JMIR MEDICAL INFORMATICS CAreiaset a

Original Paper

Predicting Pain Response to a Remote Musculoskeletal Care
Program for Low Back Pain Management: Development of a
Prediction Tool

Anabela C Areias', PhD; Robert G Moulder?, PhD; Maria Molinos', PhD; Dora Janela', PT; Virgilio Bento®, PhD;
CarolinaMoreira-®, MD; Vijay Yanamadala'*®, MD; Steven P Cohen®"#%°! MD: Fernando Dias Correia™*, MD,
PhD; Fabiola Costa', PhD

1sword Health Inc, Draper, UT, United States

2| nstitute for Cognitive Science, University of Colorado Boulder, Boulder, CO, United States

3| nstituto de Ciéncias Biomédicas Abel Salazar, Porto, Portugal

4Department of Surgery, Quinnipiac University Frank H Netter School of Medicine, Hamden, CT, United States

5Department of Neurosurgery, Hartford Healthcare Medical Group, Westport, CT, United States

6Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
7Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Batimore, MD, United States
8Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States

9Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
Opepartment of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
11Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
Neurol ogy Department, Centro Hospitalar e Universitario do Porto, Porto, Portugal

Corresponding Author:

Fabiola Costa, PhD

Sword Health Inc

13937 Sprague Lane, Suite 100
Draper, UT, 84020

United States

Phone: 1 385 308 8034

Fax: 1 801 206 3433

Email: f.costa@swordhealth.com

Abstract

Background: Low back pain (LBP) presents with diverse manifestations, necessitating personalized treatment approaches that
recogni ze various phenotypes within the same diagnosi s, which could be achieved through precision medicine. Although prediction
strategies have been explored, including those employing artificial intelligence (Al), they still lack scalability and rea-time
capabilities. Digital care programs (DCPs) facilitate seamless data collection through the Internet of Things and cloud storage,
creating an ideal environment for developing and implementing an Al predictivetool to assist cliniciansin dynamically optimizing
treatment.

Objective: This study aims to develop an Al tool that continuously assists physical therapists in predicting an individual’s
potential for achieving clinically significant pain relief by the end of the program. A secondary aim was to identify predictors of
pain nonresponse to guide treatment adjustments.

Methods: Data collected actively (eg, demographic and clinical information) and passively in real-time (eg, range of mation,
exercise performance, and socioeconomic data from public data sources) from 6125 patients enrolled in a remote digital
musculoskeletal intervention program were stored in the cloud. Two machine learning techniques, recurrent neural networks
(RNNs) and light gradient boosting machine (LightGBM), continuously analyzed session updates up to session 7 to predict the
likelihood of achieving significant pain relief at the program end. Model performance was assessed using the area under the
receiver operating characteristic curve (ROC-AUC), precision-recall curves, specificity, and sensitivity. Model explainability
was assessed using SHapley Additive exPlanations values.
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Results: At each session, the model provided a prediction about the potential of being a pain responder, with performance
improving over time (P<.001). By session 7, the RNN achieved an ROC-AUC of 0.70 (95% CI 0.65-0.71), and the LightGBM
achieved an ROC-AUC of 0.71 (95% CI 0.67-0.72). Both models demonstrated high specificity in scenarios prioritizing high
precision. The key predictive features were pain-associated domains, exercise performance, motivation, and compliance, informing
continuous treatment adjustments to maximize response rates.

Conclusions: This study underscores the potential of an Al predictive tool within a DCP to enhance the management of LBP,
supporting physical therapistsin redirecting care pathways early and throughout the treatment course. Thisapproachis particularly

important for addressing the heterogeneous phenotypes observed in LBP.

Trial Registration:
https://clinicaltrial s.gov/ct2/show/NCT 05417685

(JMIR Med Inform 2024;12:e64806) doi: 10.2196/64806

Clinical Trials.gov NCT04092946; https://clinicaltrials.gov/ct2/show/NCT04092946 and NCT05417685;
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Introduction

Low back pain (LBP), theleading cause of disability worldwide
[1], has a complex and multifaceted etiology [2,3], resulting in
varied phenotypes even among individuals with the same
diagnosis. Precision medicine supports tailored interventions
to addressthis heterogeneity, with data-driven strategies playing
a crucia role [4,5]. These strategies range from simple,
pragmatic rules-based methods [6-8] (eg, STARTback, Orebro)
to more sophisticated machine learning (ML) tools trained on
large data sets [9-11]. In the context of LBP management, ML
models have been developed to assist with screening [12-14],
assess the probability of a patient transitioning from acute to
chronic cases[8,15-18], predict surgical outcomes[19,20], and
forecast clinical recovery prognosis [6,7,9-11,21]. Although
promising, these models lack sustained, dynamic rea-time
patient data collection, relying heavily on patient-reported
outcome measures (PROMs) and other information that is not
easily scalable. Thisreliance, in turn, limitsthe ability to deliver
real-time predictions throughout treatment or hinderslarge-scale
implementation in real-world settings [9,10].

