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Abstract

Background: Traditional rule-based natural language processing approaches in electronic health record systems are effective
but are often time-consuming and prone to errors when handling unstructured data. This is primarily due to the substantial manual
effort required to parse and extract information from diverse types of documentation. Recent advancements in large language
model (LLM) technology have made it possible to automatically interpret medical context and support pathologic staging.
However, existing LLMs encounter challenges in rapidly adapting to specialized guideline updates. In this study, we fine-tuned
an LLM specifically for lung cancer pathologic staging, enabling it to incorporate the latest guidelines for pathologic TN
classification.

Objective: This study aims to evaluate the performance of fine-tuned generative language models in automatically inferring
pathologic TN classifications and extracting their rationale from lung cancer surgical pathology reports. By addressing the
inefficiencies and extensive parsing efforts associated with rule-based methods, this approach seeks to enable rapid and accurate
reclassification aligned with the latest cancer staging guidelines.

Methods: We conducted a comparative performance evaluation of 6 open-source LLMs for automated TN classification and
rationale generation, using 3216 deidentified lung cancer surgical pathology reports based on the American Joint Committee on
Cancer (AJCC) Cancer Staging Manual8th edition, collected from a tertiary hospital. The dataset was preprocessed by segmenting
each report according to lesion location and morphological diagnosis. Performance was assessed using exact match ratio (EMR)
and semantic match ratio (SMR) as evaluation metrics, which measure classification accuracy and the contextual alignment of
the generated rationales, respectively.

Results: Among the 6 models, the Orca2_13b model achieved the highest performance with an EMR of 0.934 and an SMR of
0.864. The Orca2_7b model also demonstrated strong performance, recording an EMR of 0.914 and an SMR of 0.854. In contrast,
the Llama2_7b model achieved an EMR of 0.864 and an SMR of 0.771, while the Llama2_13b model showed an EMR of 0.762
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and an SMR of 0.690. The Mistral_7b and Llama3_8b models, on the other hand, showed lower performance, with EMRs of
0.572 and 0.489, and SMRs of 0.377 and 0.456, respectively. Overall, the Orca2 models consistently outperformed the others in
both TN stage classification and rationale generation.

Conclusions: The generative language model approach presented in this study has the potential to enhance and automate TN
classification in complex cancer staging, supporting both clinical practice and oncology data curation. With additional fine-tuning
based on cancer-specific guidelines, this approach can be effectively adapted to other cancer types.

(JMIR Med Inform 2024;12:e67056) doi: 10.2196/67056
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Introduction

Pathologic staging is a crucial part of cancer management
because it provides vital information about the extent of the
disease through histopathological examination [1]. Lung cancer
continues to be the leading cause of cancer-related mortality
globally, surpassing the combined deaths from colon, breast,
and prostate cancers, underscoring its poor prognosis [2].
Therefore, pathologic staging is particularly important for
tailoring treatment strategies and accurately predicting patient
outcomes [3,4]. Accurate staging is essential in high-mortality
cancers like lung cancer, as it enables clinicians to select the
most appropriate and effective treatment strategies based on the
tumor’s specific characteristics and extent of spread. This
precision ensures that treatment is tailored to the cancer’s stage,
significantly influencing survival outcomes and improving
prognosis. It is typically performed manually in accordance
with the American Joint Committee on Cancer (AJCC) Cancer
Staging Manual specific for each cancer type. This manual
process is prone to human error and requires considerable time
and effort to ensure accuracy and compliance with the latest
AJCC guidelines. Data-entry errors can result in inaccurate
patient records, potentially affecting treatment decisions and
research outcomes. Manual staging has the drawback of potential
inconsistencies in interpretation among pathologists, which can
impact reliability. Leveraging automated staging methods can
improve consistency and reliability, particularly in large-scale
studies. Additionally, the AJCC staging guidelines have
undergone multiple updates since the release of the 6th edition
in 2003, including the 7th edition in 2010, the 8th edition in
2018, and the forthcoming 9th edition. Each update introduces
the potential for inconsistencies when integrating data from
previous versions. Therefore, updating or verifying the staging
data to align with the current AJCC guidelines is labor-intensive
and can cause delays in clinical decision-making.

These challenges necessitate the development of automated
technologies that can directly classify pathologic stages from
textual pathology reports. These technologies would streamline
the staging process, reduce human errors, and ensure consistent
application of the latest guidelines. Thus, automated data
extraction systems can enhance the efficiency and reliability of
clinical and research processes.

The automation of this process has primarily relied on rule-based
natural language processing (NLP) techniques [5,6]. However,

these approaches have inherent limitations, as they require the
manual creation of rules to extract information, followed by an
additional step to map the extracted data to TN classification
criteria. This process is prone to errors and inefficiencies, and
slight variations in the context or expressions used in pathology
reports can hinder these methods from effectively handling
complex linguistic features. To address these challenges,
advanced techniques, such as large language models (LLMs),
hold the potential to automatically comprehend context, infer
pathologic staging, and provide transparent rationales.

Recent studies have actively explored the application of
language models in medical and clinical information extraction
[7-11]. In particular, research has been conducted using
Bidirectional Encoder Representations from Transformers
(BERT) [11,12], a language model based on the transformer
architecture [13]. For example, Hu et al [11] developed a system
to extract information from lung cancer computed tomography
reports according to the 8th edition TNM classification. To
establish lung cancer staging, they selected 14 key entities,
including tumor shape, density, and invasion, embedded the
computed tomography reports using word2vec [14], and
performed named entity recognition (NER) for each entity using
a combination of BERT and bidirectional long short-term
memory. In the study, NER with BERT demonstrated excellent
performance in information extraction, achieving a macro
F1-score of 0.901 and a micro F1-score of 0.946. Zhou et al [12]
also fine-tuned Blue-BERT [15] with cancer-specific
terminology to develop CancerBERT, defining eight key
phenotypes, such as tumor size, cancer grade, histological type,
and cancer stage, to support clinical decision-making in patients
with breast cancer. CancerBERT was trained to automatically
recognize these phenotypes in clinical and pathology reports,
achieving a micro–F1-score of 0.909 in NER performance for
these eight phenotypes, demonstrating superior performance.

While deep learning–based methods show effective results in
information extraction using NER, they still have limitations
in extracting implicit information embedded in sentences.
Additionally, NER-based approaches often require further
postprocessing, such as relationship classification between
extracted entities, and are less robust to typos and synonyms,
making dictionary creation time-consuming and costly.

Recent advances in LLMs have demonstrated strengths in
understanding various contexts and handling diverse
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expressions, making them suitable for information extraction
[16]. In particular, prompt engineering enables LLMs to generate
more accurate outputs when specific outputs are needed [17],
and zero-shot prompting allows the model to flexibly solve new
problems, making it advantageous for application across
different domains [18]. However, studies leveraging LLMs to
provide TN classification and rationales based on specific cancer
staging guidelines remain limited.

