable causes of each deviation.

Discrepancies were classified according to the nature of the
detected errors (Textbox 3).

Textbox 3. Nature of the detected errors.

• Differences in criteria: Variations in the interpretation of the relevance of reported pathologies.

• Incorrect interpretation: Misunderstandings caused by confusing wording.

• Incorrect inference: Erroneous deductions when the comorbidity is not explicitly mentioned.

• Ambiguous text: Textual ambiguity that allows for multiple interpretations.

• Error or hallucination: Unjustified errors, attributed to human distractions or AI hallucinations.

• Error in ground truth: Corrections made upon review that validate the evaluator's interpretation.

• Explicit omission: Overlooking direct mentions of comorbidities.

• Omission by context: Failure to notice comorbidities deducible from the context or medication.

• Unrecognized acronyms: Inability to interpret specific medical acronyms.

Results

Cost and Time Analysis
Table 3 details the cost and total time invested in analyzing the
250 reports using the GPT-3.5 and GPT-4 models. Given that
both the models and their associated costs can fluctuate over
time, it is important to note that the reported results are specific
to the usage period from January to February 2024. It is noted

that GPT-4, being a larger and more complex LLM compared
to GPT-3.5, incurs longer processing times and a cost
approximately 10 times higher. Extrapolating the costs to the
entire set of 7500 patients currently registered in our database,
processing with GPT-4 would require about 24 hours and would
cost approximately 76 dollars. On the other hand, using GPT-3.5
would reduce the processing time to about 9 hours, with a
significantly lower cost of around 7 dollars.

Table 3. Execution times and costs in dollars for the analysis of the 250 reports with each of the models used (usage period of the models: between
January and February 2024).

Cost (US $)Time (hour)N reportModel

0.230.31250gpt-3.5-turbo-1106

2.530.79250gpt-4-1106-preview

Prevalences
The analysis of our Ground Truth sample reveals a wide range
of prevalences in comorbidities and lifestyle risk factors among
oncological patients. These are detailed in Table 4, where both
the number of cases and the prevalence for each comorbidity
are reported. The most common conditions include high blood

pressure and dyslipidemia, present in almost half and a third of
the cases, respectively. On the other hand, conditions like
hyperthyroidism and liver disease show relatively low
prevalence. Categories related to smoking are also highly
frequent, accounting for almost 50% of the cases. Interestingly,
the proportion of ex-smokers significantly exceeds that of
current smokers.
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Table 4. Number of reports, out of the total 250 in the sample, that indicate each comorbidity and the corresponding prevalence.

PrevalenceCases, nCondition

25.6%64Diabetes

46.4%116HBPa

14.8%37Smoker

30.8%77Dyslipidemia

8.4%21Hypothyroidism

6.8%17COPDb

10.0%25Depression

15.6%39Kidney disease

7.6%19Fentanyl

17.2%43Heart disease

0.4%1Hyperthyroidism

5.2%13Liver disease

4.8%12Dependent

34.0%85Ex-smoker

aHBP: high blood pressure.
bCOPD: chronic obstructive pulmonary disease.

Evaluation Metrics
Table 5 displays the values of true positives, false positives,
true negatives, and false negatives, detailed by comorbidity,
derived from the comparison with the ground truth dataset.

Figure 3 illustrates the performance of the physicians, GPT-3.5,
and GPT-4 classifiers, broken down by comorbidity, across
various metrics. The “Total” category, which consolidates the

results for all studied comorbidities, enables direct comparison
between the 3 evaluators on each assessed metric (Textbox 4).

The application of McNemar's test to the “Total” category,
comparing Physicians with GPT-3.5 and Physicians with GPT-4,

yielded P values of .79 and 10–6, respectively. This confirms
that the performance differences between the physicians and
the GPT-3.5 model are not statistically significant, while the
differences between the physicians and GPT-4 are significant.
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Table 5. Tables displaying the results for true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) for each comorbidity,
obtained by each of the evaluators (Physicians, GPT-3.5, and GPT-4).

GPT-4GPT-3.5Physicians

FNFPTNTPFNFPTNTPFNdFPcTNbTPa

1018663100186541118563Diabetes

211331143213211361133110HBPe

102133611212360420937Smoker

30173741011726710017367Dyslipidemia

122272020229192022919Hypothyroidism

122311620233151023316COPDf

322232245220210122425Depression

13208381802112124021115Kidney disease

012301911230181023118Fentanyl

3220540132205305020738Heart disease

002491102490102490Hyperthyroidism

03234131323412412369Liver disease

202381010238110423412Dependent

021638504161859016576Ex-smoker

181829135516719291250264122919505Total

aTP: true positive.
bTN: true negative.
cFP: false positive.
dFN: false negative.
eHBP: high blood pressure.
fCOPD: chronic obstructive pulmonary disease.
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Figure 3. Statistical metrics comparison between 3 evaluators (Physicians, GPT-3.5, and GPT-4) for individual comorbidities and overall totals.
Asymmetric error bars indicate the 95% confidence interval. GPT: generative pre-trained transformer. HBP: hypertension or high blood pressure; COPD:
chronic obstructive pulmonary disease.
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Textbox 4. Summary of the metrics evaluated.

• Sensitivity: The GPT-4 model (96.8%) outperforms both GPT-3.5 (88.2%) and the physicians (88.8%) in most categories, showing notable
effectiveness in detecting comorbidities. Although GPT-3.5 presents slightly lower results than the physicians, the difference is not statistically
significant, as indicated by the overlap of the 95% confidence intervals shown in Figure 3.

• Specificity: All evaluators achieve high specificity values, which is expected given the low prevalences of the studied comorbidities and the
relative ease of identifying the absence of a comorbidity in texts. The physicians (99.6%) excel in this metric, often achieving perfection, while
both models (99.4%) score slightly lower due to a higher rate of false positives.

• Precision: The physicians get the highest score (97.7% vs 96.4% and 96.8%) assessing the proportion of correct positive identifications, possibly
also influenced due to the models generating a higher number of false positives.

• F-score: Representing the harmonic mean between precision and sensitivity, the F-score is particularly relevant in asymmetric samples like in
our study. The GPT-4 model achieves the highest score (96.8%) on this indicator, surpassing both GPT-3.5 (92.1%) and the physicians (93%).

• Accuracy (Agreement): In the proportion of correct identifications, GPT-4 shows superior performance (99%), while GPT-3.5 (97.5%) and the
physicians (97.8%) achieve similar results.

• Cohen κ index: This index, measuring agreement adjusted for chance, reveals that GPT-4 reaches the highest scores (0.962), demonstrating
greater consistency compared to the ground truth. The GPT-3.5 score of 0.907, while marginally lower, does not significantly differ from the
physicians' score of 0.917.

Variability Among Physicians’ Performance
Table 6 displays the Cohen κ index values obtained in the
detection of various comorbidities for each of the 5 physician
evaluators. It is important to note that each physician analyzed
a different group of 50 reports.

Overall, there was considerable similarity in the physicians'
responses, except when the comorbidity to be detected was a
broader concept, as in the case of “kidney disease” (κ=0.51) or

“liver disease” (κ=0.77). It is important to note that no further
instructions or explanations were provided beyond finding the
comorbidity in the presented text. Therefore, some physicians
considered that renal lithiasis was not a relevant “kidney
disease” and reserved this category for conditions describing
an alteration in renal function (such as chronic renal failure, for
example).

Interestingly, the senior physicians scored lower than the
medical residents in the overall calculation for the κ index.

Table 6. Concordance values for each comorbidity, calculated using Cohen κ index for each medical evaluator. The “Total” categories summarize the
aggregated concordance across all comorbidities and medical evaluators. A dash indicates that the κ index could not be computed because the comorbidity
was not present in the corresponding set of reports.