The emergence of digital care programs (DCPs) as an effective
alternative for delivering LBP care [22-24] has facilitated the
seamless, automatic collection of abundant data from various
sources. Thisdiverse and comprehensive patient data set, which
includes passively collected real-time updates of multiple
variables via the Internet of Things devices (eg, wearables)
enriched with population data, enables the capture of more
complex patterns, providing a more accurate representation of
patients. These extensive volumes of datacan be used to predict
outcomes and optimize treatments, with the resulting outcomes
feeding back into predictive toolsin avirtuous cycle.

Previously, we demonstrated the efficacy of aremote DCP for
LBP management [22], which combines exercise, education,
and cognitive behavioral therapy under physical therapist (PT)
supervision. In this study, we leverage all stored data (both
passively and actively collected from patient and public sources)
in the cloud portal, actively monitored by the assigned PT, to
develop apredictivetool that can assist in optimizing treatment.
This study aims to develop an artificial intelligence (Al) tool

https://medinform.jmir.org/2024/1/e64806

to assist PTs in predicting an individual’s potential to achieve
clinically significant painrelief by the end of the program. Such
predictions could enable timely adjustments to the program,
increasing thelikelihood of successand, in turn, providing data
to further refine the tool’s recommendations. As a secondary
aim, we sought to identify the predictors of pain nonresponse,
asthesefactorsindicate the need for greater attention from PTs.
Thus, the overall objective of the study isto develop ML models
to predict the likelihood that a patient will achieve clinically
significant pain relief by the end of the program, with ongoing
updated predictions after each completed session.

Methods

Study Design

This secondary analysis utilized datafrom 2 prospective studies
evaluating clinical and engagement-related outcomesin patients
with musculoskeletal (MSK) conditions. Data were collected
from June 2020 to July 2023. This prognostic study adhered to
the TRIPOD-AI (Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis-Al)
reporting guidelines (Table S1 in Multimedia Appendix 1).

Ethical Considerations

All research was conducted in accordance with the relevant
guidelines and regulations set forth by the Declaration of
Helsinki. This study received prospective approva from the
New England institutional review board (120190313) and
Advarra ingtitutional review board (Pro00063337) and was
registered on ClinicalTrialsgov (NCT04092946 and
NCT05417685) on September 17, 2019, and June 14, 2022,
respectively.

All participants provided electronic informed consent to
participate in the study, with a waiver of documentation of
consent approved by the New England and Advarrainstitutional
review boards.

All collected data underwent a rigorous anonymization process
to safeguard the privacy of the individuals involved in the
research. The data collection and analysis methods complied
with relevant guidelines and regul ations. Participants were not
offered any form of compensation.
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Population

Beneficiaries of employer heath plans from all US states
applying to Sword Health’s DCPswereincluded. Theinclusion
criteria were as follows: acute or chronic LBP, an average
Numerical Pain Rating Scale (NPRS) score of >4/10, and at
least one NPRS reassessment during the intervention. The
exclusion criteria were as follows: (1) health conditions (eg,
cardiac or respiratory) that are incompatible with at least 20
minutes of light-to-moderate exercise; (2) cancer-related back
pain or current cancer treatment for anon-M SK condition; and
(3) serious neurological signs or symptoms, including bowel or
bladder dysfunction. All participants provided informed consent.