Advances in prompt engineering have paved the way for the
chain-of-thought (CoT) prompting approach [19]. CoT prompts
enable complex reasoning by incorporating intermediate
reasoning steps. Furthermore, CoT fine-tuning can improve the
zero-shot learning performance of language models [20-22].
Models that have been fine-tuned using the CoT method can
provide their “rationale” by describing the intermediate
reasoning steps involved in solving a problem. This not only
demonstrates the results but also aids in understanding and
interpreting the decisions of the model. Providing the “rationale”
is particularly beneficial in fields where evidence-based
decisions are crucial, such as health care, because it facilitates
the review and acceptance of the decisions of the model by
health care professionals. TN classification in pathologic staging
requires the integration of various clinical factors and a clearly
defined logical process. However, traditional rule-based NLP
approaches are limited by their inability to explicitly perform
complex reasoning, relying instead solely on predefined rules
for information extraction. CoT prompting addresses this
limitation by enabling the model to explicitly present
intermediate reasoning steps and logical justifications during
the problem-solving process. This approach enhances both the
consistency and interpretability of the pathologic TN
classification task.

This study proposes a method for automatically inferring TN
classification and its rationales based on the AJCC Cancer
Staging Manual 8th edition [23] using a generative language
model (GLM) and evaluates its performance in lung cancer
surgical pathology reports. We focused on demonstrating the
applicability of lightweight GLMs for addressing inferential
tasks, such as predicting pathologic TN classification, in
environments with limited computing resources, such as medical
institutions. Lightweight models, with their lower memory and
processing requirements, provide faster inference speeds and
minimize the need for expensive hardware upgrades. These
characteristics make them well suited for real-time clinical use
and deployment across diverse medical institutions with varying
levels of technical infrastructure.

This study aims to develop a generative LLM-based approach
for automated pathologic TN classification that also provides
interpretable rationales, potentially transforming pathology
report analysis in lung cancer care.

Methods

Data Description
This is a retrospective observational study using electronic
health records (EHRs). The retrospective EHR data were

selected for their extensive dataset availability and their capacity
to provide detailed clinical information, facilitating the
evaluation and validation of LLMs for TN classification and
rationale extraction. We used EHRs obtained from Seoul
National University Bundang Hospital (SNUBH) between May
2003 and December 2021 in this study. These records were
extracted from the Observational Medical Outcomes Partnership
Common Data Model data [24,25]. The Observational Medical
Outcomes Partnership Common Data Model database contains
comprehensive data, including basic patient information, health
care records, family history, diagnoses, drug exposure, test
results, biomarkers, surgeries, and procedures. All reports were
stored in text format within the NOTE table, from which we
selected deidentified 7832 surgical pathology reports from
patients with lung cancer (International Classification of
Diseases, Tenth Revision diagnosis code: C34). To ensure high
reliability in data extraction from lung cancer surgical pathology
reports, validation was obtained from a pathologist at SNUBH
rather than relying on external data. As SNUBH data can be
verified by internal domain experts and originates from a tertiary
general hospital that adheres to international guidelines and
standards, this data source was chosen to ensure high-quality
data.

Ethical Considerations
This study was approved as exempt by the institutional review
board of Seoul National University Bundang Hospital because
of the use of deidentified patient data in a secure environment
(X-2404-897-902).

Data Preprocessing
Figure 1 shows the flowchart of the data preprocessing. A single
surgical pathology report of lung cancer typically contains at
least one lesion. In this study, a dataset of lung cancer surgical
pathology reports was constructed using the following separation
process.

First, we selected 7831 surgical pathology reports from patients
who had undergone surgery and were diagnosed with lung
cancer, as indicated by the International Classification of
Diseases, Tenth Revision code C34. Second, since the lung
cancer surgical pathology reports contained information on
multiple lesion locations, we separated the report for each lesion
individually. For example, a report containing two parts—“[A]
Lung, right upper lobe, lobectomy” and “[B] Lung, left lower
lobe, lobectomy”—was separated into individual lesions. Third,
the reports, now separated by lesion location, were further
divided based on the diagnosis of morphology, resulting in a
total of 11,667 reports. For example, the “[B] Lung, left lower
lobe, lobectomy” part included subparts such as “1.
ADENOCARCINOMA, acinar predominant” and “2. Atypical
alveolar pneumocytic hyperplasia.” These subparts were divided
according to the diagnosis of morphology. The pathology reports
used in this study did not include patient names or identification
numbers, and identifiers such as pathology numbers were
removed to ensure the data was deidentified. Consequently,
personal information, such as patient names, was also not
included in the sections containing lesion information.
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Figure 1. Data preprocessing flow. AJCC: American Joint Committee on Cancer; ICD-10: International Classification of Diseases, Tenth Revision.

Reports compiled prior to 2017 were excluded from the final
dataset, as they were based on the AJCC Cancer Staging Manual
6th and 7th edition criteria, which do not align with the AJCC
Cancer Staging Manual 8th edition criteria used in this study.
Due to differences in TN classification criteria across AJCC
Cancer Staging Manual editions, the same malignant tumor
may be assigned different TN classifications depending on the
version, potentially leading to discrepancies. We then
constructed a final dataset from 3216 reports compiled in
accordance with the AJCC Cancer Staging Manual 8th edition,
an internationally recognized guideline for systematic cancer
staging that undergoes regular reviews and revisions [26]. This

manual is used to classify the extent of cancer progression based
on factors such as tumor size, location, invasion of adjacent
tissues, lymph node metastasis, and distant metastasis.

Label Assignment

Overview
Figure 2 shows the labeling process, which is divided into two
parts. First, we labeled rationale sentences containing evidence
for TN staging. We then identified the TN staging results from
the lung cancer surgical pathology reports and labeled the TN
classifications accordingly.

Figure 2. Label assignment and structure of prompt. (A) Identified and labeled both the recorded pathologic TN stage and the rationale sentences
determining TN classification, (B) Removed sentences containing the recorded TN stage, (C) Included the preprocessed pathology report in the prompt,
(D) Included the labeled elements from (A) in the prompt.
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Rationale Labeling
We identified rationale sentences in the lung cancer surgical
pathology reports that determine the TN classification
(Multimedia Appendix 1), and these sentences were classified
according to the AJCC Cancer Staging Manual 8th edition
criteria. The identified rationale sentences were then used as
labels for model training. This process was crucial for generating
sentences that reflected a deep understanding of the TN
classification decision and were included in the dataset.

Pathologic TN Classification Labeling
We identified sentences from lung cancer surgical pathology
reports in which the TN pathologic stage was recorded. The
pathologic stage was determined based on the identified data.
Next, we removed sentences in which the TN stage was recorded
from the reports to prevent that information from being used to
train the model. For example, as shown in Figure 2, we
identified the TN stage “pT1cN0” from a sentence in a lung
cancer surgical pathology report, constructed the label, and
deleted that sentence.