Total human
evaluators

M5 residentM4 seniorM3 seniorM2 residentM1 senior

0.980.951.001.000.951.00Diabetes

0.940.960.960.830.961.00HBPa

0.940.930.860.881.001.00Smoker

0.901.000.770.751.000.91Dyslipidema

0.951.001.000.901.000.66Hypothyrodism

0.971.000.661.001.001.00COPDb

0.981.001.001.001.000.93Depression

0.510.260.560.450.700.52Kidney disease

0.971.001.000.851.001.00Fentanyl

0.931.000.790.911.000.95Heart disease

0.000.00————Hyperthyroidism

0.771.000.650.631.00—Liver disease

0.85—0.880.910.660.66Dependent

0.921.000.760.871.000.95Ex-smoker

0.921.000.760.871.000.95Total

aHBP: high blood pressure.
bCOPD: chronic obstructive pulmonary disease.
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Reproducibility of Models’ Responses
In our reproducibility study, each report was analyzed 10 times
by the GPT-3.5 and GPT-4 models. For each comorbidity, we
counted the number of different responses generated in these
repeated analyses, as well as the total number of variations for
each report.

Figure 4 presents a histogram illustrating the number of reports
that generated at least the specified number of different
responses. This histogram reveals that, in all instances, the
GPT-4 model exhibited fewer differences in responses compared
to GPT-3.5, suggesting greater consistency and reliability in its
results.

Furthermore, it was found that 73.6% of the reports analyzed
with GPT-4 reproduced the same result across all comorbidities
during the 10 analyses, compared to 59.2% for GPT-3.5. This
notable difference in reproducibility underscores the superiority

of GPT-4 in maintaining consistency in its responses across
multiple executions.

Variability in responses often stems from ambiguous text, where
LLMs may assign values inconsistently. For example, a report
describing a patient as an ”active smoker (1 month since
quitting, 1 pack/day since age 14-16)“ resulted in GPT-3.5
identifying the patient as a smoker in 6 out of 10 analyses, while
GPT-4 made only 1 error across 10 analyses. However, in the
same report, regarding the comorbidity of COPD, GPT-4 shows
a split: in 5 instances, it identifies it as present and in 5 as absent.
The physician reviewing the results and establishing the ground
truth determined the absence of COPD, as it is not explicitly
mentioned in the report. Nonetheless, the mention of “mild
pulmonary emphysema areas” and the patient's prolonged
smoking history could lead GPT-4 to infer the presence of
COPD.Top of Form

Figure 4. The number of reports for each model, in which at least the number of differences indicated on the x-axis was obtained in the 10 analyses.

Discrepancy Analysis
Multimedia Appendices 1 and 2 display the distribution of
discrepant results categorized by the causes determined through
a detailed manual analysis of the reports.

A notable discrepancy arose in the ”kidney disease“ category
due to differences in criteria. Some physicians and GPT-3.5 did
not deem certain renal pathologies, such as renal lithiasis, as
relevant comorbidities in the context of oncology treatment,
unlike GPT-4, which aligned its results more closely with the
ground truth.

In analyzing cases interpreted as hallucinations, it was found
that this phenomenon occurred exclusively in 1 response from
GPT-4 and in 6 from GPT-3.5, particularly in the smoker and
ex-smoker categories, possibly due to the use of the label “toxic
habits,” even when referring to other habits like alcoholism.

The models, especially GPT-4, tend to infer comorbidities from
the context or reported medication more frequently than
physicians, who exhibit a more conservative approach. This
tendency leads to more false positives by the models,
particularly when the medication does not imply the presence
of comorbidity.

GPT-3.5 exhibited difficulties in interpreting common medical
acronyms such as “DM” for diabetes or “AF” for atrial
fibrillation, whereas GPT-4 demonstrated a superior ability to
recognize and correctly interpret most of these acronyms.

Interestingly, GPT-4 displayed some false positives when
encountering comorbidity labels followed by “:” without
additional information, a misinterpretation not common in
humans but observed in AI, particularly in GPT-4 more than in
GPT-3.5.

Human evaluators showed a greater tendency to overlook
comorbidities explicitly reported, likely due to distraction or
fatigue.

Only 3 errors were identified in the determination of the ground
truth, underscoring the reliability of the review process.

Finally, we identified a category of discrepancies exclusive to
the models, related to structural or formatting errors. This
includes situations where the models' responses do not follow
the guidelines specified in the prompt, resulting in outputs that
do not meet the expected JSON format or that incorrectly alter
and introduce comorbidity labels. Given that these incidents
were limited, affecting less than 10 cases, it was decided to
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manually correct these formatting errors for inclusion in the
subsequent analysis.

Discussion

Principal Findings
Our study categorizes observers as ”Physicians,“ ”GPT-3.5,“
and ”GPT-4,“ reflecting the synergy between specific models
(gpt-3.5-turbo-1106 and gpt-4-1106-preview) and the prompts
designed for this research. The effectiveness of GPT models in
generating responses is inherently linked to the quality and
structure of the prompts [14,21,22], indicating that results may
vary significantly with prompt redefinition. Similarly, physician
performance is influenced not only by clinical competence but
also by the clarity of instructions and the quality of the materials
provided. Offering more detailed and specific guidelines, along
with access to additional sources within the electronic health
records, could potentially improve the accuracy of their
responses.

It is important to emphasize that even if LLMs demonstrate
superiority in the specific task of processing large volumes of
reports to extract information, this should not be extrapolated
to other tasks, such as decision-making. In such cases, these
tools should always be used as support tools, requiring ongoing
physician oversight and intervention.

Based on the results obtained, we can conclude that the GPT-4
model is notably better at identifying present comorbidities,
with fewer false negatives, while physicians exhibit slightly
higher precision in their diagnoses, resulting in fewer false
positives. The GPT-3.5 model generally performs slightly below
the physicians, though the differences found are not statistically
significant. These results are consistent with findings from other
studies, such as Hoppe et al [23], which highlight the potential
of ChatGPT models to enhance diagnostic accuracy in
emergency medical settings. In their study, GPT-4 also
outperformed both resident physicians and GPT-3.5 in
diagnostic accuracy.

The superior sensitivity of GPT-4 in our study is particularly
noteworthy, demonstrating its advanced ability to accurately
identify reported comorbidities, even when not directly evident
in the text. However, both GPT-3.5 and GPT-4 generate a
comparable number of false positives, which is significantly
higher than those recorded by physicians. Physicians' false
positives typically result from specific circumstances such as
ambiguity in clinical reports, variations in interpretation among
professionals, and occasional errors in the template filling
process.

In contrast, false positives from the GPT models seem to stem
from a less conservative approach in determining comorbidity
presence based on inferred context. These cases are also more
likely to produce less reproducible responses due to the

nondeterministic nature of LLMs. In these instances, physicians
adopted a more conservative criterion to establish the ground
truth, considering an unreported comorbidity only when the
medication or context necessarily implied it. Whether this
conservative approach is preferable to the criteria used by GPT
models requires an analysis of complete medical histories to
confirm or refute the presence of the comorbidity.

Discrepancies arising from variations in criteria interpretation
could be mitigated by using prompts with clearer instructions
on interpreting different comorbidities. This underscores the
importance of refining prompts to enhance the consistency and
accuracy of LLM-generated responses in clinical contexts.

Despite the remarkable capacity of current LLMs as potential
tools for data mining in clinical reports, questions arise regarding
the practical utility of this RWD for research and the generation
of real-world evidence [24]. The variability, subjectivity, and
lack of structure in these reports can compromise the quality
and reliability of extracted data, affecting its applicability in
clinical research contexts. Therefore, while LLMs represent a
promising innovation to address the limitations of unstructured
data, implementing more structured clinical recording practices
could provide a more sustainable and reliable solution for
generating real-world clinical evidence. This duality emphasizes
the need for a balanced approach that integrates advanced AI
technology with robust clinical data management practices.