Intervention

The DCP consisted of exercise, education, and cognitive
behavioral therapy for up to 12 weeks, with a default
recommendation of 3 sessions per week, as described el sewhere
[22], after enrolling through a dedicated website. Patients
completed a baseline condition form that included information
on their demographic and clinical characteristics and selected
their PT based on their preferences. Subsequently, an onboarding
video call was conducted in which the PTs gathered additional
medical history and established goals through shared
decision-making. Each patient received a Food and Drug
Administration-isted class I medical device, which included
a mobile app on a dedicated tablet (containing the program)
combined with motion tracking, aswell asacloud-based portal
that enabled asynchronous remote monitoring and treatment
prescription by the PT. A tailored educational program and
cognitive behavioral therapy were aso provided [25-27].
Bidirectional communication with the PT wasfacilitated through
a secure chat feature on the smartphone app and video calls.

https://medinform.jmir.org/2024/1/e64806
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Outcome

Considering the overarching intervention goal of promoting
improvementsin pain levelsin daily living, pain response was
selected as the primary outcome. Pain was assessed using the
11-point NPRS with a 7-day recall period during sessions 9,
18, or 27.

Pain response, defined as at least a 30% reduction in the NPRS
by the end of the program, alignswith clinical recommendations
from the Initiative on Methods, Measurement, and Pain
Assessment in Clinical Trials(IMMPACT) [28]. Thisdefinition
issupported by aconsensus meeting that interpreted the clinical
significance of treatment outcomesin clinical trialsfor chronic
pain treatments. Additionally, we included the criterion of
concluding the program with an NPRS score equal to or below
3 points (the threshold for mild pain) [29] to account for patients
who started with lower pain levels and ended the program with
acceptable pain levels. The widespread use of this binary
outcome, along with its practicality in rea-world settings,
supported itsinclusion.

Predictors: Variables Used for Model Development

The variables used for model devel opment were sel ected based
on existing literature and their clinical relevance to MSK pain.
A detailed description of the variable domains and their
acceptableranges can befound in Table 1. The data set variables
included (1) demographic characteristics (eg, race and ethnicity,
social deprivationindex) [30]; (2) baselineclinical presentations
(eg, acuity, disabilityy, mental health, productivity,
fear-avoidance beliefs, presence of red flags); (3) time series of
mean active range of motion (ROM) throughout al repetitions
of each exercise during each session; (4) session-rel ated usability
(eg, movement errors, number of exercises, setsand repetitions,
the time between sessions, session duration); and (5)
self-reported fatigue and pain experienced during exercises,
measured on a 0-10 scale (Figure 1).
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Table 1. Features domains included in the study.
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Domain and subdomains

Description

Demographic
Individual characteristics

Geographical location
Work characteristics
Socioeconomic

Social deprivation
Productivity

Parti cipation—work

Parti cipation—social

Clinical
Condition
Acuity
Pain
Functionality

Mental health

Fear-avoidance

Surgery intent

Medication consumption

Red flags

Prescription

Support level

Exercise Performance
Biomechanics

Exercise accuracy

Exercise-induced pain acute response

Exercise-induced fatigue intensity

Exercise adherence

M otivation and Compliance

Comprisesinformation about gender, age, race/ethnicity, body massindex, education
level, among others

Urban or rural location and time zone

Employment status and job type

Assessed by the Social Deprivation | ndex (scorerange 0-100) [30]; socially deprived
individual s were those with an index ranging from 60 to 100

Assessed by the overall work productivity (score range 0-100), presenteeism (score
range 0-100), and absenteeism (score range 0-100) subscal es from the Work Produc-
tivity Impairment Questionnaire for general health

Assessed by the non-work—related activities impairment subscal e from the Work
Productivity Impairment Questionnaire for general health (score range 0-100), and
scores of items 8 (range 0-5), 9 (range 0-5), and 10 (range 0-5) of the Oswestry
Disability Index

Includes muscul oskeletal condition diagnosis, anatomical pain region, presence of
leg symptoms (numbness or tingling), past surgery, among others

Acute (<12 weeks) or chronic (persistent or recurring pain for 212 weeks)
Pain intensity assessed by the Numerical Pain Rating Scale (score range 0-10)

Assessed by the Oswestry Disability Index (score range 0-100) considering the total
score and the individual scores of items 2-7

Assessed by the 7-item General Anxiety Disorder Scale (score range 0-21) and the
9-item Patient Health Questionnaire (score range 0-27), considering the total score
and the individual score for each item; features considering moderate and severe
depression or anxiety were calculated using the thresholds described in Spitzer et a
[31] and Kroenke et a [32]

Assessed by the Fear-Avoidance Beliefs Questionnaire for Physical Activity (score
range 0-24), considering the total score and the individual score for each item

Assessed by the question “On a scale of 0 to 100, where O isnot at all and 100 is
extremely interested, how interested are you in undergoing shoulder surgery in the
next 12 months?’ (score range 0-100)