Two health care professionals constructed a gold standard for
the labeling process through an in-depth review and validation
based on their clinical experience.

Train Data
Figure 2 shows the prompt for fine-tuning using the CoT
approach. The initial section of the prompt structure provides
an explanation of the task, along with a list of abbreviations and
synonyms related to lung lobes and lymph nodes. The middle
section contains the lung cancer surgical pathology report,
whereas the final section contains the pathologic stage and
rationale data obtained through labeling. The LLM used these
structured prompts to identify crucial information from the lung
cancer surgical pathology reports and perform the necessary
logical reasoning for generating TN classification. The model
was trained to use the JSON structure in its output format during
fine-tuning. This enabled the automatic evaluation of
experimental results, as it standardized the varied forms of the
output generated by the model.

The dataset used in this study consisted of 3216 reports, with
1929 allocated to the training set, 643 to the validation set, and
644 to the test set. Stratified random sampling was used to
ensure a balanced representation across TN classifications.
Reports were stratified by specific TN classifications, and each
subset (training, validation, and test) was constructed to reflect
the proportional distribution of these classifications. This
approach aimed to include diverse cases from all TN categories,
enabling the model to generalize effectively across various
classifications.

Model Selection
The primary objective of this study was to evaluate the
applicability and performance of relatively lightweight GLMs
in environments with limited computing resources, such as
medical institutions. To achieve this, we selected two
representative open-source GLMs, Llama and Mistral, which
are freely available and facilitate flexible deployment in clinical
settings without licensing constraints. Additionally, the Orca2

model, a fine-tuned version of Llama-2, was included. Orca2
is enhanced with robust reasoning capabilities, developed using
a synthetic dataset filtered and fine-tuned from the FLAN-v2
Collection [27]. Optimized with various reasoning techniques,
Orca2 demonstrates excellent performance in generating
step-by-step responses to complex questions. Models with
parameter sizes ranging from 7B to 13B were chosen to examine
lightweight options suitable for resource-constrained clinical
environments and the demands of complex cancer staging. The
selected models were Orca2_ 7 B [22], Orca2_ 13 B [22],
Mistral_ 7 B [28], Llama2_ 7 B [29], Llama2_ 13 B [29], and
Llama3_8b.

Model Fine-Tuning
The training process comprised 6000 steps, with each graphics
processing unit processing a batch size of 2. Gradient
accumulation was performed every four steps, and the learning
rate was set to 1.5e-5. We implemented a low-rank adaptation
to use the fine-tuning technique [30]. Low-rank adaptation is a
part of parameter-efficient fine-tuning [31] that preserves the
overall model structure and learned patterns while substantially
reducing the number of parameters required for training in
specific areas of the model. Based on initial testing results, we
selected a configuration with γ and α values set to 32, effectively
balancing training efficiency and model performance.
Additionally, through preliminary experiments evaluating
various configurations, we determined that a dropout rate of
0.05 was optimal for maintaining model stability while
preventing overfitting. We used the cross-entropy loss function
and AdamW 32-bit optimizer during training. The model with
the lowest validation loss was selected. We minimized
randomness by setting the top k to 1 and restricting the beam
search to 1 during the evaluation phase. For a summary of the
experimental setup for LLM training, see Multimedia Appendix
2.

Evaluation

Overview
In this study, we evaluated the performance of a fine-tuned
GLM in the automatic prediction of TN classifications and their
rationale sentences for lung cancer surgical pathology reports.
We used precision, recall, and F1-score, focusing on the
accuracy of the sentences produced to assess the performance
of the GLMs. Additionally, we introduced the exact match ratio
(EMR) and semantic match ratio (SMR) as evaluation metrics.
These metrics were chosen because they are more appropriate
for clinical text generation than conventional NLP metrics like
bilingual evaluation understudy or recall-oriented understudy
for gisting evaluation. In clinical contexts, even small
differences in terms, numbers, or classifications can significantly
impact the medical interpretation of a sentence. Since metrics
like bilingual evaluation understudy and recall-oriented
understudy for gisting evaluation measure surface-level
similarity, they could give high scores even if critical clinical
information, such as tumor size or stage, differs. Therefore,
EMR and SMR were selected to assess whether the generated
sentences precisely match the AJCC Cancer Staging Manual
8th edition criteria and maintain consistent clinical meaning.
To this end, we used the following evaluation metrics:
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EMR
EMR represents the ratio of sentences generated by a model
that perfectly matches the standard answer. This was defined
as follows:

where N represents the total number of samples, I(°) is an
indicator function that equals 1 if the condition inside the

parentheses is true and 0 if false, . represents the model’s
prediction, and yi represents the actual value.

SMR
The SMR represents the ratio of sentences generated by the
model that have the same contextual meaning as the standard
answer, even if they are not a perfect match. For example, if
the standard answer is “Regional lymph node metastasis
information is missing or not submitted” and the generated
rationale sentence is “Regional lymph node metastasis
information is missing or not insufficient,” an expert would
validate whether it matches in context. SMR is defined as
follows:

where Ih(°) represents expert validation, which assesses whether
the generated sentence and standard answer match in context.
The validation process was carried out by two domain experts.
They assessed whether the generated rationale sentences
contextually matched the TN classification criteria according
to the AJCC Cancer Staging Manual 8th edition for determining
the stage. To ensure consistency, the experts followed a
standardized validation protocol based on the AJCC guidelines
and verified the contextual alignment of each rationale sentence
with the corresponding TN classification.

We excluded cases that did not fit the definition of the patient
cohort as confirmed patients with lung cancer, such as those
with T0 (no tumor) and Tx (uncertain tumor presence). The T
classifications included Tis, T1mi, T1a, T1b, T1c, T2a, T2b,
T3, and T4 whereas N classifications included Nx, N0, N1, and
N2. The National Comprehensive Cancer Network (NCCN)
guidelines (version 5.2024) for nonsmall cell lung cancer [32]
recommend definitive concurrent chemoradiation as the standard
treatment for N3 disease, not upfront surgery. Because N3

disease is not an indication for surgery, it was not observed in
the lung cancer surgical pathology reports.

Cases that did not align with the TN classification criteria of
the AJCC Cancer Staging Manual 8th edition were identified
as out-of-scope (OOS) and excluded from the study.
Specifically, cases corresponding to TN categories from the 6th
or 7th editions were classified as OOS. For instance, in the
AJCC Cancer Staging Manual 8th edition, the T2 category is
subdivided into T2a and T2b, whereas such subdivisions were
absent in earlier editions. During the evaluation process, if the
model provided only the answer “T2” without further
subdivision, it was deemed inconsistent with the study’s
objectives, which adhere to the 8th edition criteria, and was thus
classified as OOS. In addition to the subclassification issue of
T2, the TN classification criteria in previous editions differ from
those of the AJCC Cancer Staging Manual 8th edition. For
example, a 5 cm lung cancer that has not invaded surrounding
tissues is classified as “T2a” in the AJCC Cancer Staging
Manual 7th edition but as “T3” in the 8th edition, potentially
leading to misinterpretation of test results. Furthermore, cases
in which the model failed to provide any TN classification
answer were also categorized as OOS. This OOS identification
method was verified by cross-referencing the AJCC Cancer
Staging Manual 8th edition guidelines and classification results,
ensuring that only relevant cases were included in the analysis.
The number of OOS cases and the OOS ratio for the test set
were recorded, providing a quantitative measure of the model’s
ability to adhere to the current classification criteria.