Future research should concentrate on refining prompt design
and expanding the applications of LLMs across various medical
fields. Additionally, exploring the performance of new
open-source LLMs that can be run locally is essential, as this
approach helps to avoid data protection and privacy issues
associated with transmitting clinical data outside of the local
infrastructure.

Conclusions
This study has shown that, with carefully designed prompts,
the OpenAI LLMs examined demonstrate competence
comparable to, and in some cases superior to, that of medical
specialists in interpreting and extracting relevant information
from clinical reports, even when dealing with complex and
ambiguously written texts. Considering their superior efficiency
in terms of time and costs, along with their seamless integration
with databases and other applications, these models emerge as
a preferable option for data mining and structuring information
in large collections of clinical reports. This highlights the
potential of LLMs to enhance RWD usage by efficiently
extracting structured information from extensive volumes of
clinical texts, which is crucial for generating high-quality
real-world evidence. Nonetheless, continuous evaluation of
these models is essential to enhance their accuracy and
applicability, while also emphasizing the importance of
advancing toward more structured clinical records.
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Abstract

Background: Mental health chatbots have emerged as a promising tool for providing accessible and convenient support to
individuals in need. Building on our previous research on digital interventions for loneliness and depression among Korean college
students, this study addresses the limitations identified and explores more advanced artificial intelligence–driven solutions.

Objective: This study aimed to develop and evaluate the performance of HoMemeTown Dr. CareSam, an advanced cross-lingual
chatbot using ChatGPT 4.0 (OpenAI) to provide seamless support in both English and Korean contexts. The chatbot was designed
to address the need for more personalized and culturally sensitive mental health support identified in our previous work while
providing an accessible and user-friendly interface for Korean young adults.

Methods: We conducted a mixed methods pilot study with 20 Korean young adults aged 18 to 27 (mean 23.3, SD 1.96) years.
The HoMemeTown Dr CareSam chatbot was developed using the GPT application programming interface, incorporating features
such as a gratitude journal and risk detection. User satisfaction and chatbot performance were evaluated using quantitative surveys
and qualitative feedback, with triangulation used to ensure the validity and robustness of findings through cross-verification of
data sources. Comparative analyses were conducted with other large language models chatbots and existing digital therapy tools
(Woebot [Woebot Health Inc] and Happify [Twill Inc]).

Results: Users generally expressed positive views towards the chatbot, with positivity and support receiving the highest score
on a 10-point scale (mean 9.0, SD 1.2), followed by empathy (mean 8.7, SD 1.6) and active listening (mean 8.0, SD 1.8). However,
areas for improvement were noted in professionalism (mean 7.0, SD 2.0), complexity of content (mean 7.4, SD 2.0), and
personalization (mean 7.4, SD 2.4). The chatbot demonstrated statistically significant performance differences compared with
other large language models chatbots (F=3.27; P=.047), with more pronounced differences compared with Woebot and Happify
(F=12.94; P<.001). Qualitative feedback highlighted the chatbot’s strengths in providing empathetic responses and a user-friendly
interface, while areas for improvement included response speed and the naturalness of Korean language responses.

Conclusions: The HoMemeTown Dr CareSam chatbot shows potential as a cross-lingual mental health support tool, achieving
high user satisfaction and demonstrating comparative advantages over existing digital interventions. However, the study’s limited
sample size and short-term nature necessitate further research. Future studies should include larger-scale clinical trials, enhanced
risk detection features, and integration with existing health care systems to fully realize its potential in supporting mental well-being
across different linguistic and cultural contexts.

(JMIR Med Inform 2025;13:e63538)   doi:10.2196/63538

KEYWORDS

mental health chatbot; Dr. CareSam; HoMemeTown; ChatGPT 4.0; large language model; LLM; cross-lingual; pilot testing;
cultural sensitivity; localization; Korean students
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Introduction

The COVID-19 pandemic has exacerbated the already
concerning rates of depression and anxiety among college
students worldwide [1,2]. In Korea, the situation is particularly
alarming. Recent statistics highlight the severity of mental health
issues among college students in this country. According to the
“2021 COVID-19 National Mental Health Survey,” individuals
in their 20s showed the highest average depression score Patient
Health Questionnaire-9 (PHQ-9) of 6.7 and the highest
proportion of high-risk depression groups at 30% among all age
groups surveyed. This represents a significant increase from
2018 when the average depression score was 2.3. The proportion
of the high-risk depression group (PHQ-9 score ≥10) increased
to 22.8% in 2021, approximately 6 times higher than in 2018.

Our previous study [3] on digital interventions for loneliness
and depression among Korean college students highlighted the
need for more personalized and culturally sensitive approaches,
which this research aims to address. Among the initial 63
applicants in that study, the average PHQ-9 score was 9.23,
with 25 (39.7%, 25/63) participants classified as high-risk for
depression (PHQ-9 score ≥10). At the baseline of our study with
53 participants, 23 (43.4%, 23/53) were categorized as high-risk
for depression. These findings underscore the urgent need for
effective interventions to improve mental health among college
students in Korea.

Despite the increasing severity of mental health issues among
college students, the infrastructure and support systems within
universities to effectively address these problems remain
inadequate. In Korea, the annual mental health budget for
college students is limited, with most of the resources focused
on counseling services and little emphasis on preventive
approaches (Counseling Council for University Students,
Furthermore, due to the lack of professional counseling
personnel and resources, access to services is limited, and many
students are unable to receive timely and appropriate help [4,5].

Social stigma and prejudice against mental health issues also
act as significant barriers for college students seeking help.
Many students, despite experiencing psychological difficulties,
tend to avoid help-seeking behaviors due to negative perceptions
about psychiatric treatment or counseling [6]. This can
exacerbate symptoms and prolong problems. In particular, those
with low mental health literacy are less likely to recognize their
condition or understand the need for professional intervention.
In fact, the mental health literacy score of college students who
participated in our previous study [3] averaged only 2.57 out
of 5 points, highlighting the urgent need for educational
intervention in this area.

In this context, digital technology-based mental health
management solutions are gaining attention as a new alternative.
Digital intervention services that overcome spatial and temporal
constraints and ensure anonymity can contribute to improving
accessibility and participation. Considering the high digital
literacy of college students, these methods can be more familiar
and acceptable to them [7]. Recent advancements in artificial
intelligence (AI) and natural language processing (NLP) have
paved the way for the development of sophisticated chatbots

that can engage in human-like conversations and provide
personalized support [2]. Large language models (LLMs), such
as ChatGPT, have revolutionized the field of conversational AI.
These models are trained on vast amounts of text data, enabling
them to generate human-like responses and understand context.
In mental health support, LLMs can be fine-tuned to provide
empathetic responses, recognize emotional cues, and offer
personalized support, making them potentially powerful tools
for accessible mental health interventions.

Building upon the findings of our previous study [3], which
explored the effectiveness of digital interventions for loneliness
and depression among college students, this research aims to
address the limitations identified in earlier digital interventions
and develop a more effective and user-friendly mental health
support tool. Specifically, this study focuses on the development
and evaluation of an LLM-based chatbot prototype, named
HoMemeTown, designed to provide personalized mental health
support. The HoMemeTown chatbot, powered by ChatGPT 4.0,
offers several unique features, that are (1) cross-lingual
capability in English and Korean, ensuring cultural sensitivity,
(2) a built-in gratitude journaling feature to promote positive
thinking, (3) emotion recognition and empathetic response
generation, and (4) risk detection algorithms to identify potential
mental health crises.

These features aim to provide a comprehensive, user-friendly
mental health support tool for young adults.