Considers nonopioid analgesic and opioid consumption (yes or no)

Presence/absence of at least one red flag identified during onboard screening, which
was cleared before entering the study by aphysician (yes or no) [33]

Includes support-level perception assessed by physical therapist interactions during
the intervention

Active range of motion collected by motion trackers

Correct and wrong repeats; performancein all prescribed exercises (total correct re-
peats by total repeats); average stars (0-5)

Painfelt during exercise sessions (assessed by the question “How did you feel during
your session: my pain during today’s session?’ (score range 0-10)

Self-reported fatigue in response to the question “How did you feel during your
session: My fatigue during today’s session?’ (score range 0-10)

Session duration time spent on sessions (minutes) and time interval between sessions
(days)
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Domain and subdomains

Description

Motivation

Patient’s individual goals with the intervention and session commitment (through

the question “How many 20-minute sessions can you commit to per week?’), among

others
Enrollment aspects
Days of the week

The time span from enrollment to (1) onboarding and (2) session 1

Days of the week the patient performed the exercise session

Figure 1. Machine Learning (ML) tool development within the digital care program. All patient data collected both passively and actively regarding
demographic and clinical characteristics, range of motion, and session usability, as well as collected from public sources (eg, social deprivation index)
are continuously stored from onboarding to the program end, enabling the creation of adata repository within the physical therapists (PTs) cloud portal.
At the end of each session, data are processed through an ML model to predict an individual’s potential to achieve clinically significant pain relief at
the program end. In the case of the high probability of an unfavorable outcome, an alarm is set in the PT portal for further examination and re-tailoring

of theintervention.

Patient
onboarding

e

Patient Data

) o2 @

.H‘IKI.I

B ofal ~@8

Py Model

Threshold alarm

Sessions

Vbbb

& Physical therapist
|
= attention

Predictions

v

a=
o=
C——)

Re-tailored
intervention

All data were automatically stored in the cloud portal.
Demographic and clinical characteristicswere collected through
an onboarding form using validated PROMs. ROM and session
usability were passively collected, while fatigue and pain
experienced during exercise sessions were recorded at the end
of each session.

Sample Size

Given that there is no established method to calculate sample
sizes for prognostic models using ML, we followed the
recommended guideline for standard model development, which
suggests obtaining 10-20 events per predictor parameter. Aswe
estimated including up to 300 predictor variablesin the models,
a sample size range of 3000 to 6000 was calculated.

Missing Data and Data Preparation

The overall missingness was 18.45% (324,385/1,757,875; see
Table S2 in Multimedia Appendix 1), comprising thefollowing:
17.07% (300,117/1,757,875) missing completely at random,
where the missing data points were attributed to system settings;
0.29% (5169/1,757,875) missing at random, where the
missingness could be explained by other variables (eg, specific
protocol prescriptions that did not include one of the studied
exercises); and 1.09% (19,099/1,757,875) missing not at
random, where the reasons for the missing data were related to
unobserved factors. Categorical variable imputation was

https://medinform.jmir.org/2024/1/e64806

performed by creating a new category labeled “not available,”
followed by dummy encoding. Continuous variables were
imputed using multiple imputations by chained equations or by
assigning a value outside the distribution (eg, —1), depending
on the nature of the missingness. Multiple imputations can
provide unbiased estimations for data that are missing
completely at random and at random. Astherate of missingness
for not-at-random data is very small, we used multiple
imputation techniques to handle the missing data overall. The
cleaned data set included 6125 patients and contained anumber
of variables ranging from 235 at session 1 to 275 at session 7.

Analytical Methods

Feature Engineering

Feature engineering was utilized to capture meaningful patterns
and insights from multiple variables over time, creating new
featuresthat represent the underlying relationships and dynamics
within the data (asdetailed in Figure S1in Multimedia A ppendix
1). A minimum of 4 sessions was required to conduct a
longitudinal analysis.

ROM data from 4 exercises were encoded into a unified
composite value that illustrates the longitudinal progression of
trunk motion [34], utilizing both latent growth curve analysis
(LGCA) [35,36] and tempora structural network modeling
(Figure 2) [37]. While the former captures ROM patterns over
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timeto estimateindividual trajectoriesamong the 2 classes (pain
nonresponders and pain responders), the latter illustrates how
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motion—extension, flexion, rotation, and side bending—were
included [34]. This subset was chosen due to its frequent

improvements in one exercise may be correlated with
improvements in other exercises. Among a diverse array of
prescribed exercises (N=117), only those that incorporated trunk

prescription among patients and its superior performance in
model comparisons, as determined by likelihood-ratio tests.