Results

Overview
We evaluated the performance of different GLMs fine-tuned to
infer the TN classification and rationale sentences in this study.
Six models (Orca2_7b, Orca2_13b, Mistral_7b, Llama2_7b,
Llama2_13b, and Llama3_8b) were evaluated. We partitioned
the dataset into training, validation, and test sets to assess the
performance of each model.

Dataset Distribution
The distribution of data per set is presented in Table 1. Model
training and evaluation were conducted based on this
distribution.
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Table 1. Distribution of TN categories across training, validation, and test sets, showing the count and percentage of each category in each dataset.

Test set (n=644), n (%)Validation set (n=643), n (%)Training set (n=1929), n (%)TN categories

12 (1.86)6 (0.93)20 (1.04)Tis

51 (7.92)64 (9.95)175 (9.07)T1mi

76 (11.80)66 (10.26)219 (11.35)T1a

154 (23.91)154 (23.95)476 (24.68)T1b

94 (14.60)94 (14.62)257 (13.32)T1c

149 (23.14)145 (22.55)468 (24.26)T2a

34 (5.28)36 (5.60)91 (4.72)T2b

66 (10.25)63 (9.80)165 (8.55)T3

8 (1.24)15 (2.33)58 (3.01)T4

81 (12.58)80 (12.44)210 (10.89)Nx

452 (70.19)436 (67.81)1389 (72.01)N0

50 (7.76)64 (9.95)154 (7.98)N1

61 (9.47)63 (9.80)176 (9.12)N2

Performance on Pathologic TN Classification
Table 2 presents the EMR for the TN classification prediction
of each model. To evaluate TN classification, we considered
cases in which both the T and N classifications were accurate,
as well as those in which either the T or N classification was
accurate. The Orca2_13b model demonstrated the highest
performance, with EMRs of 0.934, 0.936, and 0.998 for TN, T,
and N classifications, respectively. The Orca2_7b model also
exhibited competitive performance, with EMRs of 0.914, 0.917,
and 0.996 for TN, T, and N classifications, respectively.

Multimedia Appendix 3 shows the performance of each model
for TN classification, along with the count for each class. For
the T classification, the Orca2_13b model achieved high
F1-scores of 1.000, 0.990, 0.987, 0.977, 0.974, and 0.903 for
Tis, T1mi, T1a, T1b, T1c, and T2a, respectively. The F1-scores
for T2b and T3 were 0.786 and 0.842, respectively, whereas
that for T4 was 0.545, indicating the highest precision but
markedly low reproducibility. Figure 3 shows the confusion
matrix of the Orca2_13b model. Confusion matrices for the
other models are provided in Multimedia Appendix 4.

Table 2. EMRa results for each model in predicting T and N classifications independently, as well as combined TN classification.

TN categories EMRN category EMRT category EMRModel

0.9340.9980.936Orca2_13b

0.9140.9960.917Orca2_7b

0.5720.7880.577Mistral_7b

0.8640.9730.872Llama2_7b

0.7620.8690.765Llama2_13b

0.4890.8830.538Llama3_8b

aEMR: exact match ratio.
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Figure 3. Confusion matrices for Orca2_13b model. (A) Confusion matrix for T stage results (Orca2_13b). (B) Confusion matrix for N stage results
(Orca2_13b).

The Orca2_7b model achieved F1-scores of 0.781, 0.698, and
0.714 for T2b, T3, and T4, respectively, indicating low
reproducibility for T4. The Llama2_13b model showed a higher
F1-score for T4 than the other models; however, considerably
low F1-scores were observed for Tis and T1mi.

The Orca2_13b model achieved F1-scores of 1.000, 0.998,
0.989, and 1.000 for N classification. This was followed by the
Orca2_7b model, which yielded F1-scores of 0.987, 1.000,
0.990, and 0.991. This model performed slightly better than the
Orca2_13b model for N0 and N1. In contrast, the Llama3_8b

model performed worse than the other models for N1 and N2,
with F1-scores of 0.531 and 0.584, respectively.

OOS Analysis
Table 3 presents the OOS results for TN classification. Both
the Orca2_13b and Orca2_7b models achieved OOS ratios of
0% for the T and N classifications. In contrast, the Mistral_7b,
Llama2_7b, Llama2_13b, and Llama3_8b models had OOS
ratios of 19.88%, 2.17%, 12.58%, and 12.73% for the T
classification, as well as 20.34%, 1.40%, 12.42%, and 2.64%
for the N classification, respectively.

Table 3. OOSa ratios for pathologic TN classification for each model, showing the number and percentage of cases classified as OOS for T and N
categories.

N categoryT categoryModel

OOS ratio (%)OOS cases, nOOS ratio (%)OOS cases, n

0.0000.000Orca2_13b

0.0000.000Orca2_7b

20.3413119.88128Mistral_7b

1.4092.1714Llama2_7b

12.428012.5881Llama2_13b

2.641712.7382Llama3_8b

aOOS: out-of-scope.

Performance on Rationale Generation
Table 4 shows the performance evaluation of the GLMs,
considering both the pathologic TN classification and rationale
parts generated by the model. This evaluation was used as a
measure of the ability of the model to accurately and logically
present TN classification predictions and their rationale. The
rationale part was measured when a sentence was completely
consistent with the reference answer and when it had the same
meaning in context. The Orca2_13b model achieved the best

performance, with an EMR of 0.863 and an SMR of 0.864. The
Orca2_7b model also performed well, achieving EMR and SMR
of 0.84. These results highlight the consistent and accurate
predictions of TN classification and the presentation of evidence
by the Orca2 model. The Llama2_7b model achieved an EMR
of 0.636 and an SMR of 0.771, whereas the Llama2_13b model
achieved an EMR of 0.681 and an SMR of 0.690. In contrast,
the Mistral_7b model had an EMR of 0.262 and an SMR of
0.377. The Llama3_8b model exhibited the lowest performance,
with an EMR of 0.187 and an SMR of 0.456.
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Table 4. Performance of each model in pathologic TN classification prediction and rationale generation, showing EMRa and SMRb.

SMREMRModel

0.8640.863Orca2_13b

0.8540.854Orca2_7b

0.3770.262Mistral_7b

0.7710.636Llama2_7b

0.6900.681Llama2_13b

0.4560.187Llama3_8b

aEMR: exact match ratio.
bSMR: semantic match ratio.