This pilot study was conducted as part of a larger research
project titled “Development of a Youth Mental Health Platform
Using Natural Language Processing.” While the overarching
project received initial institutional review board approval, we
acknowledge that this specific chatbot experiment was added
later due to rapid developments in AI technology. Despite this
limitation, we maintained rigorous ethical standards throughout
our research, including informed consent, data privacy measures,
and risk mitigation strategies.

The primary objective of this study is to conduct an initial
usability test of the chatbot prototype, providing valuable
insights for future, more comprehensive clinical studies. While
our sample size is limited, we have used a mixed methods
approach, combining quantitative usability metrics with in-depth
qualitative feedback. This approach allows us to gain rich
insights into user experiences and chatbot performance, even
with a smaller participant pool. In addition, we have conducted
comparative analyses with existing digital mental health tools
to contextualize our findings within the broader landscape of
mental health technologies.

As we navigate the rapidly evolving landscape of AI and its
potential to revolutionize mental health support, it is crucial to
explore innovative solutions that can bridge the gap between
technology and human empathy [8]. This pilot study contributes
to the growing body of knowledge surrounding the use of AI
in mental health and sheds light on the potential of LLM-based
chatbots like HoMemeTown to make a positive impact on
people’s lives, while also identifying areas for future research
and development.
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Methods

Study Design and Participants
This pilot study used a mixed methods approach to evaluate the
HoMemeTown chatbot’s usability and effectiveness in providing
mental health support. In total, 20 participants (12 female and
8 male) aged 18-27 (mean 23.3, SD 1.96) years were recruited
through university email lists and social media advertisements.
The sample size was determined to be appropriate for this pilot
study, particularly given that 70% (14/20) of participants had
previous experience with mental health chatbots from our
previous research [3], providing valuable comparative insights.
This continuity in participation enhanced our ability to gather
meaningful longitudinal observations about user engagement
with mental health technologies.

Participant eligibility criteria were established to ensure
appropriate sampling while maintaining ethical considerations.
Eligible participants included university students aged 18-27
years with Korean language proficiency and access to digital
devices. We excluded individuals with severe mental health
conditions requiring immediate professional intervention, as
determined through initial screening questionnaires. This
exclusion criterion was implemented to ensure participant safety
and appropriate levels of support, following established ethical
guidelines in digital mental health research [9].

Prototype Development Using the ChatGPT
Application Programming Interface
The HoMemeTown chatbot is an innovative web-dependent
service designed to support users in cultivating gratitude practice
and providing emotional support through engaging, personalized
interactions [10]. By leveraging cutting-edge NLP and emotion
detection technologies, the HoMemeTown chatbot creates a
unique and rewarding user experience that encourages regular
engagement and promotes mental well-being [11].

The development process involved several key steps, including
server setup, domain acquisition, Secure Sockets Layer
certification, screen planning, development method selection,
application programming interface (API) integration, front-end
and back-end development, database design, performance
tuning, and additional feature implementation [12].

The chatbot relies on the GPT API, a general-purpose language
model provided by OpenAI, instead of a domain-specific model
trained for mental health counseling. The GPT API offers a
range of models, such as Davinci, GPT-3.5, and GPT-4, which
can be selected based on desired performance and cost
considerations. The chatbot relies on the GPT API, a
general-purpose language model provided by OpenAI, instead
of a domain-specific model trained for mental health counseling.
The GPT API offers a range of models, such as Davinci,

GPT-3.5, and GPT-4, which can be selected based on desired
performance and cost considerations.

Rate limiting and resource management are (1) maximum
4,000,000 tokens per minute processing capacity, (2) up to 5000
requests per minute, (3) implementation of a request queuing
system to prevent rate limit exceedance, and (4) monthly budget
monitoring and automated alerts for cost control.

These technical constraints were carefully managed to ensure
consistent service delivery while maintaining cost-effectiveness.
Regular monitoring of API performance and reliability metrics
helped optimize the system’s operation throughout the study
period.

The desired functionalities of the chatbot, such as its role as a
counselor and its ability to detect risks, are implemented through
the use of prompts [8]. However, due to the nature of the GPT
model, there is no guarantee that the chatbot will always behave
exactly as intended, as its responses may vary slightly even with
the same prompt [7].

Figure 1 illustrates the service flow architecture of the
HoMemeTown chatbot. The architecture depicts the user’s
journey, starting from the login process through the user
interface on their PC. After logging in, users can access the
gratitude journal section, where they can find a guide on “How
to write gratitude journal” and proceed to write their own entries
[13]. The system assigns a unique session number to each
journaling session and securely saves the user’s journal entries
along with metadata such as the gratitude journal count, detected
tokens or keywords, expressed emotions, and word count [14].

Users are rewarded with token rewards upon completing a
journal entry, and the system generates a personalized response
acknowledging their entry [4]. They can then continue their
gratitude practice by initiating a new chat through the “CareSam:
Talk to a friend” option. This feature allows users to select an
emotion from a set of 25 emotional icons and provide more
context about their feelings. Cowen and Keltner’s [15] research
on emotional classification inspired the inclusion of these icons.
Recognizing these 25 unique emotions can help users cultivate
greater self-awareness and sensitivity toward others, leading to
increased empathy, connection, and understanding.

The HoMemeTown chatbot aims to encourage and motivate
users to cultivate gratitude practice by providing a seamless
user flow, personalized responses, and emotional attunement.

The HoMemeTown chatbot is currently accessible as an open
web application. This pilot version is available for public testing,
allowing anyone to interact with the chatbot and experience its
features firsthand. The chatbot’s continued operation
demonstrates our commitment to transparency and ongoing
exploration of digital mental health interventions. This open
access approach enhances research reproducibility and provides
opportunities for continuous feedback and improvement.
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Figure 1. Service Flow Architecture of the HoMemeTown chatbot.

Technical Implementation and Server Architecture
The HoMemeTown chatbot operates on a cloud infrastructure
that prioritizes privacy through a “privacy by design” approach.
The key technical feature is that no personal data or chat history
is stored, making the system completely stateless between
sessions (Textbox 1).

This minimalist architecture was specifically chosen to eliminate
privacy concerns by avoiding any form of user data collection
or storage. The system operates on a request-response basis,
where each interaction is treated as a new session without any
historical context or user identification. This approach, while
limiting some personalization features, ensures maximum
privacy protection for users engaging with mental health support
services [16].

Textbox 1. Server architecture.

Frontend development

• React.js framework for responsive user interface

• Material-UI component library for consistent design

• WebSocket implementation for real-time chat functionality

• Client-side-only session management with no persistent storage

Backend infrastructure

• Node.js runtime environment with Express.js framework

• Stateless architecture with no database implementation

• Direct application programming interface (API) integration with OpenAI’s GPT-4

• Nginx reverse proxy for load balancing

OpenAI API integration

• Implementation of GPT-4 API with custom prompt engineering

• No retention of conversation history

• Each interaction is processed as a new, independent session

• Response token limiting for cost optimization

• Regular monitoring of API performance and reliability

User-Centered Design and Emotion Monster Selection
The chatbot targets young adults, particularly university students
aged 18-27 years. It uses a set of 25 emoticons based on emotion
recognition research [15]. These emoticons allow users to

express a wide range of emotions, similar to a broader palette
of colors enhancing artistic appreciation. Recognizing this wider
range of emotions can lead to greater self-awareness and
sensitivity toward others, ultimately fostering empathy,
connection, and understanding. When a user selects an emotion
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monster, a message appears on the chat screen stating their
current mood. However, this message is not directly sent to the
API. Instead, it is arbitrarily generated to include the selected
emotion keyword and appear natural in the chat context. The
actual message sent to the API is a combination of prompts,
such as: “My current emotion is” + emotionText +
“Acknowledge my feelings and greet me with a message of 50
characters or less.” The GPT engine receives this prompt-based

message and generates a response reacting to the user’s selected
emotion.