Figure 2. Model development pipeline. Data from patients with low back pain (LBP) who underwent the digital intervention were collected from the
data warehouse within a specific time frame. Inclusion criteria: average pain level equal to or greater than 4 on the Numerical Pain Rating Scale (NPRS)
at baseline considering a 7-day recall period; and at |least one pain reassessment during the intervention. Patient data were preprocessed for the tool.
Patients who did not experience a pain (NPRS) reduction of at least 30% or reported pain level higher or equal to 4 at the program end were categorized
as nonresponders (labeled as “1” in the data set). Considering the overarching intervention goal of promoting improvement in pain levels, a flag was
triggered when patients were likely to be nonresponders to assist PTS' clinical judgment; a split of 70/30 was performed on the data set followed by
feature engineering: range of motion (ROM) was computed through temporal structural network modeling and latent growth curves, whereas pain and
fatigue experienced during exercises (reported at the end of each exercise session), exercise accuracy, and time between sessions were computed using
growth mixture modeling to depict changes over time. Model development consisted of a tree-based binary classifier and a recurrent neural network
that were optimized using the receiver operating characteristic (ROC)-area under the curve (AUC) as the target metric. Precision-recall curves were
used as evaluation metrics, and model explainability was assessed using SHAP (Shapley Additive Explanations) values. FN: false negative; FP: false
positive; LightGBM: light gradient boosting machine; TN: true negative; TP: true positive.
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Thus, we first constructed the LGCA and temporal structural
network model for both responders and nonresponders (P<.001)
to estimate an intercept, slope, curve, and latent ROM, as well
asindividual covariance matricesfor each patient (see Equations
S1-S3 in Multimedia Appendix 1). The proximity of an
individual covariance matrix to the expected covariance matrices

https://medinform.jmir.org/2024/1/e64806
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from responders and nonresponders was assessed using the
chi-square measure, which was then incorporated as a feature.

Mixture clustering was used to create new features, using the
probabilities of belonging to different clusters to leverage the
underlying characteristics of those clusters in making
predictions, following amixture of experts approach. A growth
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mixture model [38] was applied to cluster longitudinal
trajectories of pain and fatigue profiles during exercise, as well
as the performance of the exercises and the time spent in
ons. The intent was to capture subpopulations with a high
probability of sharing similar patterns (eg, high, moderate, dight,
or no improvement). The Bayesian information criterion
indicated that 5 clusters provided the optimal fit for the data
(see Figure S2 in Multimedia Appendix 1). The individual
probability of a patient being assigned to each trajectory class
was calculated using likelihood ratios (see Equation $4 in
MultimediaAppendix 1), yielding 5 probabilities per participant
for each variable at each session.

For the early sessions (ie, sessions 1-3), longitudinal models
could not be calculated due to the requirement of at least four
time points. Therefore, the raw values or their deltas between
sessions were calculated for the outcomes mentioned in this
section.

Labeling

Pain responders (as defined in the “ Outcome” subsection) were
labeled as 0, while nonresponders were labeled as 1. This
labeling serves as a flag to assist PTs during monitoring and
clinica decision-making, thereby representing a binary
classification scheme (see Figure 2). Depending on the discharge
time point (which occurred no later than the 30th treatment
session), the corresponding latest survey (9th, 18th, or 27th)
was used to create the |abels.

Model Pipeline

Two different approaches were used to predict pain response
from session 1 to session 7: atree-based model and arecurrent
neural network (RNN) model.

For the tree-based model, a light gradient boosting machine
(LightGBM) was utilized, with hyperparameter optimization
performed using the Optunalibrary [39]. Thisinvolved 50trials
per agorithm, using the area under the receiver operating
characteristic curve (ROC-AUC) as the evaluation metric.
LightGBM was trained with 5-fold cross-validation on the
training data from each session. As these models are not
sequence models, features from previous sessions were
concatenated as sessions progressed, allowing models in later
sessions to access features from historical sessions. An AUC
of 0.5indicatesarandom predictor, whilean AUC of 1 signifies
a perfect predictor. For each fold in the cross-validation, the
synthetic minority oversampling technique (SMOTE) was
applied to oversamplethetraining datafor both classes, reaching
5000 samples per class, as the absence of SMOTE negatively
affected model performance. Using the hyperparameters that
yielded the best validation performance, afinal model wasfitted
on the entire training set.