Discussion

Principal Findings
This study proposes a method that leverages lightweight GLMs
to automatically infer pathological TN classification from lung
cancer surgical pathology reports and provide corresponding
rationales for these classifications. The high performance of the
Orca2 model demonstrates its potential to reduce the human
effort and errors associated with complex cancer staging tasks.
Additionally, by generating rationales, the model provides
interpretable results that enhance human trust. Furthermore,
this study confirms the feasibility of fine-tuning these models
to update and apply the latest cancer staging guidelines in
environments with limited computing resources, such as medical
institutions, enabling accurate staging and effective cancer data
curation.

In this study, CoT fine-tuning played a crucial role in enabling
the GLMs to clearly generate the rationale for TN classification.
CoT fine-tuning allowed the model to generate intermediate
reasoning steps in a step-by-step manner, reflecting logical
thought processes for complex clinical texts. This enabled the
model to provide rationale based not only on simple
classification results but also on considering various clinical
factors such as tumor size and lymph node status. In contrast
to traditional rule-based NLP approaches, which rely on
predefined rules for information extraction and fail to explicitly
present complex reasoning steps, CoT’s automated processing
of these steps allows for a clear presentation of the rationale.
This step-by-step methodology enhances the interpretability of
predictions, making the advantages of CoT fine-tuning
particularly evident in complex clinical decision-making tasks,
such as TN classification.

Determining T and N classifications based on lung cancer
surgical pathology report information can prove difficult in the
prediction of TN classification. Surgical pathology reports
contain disparate information that must be integrated and
inferred to derive a TN classification. The T classification must
be derived based on overall judgments of the maximum tumor
size, multiplicity (expressed in terms of satellites and separate
nodules), location, and scope of invasion. The N classification
is based on the precise position of lymph node metastases (eg,
mediastinal or hilar) and the presence or absence of contralateral
lymph node metastases. According to the recently suggested

TNM classification, 9th edition [33], further subclassification
as N2a or N2b can be performed depending on whether N2
lymph node metastases are present in a single station or multiple
stations. This indicates the importance of the precise location
of lymph node stations showing tumor involvement.

All models poorly predicted T4, which is typically caused by
invasion of adjacent organs such as the esophagus, heart, or
aorta. Surgery may not be feasible in these cases, resulting in
an absence of surgical pathology reports. Additionally, cases
classified as T4 may have ipsilateral lung metastasis; however,
information regarding this metastasis is often omitted from
surgical pathology reports in patients who only undergo partial
surgery for diagnostic purposes. Therefore, we concluded that
the challenges in predicting T4 were due to T4
classification-related factors that were not described in the
surgical pathology reports. Furthermore, the NCCN guidelines
recommend definite concurrent chemoradiation as an initial
treatment for T4 cases, except for clinically resectable tumors.
As this study only included patients who had undergone surgery,
the ratio of T4 patients was relatively low. T4 cases accounted
for only 2.51% of the total dataset in this study, which was
insufficient compared to the other stages. Consequently, it was
challenging to make generalizations during model training.

For T2b, which exhibited somewhat lower performance, all
predictions except the correct ones were classified as T2a instead
of T2b. In all 10 failed predictions (Figure 3), the models
extracted the phrase “invasion to visceral pleura,” which is
evidence that is common to both T2a and T2b. However, the
maximum tumor size that differentiates T2a from T2b often
caused ambiguity in this study. T classification was performed
through consultation with a pathology expert based on the size
of the tumor bed and that of the invasive component for
mucinous- and nonmucinous-type lung cancer, respectively.
However, the actual dataset revealed that T classification was
often derived based on the invasive component size for both
lung cancer types, which caused several nonmatches. Thus,
confusion regarding the use of the maximum tumor size criterion
may have caused problems with generalization when
differentiating between T2a and T2b. Model performance was
better for T2a than for T2b because T2a accounted for 23.69%
of the total dataset, which is approximately four times higher
than that of T2b (5.03%). Therefore, T2a appeared more
generalized during training. N1 and N2 are at the same lung
cancer stage for either T2a or T2b of IIb (T2aN1, T2bN1) or
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IIIA (T2aN2, T2bN2). Therefore, they have no clinical effect
on the treatment plan or prognosis. For N0, the stage differs
between T2a and T2b (IB and IIA); however, the recommended
primary treatment in the NCCN guidelines is surgery for both.
Therefore, the poor performance in differentiating T2b has
relatively little clinical impact. Although the poor performance
in distinguishing between T2a and T2b has a low clinical impact,
the differentiation of T categories remains clinically significant.
The study [34], following the AJCC Cancer Staging Manual
8th edition criteria, confirmed that each T category—based on
tumor size increments and specific characteristics—significantly
impacts survival outcomes. For instance, tumors over 5 cm but
not exceeding 7 cm are associated with a T3 prognosis, while
those over 7 cm align with T4. Furthermore, the findings
demonstrated that even small increments in tumor size (from 1
to 5 cm) are associated with distinctly different prognoses,
emphasizing the clinical importance of precise T classification
adjustments. Examples of correctly and incorrectly classified
cases from the Orca2_13 model, including cases such as T4 and
T2b, are provided in Multimedia Appendix 5.

Most models demonstrated excellent performance during precise
N classification. The Orca2_13b model demonstrated an
outstanding performance, accurately predicting all but one case.
Moreover, the data were evenly distributed among the classes
for N classification, indicating that various classes were
well-represented during training.

The OOS predictions observed in this study are an important
factor for evaluating the models. We found that the Orca2 model
consistently generated predictions within a defined range.

The result of this study indicates that GLMs, such as Orca2,
can enhance the accuracy of staging and improve diagnostic
consistency by automatically providing TN classification
information in clinical and research settings. Furthermore, they
have the potential to reduce human effort, time, and errors
associated with complex cancer staging analyses. This study’s
approach also has the potential to impact training for health care
professionals and standardize staging practices across hospitals.
By automatically providing accurate TN classifications along
with interpretable rationales based on specific AJCC criteria,
these models can serve as an educational tool for both specialists
and nonspecialist medical staff, helping them understand and
apply the latest guidelines. Furthermore, the consistency
achieved through GLMs can reduce discrepancies across
institutions, thereby improving the overall reliability and
standardization of cancer staging data.

Limitations and Future Works
This study was based on lung cancer surgical pathology report
data collected from a single tertiary general hospital. Due to the
limitations of using a single data source, the generalizability of
the results may be limited. Data from a single hospital may not
fully capture the diversity of patient characteristics, cancer
subtypes, or variations in report details and formats. Future
studies should incorporate multicenter data to enhance the
performance of the proposed method and assess its flexibility
and scalability by applying it to pathology reports in varying
formats from different hospitals. Such efforts will improve the

model’s robustness and evaluate its applicability across diverse
clinical environments.