Figure 2 displays the 25 emotional icons used in the
HoMemeTown chatbot. Inspired by Microsoft’s emotion
monsters, these icons represent a wide range of human emotions,
allowing users to select one that reflects their current mood.
This selection facilitates a more personalized and emotionally
attuned response from the chatbot.

Figure 2. Emotional icons are used in the HoMemeTown chatbot.

Cross-Lingual Dialogue Development
The HoMemeTown chatbot was developed to support both
English and Korean languages to cater to a wider audience.
While our primary participants were Korean university students
with intermediate to upper-intermediate English proficiency
(based on self-reported language skills and academic records),
they were able to effectively evaluate both language versions.
The English version received higher ratings specifically in terms
of written expression quality, though overall satisfaction levels
were comparable between the 2 versions. This may be attributed
to the more straightforward nature of emotional expression in
English compared with the complex honorific system in Korean,
as noted in our language-specific challenges.

In addition to our main study, we conducted informal
preliminary feedback sessions with a native English speaker
(not included in the formal participant count of 20). This native
speaker reported high satisfaction with the natural flow and
cultural appropriateness of the English version. While this

supplementary feedback was exploratory in nature and limited
in scope, it provided valuable initial insights into the
cross-cultural applicability of our system.

The localization process involved adapting the chatbot’s
dialogue to ensure natural conversation flow, accurate language
translation, and cultural sensitivity [17]. The HoMemeTown
chatbot was developed to support both English and Korean
languages to cater to a wider audience. The localization process
involved adapting the chatbot’s dialogue to ensure natural
conversation flow, accurate language translation, and cultural
sensitivity [17].

Figure 3 illustrates the dialogue flow localization process for
both English and Korean versions of the HoMemeTown chatbot.
This visual representation demonstrates how the chatbot’s
responses are adapted to maintain natural conversation flow
and cultural appropriateness in each language.

The localization process is dialogue localization,
language-specific challenges, and emoji usage.
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Figure 3. Dialogue flow localization. A: English version; B: Korean version.

Dialogue Localization
The chatbot’s dialogue was adapted for both English and Korean
languages, taking into account language structure, emoji usage,
and cultural expressions. The localization process aimed to
maintain the chatbot’s empathetic and supportive tone while
ensuring coherence and readability in each language. During
the prompt tuning process, efforts were made to make the
chatbot’s responses more flexible and engaging, particularly in
the Korean version. For example, when a user expresses feeling
down and asks for something fun to do, the Korean chatbot is
tuned to provide humorous and entertaining responses, similar
to the English version, instead of giving a rigid, therapist-like
response.

Language-Specific Challenges
The Korean localization posed unique challenges due to its
agglutinative nature and honorific system. In the Korean version
of the HoMemeTown chatbot, Microsoft’s emotion adjectives
were translated into Korean abstract nouns, such as “상처”
(hurt), “외로움'”(lonely), “소속감” (inclusive), “실망”
(disappointed), and “지루함” (bored). To maintain a consistent
rule, these abstract nouns were combined with the verb ending
“iya” (이야). However, this approach led to some awkward
expressions, such as “상처이야” (hurt) and “자랑이야” (proud),
while others, like “실망이야” (disappointed), “외로움이야”
(lonely), and “지루함이야” (bored), sounded more natural.
This inconsistency in the naturalness of the expressions
highlights the complexity of the Korean language and the
challenges in developing a chatbot that can generate
linguistically accurate and culturally appropriate responses.
Although collaborating with native Korean speakers and
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linguists helped ensure grammatical accuracy and appropriate
honorific usage, further improvements are necessary to fully
address the unique challenges posed by the Korean language,
such as refining the translations and developing more
sophisticated language-specific tuning techniques [17].

Emoji Usage
Emojis were strategically incorporated into both English and
Korean dialogues to convey emotions and soften the tone of the
conversation. The Korean dialogue used emojis more frequently
to align with cultural communication preferences.

Gratitude Journal
The gratitude journal feature was included in the prototype
version based on positive feedback from our previous study [3].
In the previous year’s experiment, many students mentioned it
as one of the most satisfying and enjoyable aspects of the app.
Unlike the previous year’s app, where explanations of the effects
and simple procedures for writing a gratitude journal were often
omitted in Woebot and Happify, the user interface of the

HoMemeTown chatbot’s gratitude journal includes a description
of its effects and the procedure for using it.

The effects and procedures were based on established research
[18], and the benefits of gratitude journaling have been
demonstrated in numerous studies [13,14]. Users accumulate
tokens for completed gratitude journal entries, viewable in their
interface. To facilitate admin tracking of multiple user accounts,
an admin page is implemented, allowing administrators to view
gratitude journal entries, token balances, and chat frequencies
for all user accounts.

Figure 4 illustrates the gratitude journal interface in the
HoMemeTown chatbot. The interface includes a description of
the benefits of gratitude journaling and a step-by-step guide on
how to write a gratitude journal entry. This feature encourages
users to reflect on positive experiences, express gratitude, and
cultivate a more optimistic mindset. Upon completing a journal
entry, users are rewarded with tokens, which are displayed in
the top-right corner of the chat interface.

Figure 4. Gratitude journal interface in the HoMemeTown chatbot.

Risk Detection and Response System
The risk detection system in HoMemeTown was developed
based on established clinical guidelines [19] and validated
screening tools [20], implementing a sophisticated approach to
identifying and responding to potential mental health concerns.
The system continuously monitors user interactions for primary
risk indicators, including expressions of suicidal ideation, severe
depression symptoms, and anxiety crisis signals, while also
tracking secondary indicators such as sleep disturbance patterns
and social withdrawal signs.

When potential risks are detected, the system implements a
graduated response protocol that has been carefully designed
to provide appropriate levels of support while avoiding
unnecessary escalation. For mild risk situations, the system
offers empathetic acknowledgment and self-help resources,
drawing from evidence-based interventions [21]. In cases of
moderate risk, the response includes more direct expressions
of concern and specific mental health resources, while severe
risk triggers an immediate crisis response protocol with direct
connections to professional support services.
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To address the challenge of potential false positives in risk
detection, we implemented a sophisticated validation system
that examines multiple contextual factors before triggering
interventions. This system uses NLP techniques to analyze the
broader context of user communications, helping to distinguish
between casual expressions and genuine indicators of distress.
Regular professional review of high-risk cases ensures the
ongoing refinement of detection algorithms and response
protocols, maintaining a balance between sensitivity and
specificity in risk assessment.

The risk detection and response system undergoes continuous
evaluation and improvement based on user feedback and system
performance metrics. Professional mental health experts
regularly review the system’s performance, leading to protocol
updates that reflect emerging best practices in digital mental
health support. This iterative improvement process has been
shown to enhance the accuracy and effectiveness of automated
mental health support systems [22].

In addition, to mitigate variability and potential errors in LLM
responses, we introduced a validation process including semantic
consistency checks, medical reference verification, and
automatic escalation to human review when necessary, ensuring
responses remain clinically appropriate and user safety is
maintained.

Our implementation of these technical and clinical safeguards
reflects a balanced approach to leveraging AI capabilities while
maintaining high standards of user safety and support quality.

The system’s architecture and protocols were designed to be
scalable and adaptable, allowing for continuous improvement
based on ongoing research in digital mental health interventions.
The HoMemeTown chatbot incorporates a risk detection
function to identify potential mental health concerns through
user interactions. This feature is based on the DSM-5
(Diagnostic and Statistical Manual of Mental Disorders [Fifth
Edition]) criteria [19] and a Korean corpus of
psychopathological symptoms [20], allowing for culturally
sensitive risk assessment.