An RNN model applied across the 7 sessions can be viewed as
a time series (using the PyTorch Python library [40]; Python
Foundation). Similar to the tree-based method, the Optuna
library was utilized for hyperparameter optimization. However,
unlike the tree-based setup, SMOTE was not applied dueto its
unsuitability for sequential data. RNN models were trained
using binary cross-entropy loss and early stopping, with a
patience of 10 epochs, utilizing the validation ROC-AUC as

https://medinform.jmir.org/2024/1/e64806
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the early stopping metric. Using the hyperparameters that
yielded the best validation performance, afinal model wasfitted
on the entire training set. This final model was trained with a
fixed number of epochs, defined asthe average number of early
stopping epochs across the cross-validation folds.

The performances of both models were assessed on the test set
by calculating the ROC-AUC, precision-recall AUC, F;-score
(a a 0.5 threshold), sensitivity, specificity, and negative
predictive value (Figure 2).

Model Explainability

Shapley Additive Explanations (SHAP) was applied on the best
model to assess model explainability by investigating feature
importance [41] (the Python SHAP library [41] for tree-based
and the Python timeshare library [42] for RNN models; Figure
2). Positive SHAP values indicate higher prediction scores,
meaning a higher probability of nonresponse. To understand
the overall impact of different domains, SHAP values for each
feature were cumulatively aggregated within their respective
domains for each session. As LightGBM models were trained
with an increasing number of features over time, SHAP values
were normalized per session to examine the rel ationship between
SHAP values and feature values throughout the intervention.
Patient SHAP values were visuaized using SHAP dependence
plots, utilizing abase value of 0.028 and a contribution threshold
of 0.05.

Recursive feature elimination, which involved removing features
with low SHAP values after hyperparameter optimization,
progressively deteriorated model performance.

Fairness

Demographic and clinical characteristics identified as
statistically different between the training and test sets were
subjected to subgroup analysisto assess potential bias, including
factors such as gender, social deprivation index, age, acuity,
and pain levels.

Model Output

The model output classified patients as responders or
nonresponders, based on the previously defined outcome, and
was contingent on the applied threshold (eg, 0.95).

Train and Test Sets

A data split was conducted in which 70% (4313/6125) of the
patients were randomly assigned for training the model, while
the remaining 30% (1812/6125) were reserved for testing.

Statistical Analysis

Demographic and clinical presentations at baseline were
analyzed using means and proportions. The minimum and
maximum ROC-AUC values were cal culated by bootstrapping
the training and test sets separately (1000 bootstrapped sets).
Model comparisons involved ROC-AUCs calculated using the
Delong agorithm [43]. Feature engineering models were
developed using R (version 4.2.2; R Foundation for Statistical
Computing; packages: lavaan, mIVAR, xgboost, mice, and
tidySEM). All other analyses were conducted using Python
(version 3.9.7; package: TreeSHAP). The level of significance
was set at P<.05, considering 2-sided hypothesis tests.
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Results

Study Population

A total of 6125 patients met the inclusion criteria (see the
flowchart of the study cohort in Figure S3 in Multimedia
Appendix 1). Among them, 2172 (35.46%) were classified as
nonresponders, while 3953 (64.54%) were responders. The
analysis encompassed various domains and subdomains,
including demographic, socioeconomic, productivity, clinical,
prescription, exercise performance, and motivation/compliance

https://medinform.jmir.org/2024/1/e64806
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data, up to session 7 (see further detailsin Table 1). Baseline
demographic and clinical characteristics for the overall cohort,
aswell as stratified by training and test data sets, are presented
in Table 2. The overall cohort primarily consisted of women
(3445/6125, 56.24%), patients aged 41-60 years (3488/6125,
56.95%), fully employed individuals (5119/6125, 83.58%), and
college graduates (4037/6125, 65.91%). Additionally, 2335
(38.12%) individuals were classified as obese, 1931 (31.53%)
identified as racial or ethnic minorities (ie, Asian, Black,
Hispanic, and other), and 1585 (25.88%) came from socially
deprived backgrounds.
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Table 2. Baseline demographics and clinical data.