Especially, the limited data for T4 and T2b classifications posed
constraints on model training in this study. T4 is diagnosed
based on specific factors such as invasion of surrounding
structures or ipsilateral lung metastasis, but such information
is often not included in surgical pathology reports, and the
number of T4 patients undergoing surgery is also low, resulting
in insufficient data. Similarly, T2b classification varies
depending on the mucinous versus nonmucinous subtype of
lung cancer, but in the training data, mixed criteria for maximum
tumor size made it difficult to accurately distinguish between
T2a and T2b. Future studies could consider improving the
model’s generalization performance by acquiring additional
patient cases for T4 and T2b classifications from diverse medical
institutions, using data augmentation techniques, or generating
synthetic datasets to address these limitations.

Additionally, in environments with limited computing resources,
model size is a critical factor influencing performance. In this
study, we used relatively small GLMs to prioritize efficiency.
However, if the computational demands of larger models can
be reduced through advanced techniques such as knowledge
distillation or quantization, high predictive performance could
still be achieved in resource-constrained clinical settings. These
approaches offer promising strategies for optimizing models to
balance performance and efficiency effectively.

The TN classification approach proposed in this study is worth
exploring for application to other cancers, such as breast cancer
or colorectal cancer, where pathological staging is crucial. This
could further demonstrate the potential applicability and
versatility of the model across a broader range of contexts.

Conclusions
In this study, we propose a new methodology using GLMs to
infer pathologic TN classification and generate rationales based
on the AJCC Cancer Staging Manual 8th edition criteria. Orca2,
enhanced with CoT fine-tuning, achieved the highest accuracy
in TN classification and rationale generation, demonstrating its
potential to streamline staging processes in lung cancer
pathology. Automatic pathologic TN classification has the
potential to reduce cancer staging time while enhancing accuracy
and consistency in both clinical and research settings. Despite
its relatively small size as a 7-billion-parameter model, this
study highlights the efficiency and effectiveness of lightweight
language models for analyzing health care data in medical
settings with limited computing resources.

The GLM-based approach proposed in this study has the
capability to advance artificial intelligence–assisted clinical
diagnosis and contribute to the standardization of complex
cancer staging tasks, facilitating the creation of consistent
oncological data across diverse medical institutions. To further
assess the model’s flexibility and scalability, future research
should focus on validating its performance using multicenter
datasets, thereby exploring its applicability across various
clinical settings. Additionally, this would allow for the
exploration of the proposed method’s potential for use in other
cancer types, beyond lung cancer pathology.

JMIR Med Inform 2024 | vol. 12 | e67056 | p. 10https://medinform.jmir.org/2024/1/e67056
(page number not for citation purposes)

Kim et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Acknowledgments
This work was supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute,
funded by the Ministry of Health and Welfare, Republic of Korea (grant HI22C0471).

Authors' Contributions
Sanghwan Kim conducted the analysis and experiments and wrote the manuscript, tables, and figures. SJ conceptualized the
topic, interpreted the results, and reviewed and edited the manuscript. BK performed data curation and edited the manuscript. LS
interpreted the results and edited the manuscript. Seok Kim prepared the data and experimental environment. JHC conducted
data validation and interpretation of results. SN managed software project and performed experimental design. HC performed
software development and validation. DL conducted data exploration. KL reviewed and edited the manuscript. SY supervised
this study and edited the manuscript. All authors reviewed the final manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
TN stage classification and rationale.
[DOCX File , 3675 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Summary of experimental setup for large language model training.
[DOCX File , 3675 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Pathologic TN classification performance of each model, with precision, recall, and F1-scores for individual T and N categories.
[DOCX File , 23 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Confusion matrix results for the TN stage classification prediction of each model.
[DOCX File , 3515 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Examples of correctly and incorrectly classified cases from Oracl2_13 model.
[PDF File (Adobe PDF File), 83 KB-Multimedia Appendix 5]

References

1. Piñeros M, Parkin DM, Ward K, Chokunonga E, Ervik M, Farrugia H, et al. Essential TNM: a registry tool to reduce gaps
in cancer staging information. Lancet Oncol. 2019;20(2):e103-e111. [FREE Full text] [doi: 10.1016/s1470-2045(18)30897-0]

2. Siegel RL, Miller KD, Sauer AG, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics. CA Cancer J
Clin. 2020;70(3):145-164. [FREE Full text] [doi: 10.3322/caac.21601] [Medline: 32133645]

3. Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman JR, Bharat A, et al. NCCN guidelines® insights: non-small cell
lung cancer, version 2.2023. J Natl Compr Cancer Network. 2023;21(4):340-350. [doi: 10.6004/jnccn.2023.0020] [Medline:
37015337]

4. Alexander M, Wolfe R, Ball D, Conron M, Stirling RG, Solomon B, et al. Lung cancer prognostic index: a risk score to
predict overall survival after the diagnosis of non-small-cell lung cancer. Br J Cancer. 2017;117(5):744-751. [FREE Full
text] [doi: 10.1038/bjc.2017.232] [Medline: 28728168]

5. Kreimeyer K, Foster M, Pandey A, Arya N, Halford G, Jones SF, et al. Natural language processing systems for capturing
and standardizing unstructured clinical information: a systematic review. J Biomed Inform. 2017;73:14-29. [FREE Full
text] [doi: 10.1016/j.jbi.2017.07.012] [Medline: 28729030]

6. Wang Y, Wang L, Rastegar-Mojarad M, Moon S, Shen F, Afzal N, et al. Clinical information extraction applications: a
literature review. J Biomed Inform. 2018;77:34-49. [FREE Full text] [doi: 10.1016/j.jbi.2017.11.011] [Medline: 29162496]

7. Goel A, Gueta A, Gilon O, Liu C, Erell S, Nguyen LH, et al. LLMs accelerate annotation for medical information extraction.
Proc Mach Learn Res. 2023:82-100. [FREE Full text]

JMIR Med Inform 2024 | vol. 12 | e67056 | p. 11https://medinform.jmir.org/2024/1/e67056
(page number not for citation purposes)