The system monitors key symptoms such as depressed mood,
changes in appetite or weight, sleep disturbances, fatigue,
feelings of worthlessness, cognitive difficulties, and thoughts
of death or suicide. When 3 or more symptoms are detected,
the chatbot activates a response protocol to encourage
professional help-seeking and provide relevant resources. As
shown in Table 1, the response strategies are carefully adapted
for cultural appropriateness in both English and Korean versions,
with particular attention to different cultural norms in discussing
mental health concerns.

In Table 2, it shows the differences that reflect the cultural
variations in addressing mental health issues, highlighting the
importance of culturally sensitive AI development in mental
health applications. The use of emojis, while more prevalent in
the Korean version, serves to soften the tone and enhance
emotional expression in both languages, aligning with digital
communication norms among young adults.

Table 1. Comparison of English and Korean chatbot versions.

Korean versionEnglish versionCharacteristic

Direct, information-focusedIndirect, supportiveConversation style

Acknowledge emotions, quick transitionIn-depth emotion explorationEmotional approach

ImmediateGradualIntroduction of professional help

Explicitly statedSubtle progressionRisk assessment method

Focus on practical solutionsEmphasis on individual feelingsCultural nuance

Table 2. Example risk detection responses with cultural adaptations.

Korean responseEnglish responseRisk level

“요즘 마음이 무거워 보이네요  함께 이야기 나누면 도

움이 될 수 있어요 ”

“I notice you're having a tough day Would you like to talk about

what's bothering you? ”

Mild

“힘들어하시는 모습이 느껴져요  전문가와 상담해보
는 건 어떠실까요? 제가 도움이 될 만한 정보를 알려드릴

수 있어요 ”

“It sounds like you're going through a difficult time Have you
considered talking to someone who can help? I can suggest some

resources if you'd like ”

Moderate

“많이 걱정되는 이야기네요  24시간 언제든 도움을 받
으실 수 있는 곳이 있습니다. 지금 바로 연락하실 수 있는

곳을 알려드릴까요? ”

“I'm very concerned about what you're sharing There are people
available 24/7 who want to support you. Would you like the contact

information for immediate help? ”

Severe

Ethical Considerations
This study was designed as an initial usability test of the
HoMemeTown chatbot prototype, focusing on user experience
and potential effectiveness. While it does not constitute a

full-scale clinical intervention, we adhered to strict ethical
guidelines for research involving human participants.

The study was conducted as part of a larger research project
titled “Development of a Youth Mental Health Platform Using
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Natural Language Processing.” While the overarching project
received initial institutional review board approval from
Sungkyunkwan University (2023-02-043-004; February 27,
2023, to June 26, 2025), we acknowledge that this specific
chatbot experiment was added later due to rapid developments
in AI technology. Despite this limitation, we maintained rigorous
ethical standards throughout our research, including informed
consent, data privacy measures, and risk mitigation strategies.

Before the usability test, all participants were provided with a
comprehensive informed consent form. This form detailed the
nature and purpose of the study, the procedures involved,
potential risks and benefits, and the measures taken to ensure
confidentiality and data protection. Participants were required
to sign this form to confirm their understanding and voluntary
agreement to participate.

Approximately 70% of the participants in this study had
previously participated in our earlier experiment [3]. This
continuity helped streamline the consent process as these
participants were already familiar with the ethical standards and
procedures in place for digital mental health research.

Data Security and Privacy
To address privacy concerns and protect sensitive information,
the public version of the HoMemeTown chatbot operates
without user registration or login requirements, collecting no
personal information beyond chat interactions. This approach
enhances user privacy but limits personalization features. For
the usability test in this study, we implemented stringent data
security measures, which are (1) all collected data (chat logs,
gratitude journal entries, token rewards) were anonymized, (2)
data were stored on secure, encrypted servers with restricted
access, and (3) no personally identifiable information was linked
to chatbot interactions or survey responses.

We incorporated a risk detection function to identify potential
mental health crises and provide appropriate resources when
necessary. These measures align with best practices in digital
health research, ensuring ethical compliance and participant
protection while advancing AI-assisted mental health support.
Future developments will explore balancing personalization
benefits with privacy protection, possibly through advanced
encryption methods or privacy-preserving technologies.

Results

Overview
We conducted a mixed methods study to evaluate the
performance and user satisfaction of our HoMemeTown Dr
CareSam chatbot. The study design integrated quantitative and
qualitative approaches to provide comprehensive insights: 8
quantitative questions (1 overall satisfaction item and 7

components of chatbot performance) and 4 qualitative questions
(2 positive aspects and 2 areas for improvement). This mixed
methods approach allowed for triangulation of data through
cross-verification between quantitative metrics and qualitative
user feedback, enhancing the validity and depth of our findings.
The results provide multifaceted insights into the chatbot’s
strengths, areas for improvement, and comparative performance
with other LLM and digital therapy chatbots.

Participants
The study included 20 participants aged 18 to 27 (mean 23.3,
SD 1.96) years with 60% (12/20) female and 40% (8/20) male.
Participants were recruited through university email lists and
social media advertisements. All participants provided informed
consent.

Quantitative Findings
The usability and satisfaction evaluation of the Dr CareSam
counseling chatbot was conducted using a comprehensive survey
consisting of 1 overall satisfaction question and 7 quantitative
items assessing key components of effective psychological
counseling, which consists of empathy, accuracy and usefulness,
complex thinking and emotions, active listening and appropriate
questions, positivity and support, professionalism, and
personalization. Users generally expressed positive views, with
positivity and support receiving the highest score on a 10-point
scale (mean 9.0, SD 1.2), followed by empathy (mean 8.7, SD
1.6) and active listening (mean 8.0, SD 1.8). These findings
align with previous research on the importance of empathy and
support in mental health chatbot interactions. However, areas
for improvement were noted in professionalism (mean 7.0, SD
2.0), complexity of content (mean 7.4, SD 2.0), and
personalization (mean 7.4, SD 2.4), indicating potential avenues
for future development to enhance user engagement and
satisfaction.

Figure 5 shows the distribution of scores for various usability
questions. The boxes represent the IQR, and the whiskers extend
to the minimum and maximum values within 1.5 times the IQR.
Black dots represent the mean values for each category.

To provide a more comprehensive understanding of the
evaluation factors and their theoretical foundations, we present
the following in Table 3.

This comprehensive evaluation framework enables a nuanced
assessment of the chatbot’s performance across key dimensions
of effective counseling. The results provide valuable insights
into the strengths of the Dr CareSam chatbot, particularly in
areas of empathy and support. In addition, the findings highlight
opportunities for improvement in professionalism,
personalization, and complexity of responses, suggesting
potential avenues for future development to enhance user
engagement and satisfaction.
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Figure 5. Box plot of scores for Dr CareSam usability questions.

Table 3. Evaluation Factors for Dr CareSam chatbot.

Previous studiesDescriptionQuestionEvaluation factor

Rogers [23], Elliott et al [24]An empathetic understanding of the client's emo-
tions and experiences is essential in effective
counseling conversations.

Did CareSam’s responses express
empathy and understanding of the
user's question?

Empathy

Hepworth [25], Egan [26]Providing accurate and actionable information
aids in problem-solving and decision-making for
the client.

Did CareSam’s responses provide
accurate and useful information re-
garding the user’s question?

Accuracy and usefulness

Greenberg [27], Gendlin [28]Skilled counselors should address cognitive and
emotional experiences interactively, facilitating
insights into the client's internal experiences.

Did CareSam’s responses include
complex thinking and emotions
rather than simple knowledge?

Complex thinking and
emotions

Weger et al [29], Hill [30]Active listening and appropriate questioning
techniques promote self-exploration and deeper
understanding.

Did CareSam’s responses include
not only active listening but also
appropriate questions?

Active listening and ap-
propriate questions

Mearns and Thorne [31], Nor-
cross and Lambert [32]

Support and encouragement enhance the client's
self-esteem and motivation for change.

Did CareSam’s responses include
positivity and support?