Demographics Overall cohort Train data set Test data set P value
(n=6125) (n=4313) (n=1812)
Age (years), mean (SD) 485 (11.3) 48.6 (11.4) 48.2 (10.9) .25
Age category (years), n (%) .02
<25 51 (0.83) 42 (0.97) 9(0.50)
25-40 1559 (25.45) 1078 (24.99) 481 (26.55)
41-60 3488 (56.95) 2438 (56.53) 1050 (57.95)
>60 1027 (16.77) 755 (17.51) 272 (15.01)
Gender, n (%) .03
Women 3445 (56.24) 2378 (55.14) 1067 (58.89)
Men 2667 (43.54) 1925 (44.63) 742 (40.95)
Nonbinary 9(0.15) 6 (0.14) 3(0.17)
Prefers not to answer 4(0.07) 4(0.09) 0(0)
BMI (kg/m?), mean (SD)? 29.5(6.9) 29.4(6.9) 29.7 (6.9) 24
BMI category, n (%)2 39
Underweight (<185 kg/m?) 48 (0.78) 38(0.88) 10 (0.55)
Normal (18.5-25 kg/mz) 1572 (25.67) 1125 (26.08) 447 (24.67)
Overweight (225-30 kg/m?) 2163 (35.31) 1521 (35.27) 642 (35.43)
Obese (>30-40 kg/m?) 1847 (30.16) 1278 (29.63) 569 (31.40)
Morbidly obese (40 kg/m?) 488 (7.97) 346 (8.02) 142 (7.84)
Race and ethnicity, n (%) .005
Asian 567 (9.26) 388 (9.0) 179 (9.88)
Black 564 (9.21) 395 (9.16) 169 (9.33)
Hispanic 653 (10.66) 469 (10.87) 184 (10.15)
Non-Hispanic White 3524 (57.53) 2442 (56.62) 1082 (59.71)
Other 147 (2.40) 105 (2.43) 42 (2.32)
Not available/prefers not to specify 670 (10.94) 514 (11.92) 156 (8.61)
Employment status, n (%) <.001
Full-time employed 5119 (83.58) 3641 (84.42) 1478 (81.57)
Part-time employed 440 (7.18) 265 (6.14) 175 (9.66)
Not employed 482 (7.87) 345 (8.00) 137 (7.56)
Not available/prefers not to answer 84 (1.37) 62 (1.44) 22 (1.21)
Education level, n (%) A3
Less than a high school diploma 61 (1.0) 48 (1.11) 13(0.72)
High school diploma 512 (8.36) 355 (8.23) 157 (8.66)
Some college 1515 (24.73) 1089 (25.25) 426 (23.51)
Bachelor's degree 2328 (38.01) 1650 (38.26) 678 (37.42)
Graduate degree 1709 (27.90) 1171 (27.15) 538 (29.69)
Social Deprivation Indexb, n (%) 81
Category 1 (0-20) 1887 (30.81) 1316 (30.51) 571 (31.51)
Category 2 (21-40) 1495 (24.41) 1052 (24.39) 443 (24.45)
Category 3 (41-60) 1136 (18.55) 796 (18.46) 340 (18.76)
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Demographics Overall cohort Train data set Test data set P value
(n=6125) (n=4313) (n=1812)
Category 4 (61-80) 961 (15.69) 686 (15.91) 275 (15.18)
Category 5 (81-100) 624 (10.19) 449 (10.41) 175 (9.66)
Clinical presentation, mean (SD)
Pain 5.7 (1.4) 5.7 (1.4) 5.7 (1.4) 36
Acuity, n (%) .24
Acute 1168 (19.07) 839 (19.45) 329 (18.16)
Chronic 4957 (80.93) 3474 (80.55) 1483 (81.84)
Oswestry Disability Index, mean (SD) 23.1(12.7) 22.6 (12.5) 24.4(13.2) <.001
Fear-Avoidance Beliefs Questionnaire =15 (n=1391), mean (SD) 2.8(18.1) 2.8(18.1) 2.8 (18.0) 52
Anxiety (7-item General Anxiety Disorder Scale) =5 (n=2144), mean 3.8 (8.7) 3.9(8.6) 3.8(8.7) .66
(SD)
Depression (9-item Patient Heal th Questionnaire) 25 (n=1590), mean 4.2 (9.4) 4.2 (9.4) 4.2 (9.4) .87
(SD)
Overall work (Work Productivity and Activity Impairment Question-  22.9 (34.0) 22.8(34.0) 23.0(33.9) .85
naire for General Health overal) score >0 (n=3296), mean (SD)
Activities (Work Productivity and Activity Impairment Questionnaire 22.5 (38.8) 22.5(39.0) 22.4(38.3) .32

for General Health) >0 (n=4900), mean (SD)

@Denotes 7 missing values.

bDenotes 22 missi ng values (higher quantiles indicate higher social deprivation).