Kim et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=medinform_v12i1e67056_app1.docx&filename=464c9292781611c5e03acc8e0ee9493b.docx
https://jmir.org/api/download?alt_name=medinform_v12i1e67056_app1.docx&filename=464c9292781611c5e03acc8e0ee9493b.docx
https://jmir.org/api/download?alt_name=medinform_v12i1e67056_app2.docx&filename=acf8a42cb7b6ef42d327f20817dbe6e3.docx
https://jmir.org/api/download?alt_name=medinform_v12i1e67056_app2.docx&filename=acf8a42cb7b6ef42d327f20817dbe6e3.docx
https://jmir.org/api/download?alt_name=medinform_v12i1e67056_app3.docx&filename=7cd0c8f58b0e7ece04274a67d88e55c4.docx
https://jmir.org/api/download?alt_name=medinform_v12i1e67056_app3.docx&filename=7cd0c8f58b0e7ece04274a67d88e55c4.docx
https://jmir.org/api/download?alt_name=medinform_v12i1e67056_app4.docx&filename=b565b075bb0aa77e8a4d0976ddd83dc2.docx
https://jmir.org/api/download?alt_name=medinform_v12i1e67056_app4.docx&filename=b565b075bb0aa77e8a4d0976ddd83dc2.docx
https://jmir.org/api/download?alt_name=medinform_v12i1e67056_app5.pdf&filename=3563b8afbe9efc3f759782e0e97d0c89.pdf
https://jmir.org/api/download?alt_name=medinform_v12i1e67056_app5.pdf&filename=3563b8afbe9efc3f759782e0e97d0c89.pdf
https://doi.org/10.1016/S1470-2045(18)30897-0
http://dx.doi.org/10.1016/s1470-2045(18)30897-0
https://onlinelibrary.wiley.com/doi/10.3322/caac.21601
http://dx.doi.org/10.3322/caac.21601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32133645&dopt=Abstract
http://dx.doi.org/10.6004/jnccn.2023.0020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37015337&dopt=Abstract
https://doi.org/10.1038/bjc.2017.232
https://doi.org/10.1038/bjc.2017.232
http://dx.doi.org/10.1038/bjc.2017.232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28728168&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(17)30168-5
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(17)30168-5
http://dx.doi.org/10.1016/j.jbi.2017.07.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28729030&dopt=Abstract
https://doi.org/10.1016/j.jbi.2017.11.011
http://dx.doi.org/10.1016/j.jbi.2017.11.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29162496&dopt=Abstract
https://proceedings.mlr.press/v225/goel23a
http://www.w3.org/Style/XSL
http://www.renderx.com/


8. Li W, Shi S, Gao Z, Zhu Q, Lin X. Improved deep belief network model and its application in named entity recognition of
Chinese electronic medical records. 2018. Presented at: IEEE 3rd International Conference on Big Data Analysis (ICBDA);
March 12, 2018; Shanghai, China. URL: https://doi.org/10.1109/ICBDA.2018.8367707 [doi: 10.1109/icbda.2018.8367707]

9. Chen P, Zhang M, Yu X, Li S. Named entity recognition of Chinese electronic medical records based on a hybrid neural
network and medical MC-BERT. BMC Med Inform Decis Mak. 2022;22(1):315. [FREE Full text] [doi:
10.1186/s12911-022-02059-2] [Medline: 36457119]

10. Leiter RE, Santus E, Jin Z, Lee KC, Yusufov M, Chien I, et al. Deep natural language processing to identify symptom
documentation in clinical notes for patients with heart failure undergoing cardiac resynchronization therapy. J Pain Symptom
Manage. 2020;60(5):948-958.e3. [FREE Full text] [doi: 10.1016/j.jpainsymman.2020.06.010] [Medline: 32585181]

11. Hu D, Zhang H, Li S, Wang Y, Wu N, Lu X. Automatic extraction of lung cancer staging information from computed
tomography reports: deep learning approach. JMIR Med Inform. 2021;9(7):e27955. [FREE Full text] [doi: 10.2196/27955]
[Medline: 34287213]

12. Zhou S, Wang N, Wang L, Liu H, Zhang R. CancerBERT: a cancer domain-specific language model for extracting breast
cancer phenotypes from electronic health records. J Am Med Inform Assoc. 2022;29(7):1208-1216. [FREE Full text] [doi:
10.1093/jamia/ocac040] [Medline: 35333345]

13. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Advances in neural information processing
systems attention is all you need. arXiv. Preprint posted online on June 12, 2017. [doi: 10.48550/arXiv.1706.03762]

14. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv. Preprint posted
online on January 16, 2013. [doi: 10.48550/arXiv.1301.3781]

15. Peng Y, Yan S, Lu Z. Transfer learning in biomedical natural language processing: an evaluation of BERT and ELMo on
ten benchmarking datasets. arXiv. Preprint posted online on June 13, 2019. [FREE Full text] [doi: 10.48550/arXiv.1906.05474]

16. Zhou Y, Muresanu AI, Han Z, Paster K, Pitis S, Chan H, et al. Large language models are human-level prompt engineers.
arXiv. Preprint posted online on November 03, 2022. [FREE Full text]

17. Reynolds L, McDonell K. Prompt programming for large language models: Beyond the few-shot paradigm. arXiv. Preprint
posted online on February 15, 2021. [FREE Full text] [doi: 10.48550/arXiv.2102.07350]

18. Kojima T, Gu S, Reid M, Matsuo Y, Iwasawa Y. Large language models are zero-shot reasoners. arXiv. Preprint posted
online on May 24, 2022. [FREE Full text]

19. Wei J, Wang X, Schuurmans D, Bosma M, Ichter B, Xia F, et al. Chain-of-thought prompting elicits reasoning in large
language models. arXiv. Preprint posted online on January 28, 2022. [FREE Full text]

20. Kim S, Joo SJ, Kim D, Jang J, Ye S, Shin J, et al. The cot collection: improving zero-shot and few-shot learning of language
models via chain-of-thought fine-tuning. arXiv. Preprint posted online on May 23, 2023. [FREE Full text] [doi:
10.48550/arXiv.2305.14045]

21. Mukherjee S, Mitra A, Jawahar G, Agarwal S, Palangi H, Awadallah A. Orca: progressive learning from complex explanation
traces of GPT-4. arXiv. Preprint posted online on June 05, 2023. [FREE Full text]

22. Mitra A, Del Corro L, Mahajan S, Codas A, Simoes C, Agarwal S, et al. Orca 2: teaching small language models how to
reason. arXiv. Preprint posted online on November 18, 2023. [FREE Full text]

23. Lababede O, Meziane MA. The eighth edition of TNM staging of lung cancer: reference chart and diagrams. Oncologist.
2018;23(7):844-848. [FREE Full text] [doi: 10.1634/theoncologist.2017-0659] [Medline: 29650687]

24. Stang PE, Ryan PB, Racoosin JA, Overhage JM, Hartzema AG, Reich C, et al. Advancing the science for active surveillance:
rationale and design for the Observational Medical Outcomes Partnership. Ann Intern Med. 2010;153(9):600-606. [FREE
Full text] [doi: 10.7326/0003-4819-153-9-201011020-00010] [Medline: 21041580]

25. Overhage JM, Ryan PB, Reich CG, Hartzema AG, Stang PE. Validation of a common data model for active safety surveillance
research. J Am Med Inform Assoc. 2012;19(1):54-60. [FREE Full text] [doi: 10.1136/amiajnl-2011-000376]

26. Detterbeck FC, Boffa DJ, Kim AW, Tanoue LT. The eighth edition lung cancer stage classification. Chest.
2017;151(1):193-203. [FREE Full text] [doi: 10.1016/j.chest.2016.10.010] [Medline: 27780786]