Positivity and support

Sue and Sue [33]; Ratts et al [34]Professionalism increases client trust and adher-
ence to treatment, encompassing theoretical
knowledge, clinical experience, and ethical
awareness.

Did CareSam’s responses demon-
strate professionalism?

Professionalism

Norcross and Wampold, [35],
Beutler and Harwood [36]

Effective counseling should be tailored to the in-
dividual characteristics and needs of the client.

Did CareSam’s responses appear to
be customized?

Personalization

Qualitative Feedback
User feedback presented in Table 4 was collected through
structured interviews and open-ended survey responses, focusing
on key themes such as response speed, empathy, and
personalization. Responses were categorized based on frequency
of mention, providing a clear overview of commonly reported
strengths and areas for improvement. User feedback confirms
the chatbot’s strengths in providing detailed, empathetic
responses, a user-friendly interface, and a supportive demeanor.
However, areas for improvement include slow response times,
Korean text flow issues, and repetitive interactions. Interestingly,

both “quick feedback” and “slow response time” were frequently
mentioned, suggesting that while feedback is relevant and timely
within the context of a rule-based chatbot, it may not be the
fastest possible response.

The qualitative themes align with quantitative satisfaction
ratings, illustrating consistent patterns across user experiences.
For instance, high ratings for “positivity and support” were
reflected in user comments praising Dr CareSam’s empathetic
responses. Conversely, lower ratings in “personalization”
corresponded with feedback indicating a desire for more tailored
interactions.
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Table 4. Users’ experiences of good and bad points for HoMemeTown chatbots.

Negative pointsPositive pointsMention level and category

Most mentioned

Slow response time, lack of prompt responses.Quick responses and real-time feedback.Response speed

Overemphasis on empathy, repetitive responses without
practical advice.

Encouraging, supportive responses, provides courage
and understanding.

Friendly and Positive Tone

Frequently mentioned

Focused too heavily on empathy without specific guid-
ance or solutions.

Expresses understanding and empathy effectively.Empathy capability

Awkward phrasing in Korean, lack of accuracy and ap-
propriateness in Korean responses.

Supports English and Korean; human-like, natural
conversation flow.

Korean language processing

Moderately mentioned

Repetitive tone, lack of personalization.Uses varied emotions and appropriate emoticons.Detailed expression

Limited content, need for features like a reward for en-
gagement, and the option to revisit previous interactions.

Emotional expression, gratitude journaling guidance,
diverse responses for different situations.

Chatbot functionality

Less mentioned

Issues with long text bubbles, lack of auto line breaks,
and need for design improvements.

Clean, user-friendly interface with intuitive design el-
ements.

Design and interface

Excessive use of emoticons, insufficient professional
advice, and need for mobile accessibility improvement.

Provides relevant information and problem-solving
advice.

Content and information

Least mentioned

Insufficient personalization, lack of integration with
medical or counseling services, missing human touch.

Positive and personalized responses, convey a warm
and positive energy.

Personalization

Inconsistent engagement incentives need for enhanced
humanistic features.

Easy usability, approachable demeanor.Miscellaneous

Comparative Analysis
Performance variations among LLM chatbots, including Google
Bard and the freely accessible version of ChatGPT, as illustrated
in Figure 6, were statistically significant (F=3.27; P=.048 While
the evaluation primarily focused on “Overall Satisfaction” [3],
it is important to note that user experience differences may
reflect limitations inherent to the free versions available for
these comparisons, including ChatGPT 3.0 and Google Bard’s
publicly accessible iteration.

Satisfaction levels with HoMemeTown’s Dr CareSam, compared
with Woebot [5] and Happify [37], showed more pronounced

differences (F=12.94; P<.001), as shown in Figure 7, suggesting
unique benefits in mental health support for college students.

In the comparison with Woebot and Happify, the previous
evaluation [3] used 5 specific criteria, that are overall
satisfaction, ease of use, novelty, effectiveness, and intention
to maintain use. However, for this study, “Overall Satisfaction”
was selected as the primary comparative metric to simplify and
provide a focused assessment of user impressions. Statistical
analyses were conducted using ANOVA to determine significant
differences, with appropriate post hoc tests applied for multiple
comparisons to identify specific group variations.
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Figure 6. Comparison of large language models chatbots. LLM: Large language models.

Figure 7. Comparison of digital therapy chatbots.

Discussion

Principal Findings
This study reveals several key insights about the HoMemeTown
Dr CareSam chatbot, demonstrating its potential as an innovative
tool in digital mental health support. The chatbot’s high
performance across multiple dimensions of effective counseling,
particularly in providing empathetic responses and a
user-friendly interface, aligns with current research emphasizing
the importance of these factors in digital mental health

interventions [3,10,11]. The statistically significant performance
differences observed between HoMemeTown Dr. CareSam and
other chatbots, both LLM-based (F=3.27; P=.047) and
traditional digital therapy tools like Woebot and Happify
(F=12.94; P<.001), suggest that our approach offers unique
benefits in mental health support for college students. This could
be attributed to our comprehensive evaluation framework based
on established counseling principles and the integration of a
sophisticated risk detection function. The chatbot’s risk detection
capability, grounded in DSM-5 criteria and a Korean corpus of
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psychopathological symptoms, represents a significant
advancement in AI-driven mental health support tools,
enhancing its potential as a safe and responsible digital
intervention.

However, the study also highlighted important challenges and
areas for improvement. While the chatbot’s bilingual capability
is a strength, issues with unnatural expressions and response
speed in the Korean version underscore the complexities of
cross-cultural adaptation in AI-driven mental health tools.
Furthermore, our decision to prioritize user privacy over
extensive personalization features reveals a critical challenge
in developing ethical AI-driven mental health interventions.
This trade-off between personalization and data protection
warrants further exploration in the field. Specifically, areas for
improvement were noted in professionalism (mean 7.0, SD 2.0),
complexity of content (mean 7.4, SD 2.0), and personalization
(mean 7.4, SD 2.4), indicating potential avenues for future
development to enhance user engagement and satisfaction.
Collectively, these findings suggest that HoMemeTown Dr
CareSam represents a promising step forward in AI-assisted
mental health support, while also illuminating critical areas for
future research and development in this rapidly evolving field.

Addressing LLM Variability and Technological
Enhancements
To tackle the inherent challenges posed by LLM variability and
potential hallucinations [38] in chatbot responses, we developed
a comprehensive response validation pipeline. This pipeline
includes semantic consistency checking, medical reference
validation to prevent the dissemination of inaccurate
information, and automatic escalation to human review when
responses deviate from predetermined safety parameters. These
safeguards are integral to ensuring the chatbot’s interactions
remain clinically appropriate, fostering user trust and alignment
with established mental health support practices.

While these measures provide a critical baseline for reliability,
further advancements in the underlying LLM technologies are
essential for achieving higher accuracy and contextual nuance
in responses. For example, the integration of LangChain [39]
technology allows for the systematic management and
connection of multiple language models, offering improved
contextual understanding and the ability to tailor responses to
specific counseling scenarios. This modular approach enhances
the flexibility and precision of chatbot interactions, particularly
in complex or sensitive exchanges.

In addition, leveraging retrieval-augmented generation [40]
techniques further bolsters response precision by drawing upon
curated counseling databases and real-world cases. This not
only strengthens the relevance of responses but also minimizes
the risk of erroneous or hallucinated outputs. Such enhancements
highlight the evolving interplay between foundational AI
capabilities and domain-specific knowledge, positioning the
chatbot as a more robust and dependable digital mental health
intervention.

From an ethical standpoint, these advancements underscore the
importance of balancing technological innovation with user
safety and data integrity. Ensuring consistent oversight, ongoing

evaluation, and refinement based on user feedback is vital to
maintaining a high standard of care in digital interventions. As
LLM technologies continue to evolve, our approach serves as
a model for integrating emerging tools into practical
applications, demonstrating how AI can be effectively harnessed
to provide compassionate and reliable mental health support
while continually adapting to user needs and technological
developments.