27. Longpre S, Hou L, Vu T, Webson A, Chung HW, Tay Y, et al. The flan collection: designing data and methods for effective
instruction tuning. arXiv. Preprint posted online on January 31, 2023. [FREE Full text]

28. Jiang AQ, Sablayrolles A, Mensch A, Bamford C, Chaplot DS, las Casas DD, et al. Mistral 7B. arXiv. Preprint posted
online on October 10, 2023. [FREE Full text]

29. Touvron H, Martin L, Stone K, Albert P, Almahairi A, Babaei Y, et al. Llama 2: open foundation and fine-tuned chat
models. arXiv. Preprint posted online on July 18, 2023. [FREE Full text]

30. Hu EJ, Shen Y, Wallis P, Allen-Zhu Z, Li Y, Wang S, et al. LoRA: low-rank adaptation of large language models. arXiv.
Preprint posted online on June 17, 2021. [FREE Full text]

31. Houlsby N, Giurgiu A, Jastrzebski S, Morrone B, Laroussilhe QD, Gesmundo A, et al. Parameter-efficient transfer learning
for NLP. arXiv. Preprint posted online on February 02, 2019. [FREE Full text]

32. Riely GJ, Wood DE, Ettinger DS, Aisner DL, Akerley W, Bauman JR, et al. Non-small cell lung cancer, version 4.2024,
NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Network. 2024;22(4):249-274. [doi:
10.6004/jnccn.2204.0023] [Medline: 38754467]

JMIR Med Inform 2024 | vol. 12 | e67056 | p. 12https://medinform.jmir.org/2024/1/e67056
(page number not for citation purposes)

Kim et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://doi.org/10.1109/ICBDA.2018.8367707
http://dx.doi.org/10.1109/icbda.2018.8367707
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-022-02059-2
http://dx.doi.org/10.1186/s12911-022-02059-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36457119&dopt=Abstract
https://doi.org/10.1016/j.jpainsymman.2020.06.010
http://dx.doi.org/10.1016/j.jpainsymman.2020.06.010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32585181&dopt=Abstract
https://medinform.jmir.org/2021/7/e27955/
http://dx.doi.org/10.2196/27955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34287213&dopt=Abstract
https://doi.org/10.1093/jamia/ocac040
http://dx.doi.org/10.1093/jamia/ocac040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35333345&dopt=Abstract
http://dx.doi.org/10.48550/arXiv.1706.03762
http://dx.doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.18653/v1/w19-5006
http://dx.doi.org/10.48550/arXiv.1906.05474
https://doi.org/10.48550/arXiv.2211.01910
https://doi.org/10.48550/arXiv.2102.07350
http://dx.doi.org/10.48550/arXiv.2102.07350
https://doi.org/10.48550/arXiv.2205.11916
https://doi.org/10.48550/arXiv.2201.11903
https://doi.org/10.48550/arXiv.2305.14045
http://dx.doi.org/10.48550/arXiv.2305.14045
https://doi.org/10.48550/arXiv.2306.02707
https://doi.org/10.48550/arXiv.2311.11045
https://europepmc.org/abstract/MED/29650687
http://dx.doi.org/10.1634/theoncologist.2017-0659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29650687&dopt=Abstract
https://doi.org/10.7326/0003-4819-153-9-201011020-00010
https://doi.org/10.7326/0003-4819-153-9-201011020-00010
http://dx.doi.org/10.7326/0003-4819-153-9-201011020-00010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21041580&dopt=Abstract
https://doi.org/10.1136/amiajnl-2011-000376
http://dx.doi.org/10.1136/amiajnl-2011-000376
https://doi.org/10.1016/j.chest.2016.10.010
http://dx.doi.org/10.1016/j.chest.2016.10.010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27780786&dopt=Abstract
https://doi.org/10.48550/arXiv.2301.13688
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2106.09685
https://doi.org/10.48550/arXiv.1902.00751
http://dx.doi.org/10.6004/jnccn.2204.0023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38754467&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


33. Rami-Porta R, Nishimura KK, Giroux DJ, Detterbeck F, Cardillo G, Edwards JG, et al. The international association for
the study of lung cancer lung cancer staging project: proposals for revision of the TNM stage groups in the forthcoming
(Ninth) edition of the TNM classification for lung cancer. J Thorac Oncol. 2024;19(7):1007-1027. [FREE Full text] [doi:
10.1016/j.jtho.2024.02.011] [Medline: 38447919]

34. Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt WE, et al. The IASLC lung cancer staging
project: proposals for revision of the TNM stage groupings in the forthcoming (Eighth) edition of the TNM classification
for lung cancer. J Thorac Oncol. 2016;11(1):39-51. [FREE Full text] [doi: 10.1016/j.jtho.2015.09.009] [Medline: 26762738]

Abbreviations
AJCC: American Joint Committee on Cancer
BERT: Bidirectional Encoder Representations from Transformers
CoT: chain-of-thought
EHR: electronic health record
EMR: exact match ratio
GLM: generative language model
LLM: large language model
NCCN: National Comprehensive Cancer Network
NER: named entity recognition
NLP: natural language processing
OOS: out-of-scope
SMR: semantic match ratio
SNUBH: Seoul National University Bundang Hospital

Edited by A Castonguay; submitted 30.09.24; peer-reviewed by S Lampridis; comments to author 28.10.24; revised version received
27.11.24; accepted 03.12.24; published 20.12.24

Please cite as:
Kim S, Jang S, Kim B, Sunwoo L, Kim S, Chung J-H, Nam S, Cho H, Lee D, Lee K, Yoo S
Automated Pathologic TN Classification Prediction and Rationale Generation From Lung Cancer Surgical Pathology Reports Using
a Large Language Model Fine-Tuned With Chain-of-Thought: Algorithm Development and Validation Study
JMIR Med Inform 2024;12:e67056
URL: https://medinform.jmir.org/2024/1/e67056
doi: 10.2196/67056
PMID:

©Sanghwan Kim, Sowon Jang, Borham Kim, Leonard Sunwoo, Seok Kim, Jin-Haeng Chung, Sejin Nam, Hyeongmin Cho,
Donghyoung Lee, Keehyuck Lee, Sooyoung Yoo. Originally published in JMIR Medical Informatics (https://medinform.jmir.org),
20.12.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information,
a link to the original publication on https://medinform.jmir.org/, as well as this copyright and license information must be included.

JMIR Med Inform 2024 | vol. 12 | e67056 | p. 13https://medinform.jmir.org/2024/1/e67056
(page number not for citation purposes)

Kim et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://doi.org/10.1016/j.jtho.2024.02.011
http://dx.doi.org/10.1016/j.jtho.2024.02.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38447919&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1556-0864(15)00017-9
http://dx.doi.org/10.1016/j.jtho.2015.09.009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26762738&dopt=Abstract
https://medinform.jmir.org/2024/1/e67056
http://dx.doi.org/10.2196/67056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