Comparison With Previous Work
Unlike rule-based chatbots, HoMemeTown Dr CareSam,
leveraging LLM technology, was able to provide more flexible
and personalized interactions. Our findings align with previous
research on Woebot’s effectiveness in supporting young adults
with depression and anxiety symptoms [5] while extending
these benefits through our enhanced risk detection capabilities.
Similarly, while Happify has shown promise in addressing
loneliness during COVID-19 [37], our system demonstrates
additional advantages in providing culturally adapted support
for Korean users. This addresses several limitations of existing
chatbots highlighted in previous studies, such as rigid response
patterns and limited contextual understanding [3,5]. Specifically,
our chatbot improved upon these limitations by offering more
nuanced and context-appropriate responses, as evidenced by
higher user satisfaction scores in empathy and active listening.
The chatbot’s risk detection function, grounded in DSM-5
criteria and a Korean corpus of psychopathological symptoms,
represents an advancement in AI-driven mental health support
tools, offering a level of clinical relevance not typically seen in
general-purpose chatbots.

Strengths and Limitations
A key strength of this study is the development of a personalized
and empathetic mental health support tool using state-of-the-art
LLM technology, with a sophisticated risk detection function.
The bilingual support in English and Korean is another
significant strength, addressing linguistic diversity and potential
cross-cultural applications [17].

This study has several important limitations. The small sample
size (n=20) limits the generalizability of the results but was
chosen to ensure continuity and comparability with previous
usability studies for Dr CareSam [3]. While this limited sample
size may restrict broader applicability, it allowed for detailed
and focused insights, particularly beneficial for pilot studies.
Future research will aim to expand the sample size to validate
findings and provide a more comprehensive evaluation of the
chatbot’s effectiveness.

In addition, feedback from a small group of native English
speakers, not formally included in the 20-participant sample,
revealed potential areas for improving cross-lingual
functionality. Though this feedback offered valuable preliminary
insights, future studies will involve broader validation with a
larger group of native speakers to ensure accurate and culturally
appropriate responses.

Another limitation is the potential inconsistency in comparing
Dr CareSam, built on the ChatGPT 4.0 API, with user
experiences based on the freely available ChatGPT 3.0.
Differences in capabilities between these versions may have
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influenced user perceptions and performance metrics. Future
studies should strive to standardize versions for more direct and
valid comparisons.

There are technical limitations associated with relying on the
GPT API [7]. While this approach allows for advanced NLP
capabilities, it also means that the chatbot’s performance is
dependent on the underlying model, which may have inherent
biases or limitations. Furthermore, the reliance on an external
API raises considerations about data privacy and the long-term
sustainability of the system.

These limitations highlight the need for large-scale, long-term
studies to fully evaluate the chatbot’s effectiveness and
generalizability. Future research should also explore the
development of more specialized models that can be run locally,
potentially addressing some of the limitations associated with
relying on external APIs.

Clinical Implications
The HoMemeTown Dr CareSam chatbot shows potential as an
accessible mental health support tool for young adults, with its
risk detection function providing an additional layer of safety.
However, it’s crucial to clarify that this chatbot cannot replace
professional mental health treatment, especially in cases where
significant risk is detected. The chatbot’s role should be seen
as complementary to traditional mental health services,
potentially serving as an initial point of contact or a
supplementary support tool. It may be particularly useful for
providing immediate support during nonclinical hours, for mild
to moderate concerns, or for individuals who may be hesitant
to seek traditional face-to-face therapy. However, clear
guidelines must be established for when and how to transition
users from the chatbot to professional human intervention.

Privacy and Personalization Considerations
A key challenge in this study was balancing personalization
with user privacy. In our previous study, participants emphasized
the importance of personalization features [3]. However, in
developing the pilot version of HoMemeTown, we faced a
significant dilemma between implementing these desired
personalization features and ensuring robust privacy protection.

Ultimately, we made the decision to prioritize privacy by
eliminating user registration and personal data collection in the
current public version. This choice was driven by the sensitive
nature of mental health data and the potential risks associated
with data breaches or misuse.

As a result, the chatbot relies solely on the capabilities of the
LLM to provide a sense of personalization within individual
conversations, without retaining user-specific information across
sessions. This approach, while enhancing data security, limits
our ability to offer some of the personalized features that
participants in our previous study had requested. The chatbot
attempts to mimic personalization through its conversational
abilities, but it cannot retain or learn from past interactions with
specific users. This trade-off highlights a crucial challenge in
digital mental health interventions, how to balance user
expectations for personalized experiences with the ethical
imperative of protecting sensitive personal information. It also
underscores the need for transparent communication with users
about the capabilities and limitations of AI-driven mental health
tools.

Future research should explore advanced technologies like
federated learning or differential privacy, which could
potentially allow for more personalized features without
compromising user privacy. In addition, developing clear
guidelines for handling mental health data in AI-powered
interventions will be essential. Our experience underscores the
need for innovative solutions that balance the benefits of
personalization with robust data protection in mental health
contexts. As the field evolves, finding this balance will be key
to developing effective, trustworthy, and ethically sound
AI-powered mental health interventions [8,41].

Future Directions
Based on our findings, we propose the key areas for future
research in Textbox 2.

These focused directions align closely with our current work
while suggesting meaningful advancements in the field of
AI-assisted mental health support within the context of medical
informatics.
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Textbox 2. Key Points of evaluation criteria for large language model (LLM) chatbots.

Long-term effectiveness

• Conduct large-scale, longitudinal studies to evaluate the long-term impact of our cross-lingual chatbot on mental health outcomes.

Cross-cultural adaptations

• Further refine the chatbot’s ability to provide culturally appropriate responses, particularly focusing on improving Korean language naturalness.
Improving the naturalness of Korean language responses will involve refining language processing algorithms and collaborating with linguists
and native speakers to address issues with awkward phrasing and cultural nuance. Incorporating user feedback to continuously adapt and optimize
the chatbot’s language output is also essential.

Speech-based user interface

• Develop and evaluate a speech-based user interface to increase usability and accessibility, particularly for users who may find voice interactions
more natural or easier than text-based communication. This would involve integrating robust voice recognition and response capabilities to align
with user preferences and accessibility needs.

Privacy-preserving personalization

• Explore technologies like federated learning to enhance personalization while maintaining robust data protection.

Risk detection enhancement

• Improve the accuracy and effectiveness of the risk detection function, potentially integrating it with existing mental health screening tools.

Integration with health care systems

• Investigate secure ways to integrate chatbot data with electronic health records, while maintaining user privacy.

Conclusions
This study represents a significant advancement from our
previous work [3], addressing the limitations identified and
exploring the potential of more sophisticated AI technologies
in mental health support. By leveraging ChatGPT 4.0 and
incorporating features like cross-lingual support and risk
detection, we have developed a more comprehensive and
adaptable tool for supporting young adults’mental health needs.
This pilot study demonstrates the potential of HoMemeTown
Dr CareSam, an LLM-based cross-lingual chatbot with advanced
risk detection capabilities, in providing mental health support
for young adults. While the chatbot showed promising results

in user satisfaction, empathetic responses, and risk assessment,
challenges in professionalism, cross-lingual adaptations, and
the need for technical refinements were also identified. Further
long-term, large-scale studies are needed to fully evaluate its
effectiveness and potential integration with existing health care
systems, as we continue to refine this technology to support
mental well-being in our increasingly digital world. From a
medical informatics perspective, this study contributes to our
understanding of how advanced AI technologies can be applied
in mental health care, potentially informing the development
of more sophisticated, culturally sensitive digital health tools
in the future.
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