Overall, the cohort reported moderate pain, with an NPRS score
of 5.7 out of 10.0 (SD 1.4), and a disability score on the
Oswestry Disability Index (ODI) [44] of 23.1 (SD 12.7) at
baseline. This was primarily associated with chronic pain,
defined as pain lasting 3 months or longer (4957/6125, 80.93%).
Severe pain (NPRS: 8-10) was predominantly reported by
patients with acute LBP (168/1168, 14.38% vs 519/4957,
10.47%, in chronic cases, P<.001). High fear-avoidance beliefs
(Fear-Avoidance Beliefs Questionnaire score =15 [45]) were
reported by 1391 of the 6125 (22.71%) patients of the cohort,
while 2144 (35.0%) and 1590 (25.96%) patients reported at
least mild anxiety (7-item General Anxiety Disorder Scale
[GAD-7] score =5 [31]) or depression (9-item Patient Health
Questionnaire [PHQ-9] score =5 [32]), respectively. A large
majority (4900/6125, 80.0%) reported impairment in daily
activities (Work Productivity and Activity Impairment
Questionnaire for General Health [WPAI]—activity score >0),
while 3296 of the 6125 (53.81%) patients reported either
presenteeism or absenteeism (WPAI overall score >0). Clinical
outcomes were similar across both the training and test data
sets, with the exception of the ODI, which was statistically
higher in the test data set (22.6, SD 12.5 vs 24.4, SD 13.2),
although this difference was not clinically meaningful [46].

https://medinform.jmir.org/2024/1/e64806

Model Development

The LGCA reveded a significantly different latent
representation of trunk motion over time for responders and
nonresponders (P<.001; Figure S4 in Multimedia Appendix 1).
Similarly, the temporal structural network model showed 2
significantly different temporal correlation patterns of trunk
motion for responders and nonresponders (P<.001; Figure S5
in Multimedia Appendix 1).

The best models from both methodologies (LightGBM and
RNN), following hyperparameter optimization, resulted in
similar ROC-AUC scores in the test set across all time points
(P=.98, .52, .69, .81, .38, .68, and .22, respectively, for sessions
1-7; Figure 3A and B). Model performance improved over time
for both models (P<.001 for both, DeLong agorithm), with
predictions at session 7 reaching an ROC-AUC of 0.70 (95%
Cl 0.65-0.71, based on bootstrap resampling; Table S3 in
MultimediaAppendix 1) for RNN and 0.71 (95% CI 0.67-0.72)
for LightGBM, compared with 0.66 (95% CI 0.61-0.68) and
0.67 (95% CI 0.61-0.67) obtained in session 1. These results
corresponded to a precision-recall AUC at session 7 of 0.56
(LightGBM: 95% CI 0.49-0.58; RNN 95% CI 0.48-0.57; Figure
3C and D) and aweighted F,-score of 0.68 (95% CI 0.64-0.69)

for both models.
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Figure 3. Model performance on the test data set. Test receiver operating characteristic curve (ROC) for both (A) light gradient boosting machine
(LightGBM) and (B) recurrent neural network (RNN) across the 7 sessions. True positive rate (true positives over true positives and fal se negatives);
false positive rate (fal se positives over false positives and true negatives); dashed line denotes an area under the curve (AUC) of 0.5 corresponding to
arandom predictor; precision-recall curve for (C) LightGBM and (D) RNN models across the 7 sessions. Precision denotes true positives over true
positives and false positives; recall denotes true positives over true positives and fal se negatives; shaded areas denote the 95% Cls.
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For the models described, considering a precision of 70%, the
LightGBM achieved a specificity of 0.97 (95% CI 0.95-0.98),
a sensitivity of 0.13 (95% CI 0.02-0.25), and a negative
predictive value of 0.68 (95% CI 0.68-0.68). Similarly, the RNN
achieved a specificity of 0.97 (95% Cl 0.94-0.97), asensitivity
of 0.12 (95% CI 0.00-0.24), and a negative predictive value of
0.68 (95% CI 0.65-0.71).

Predictive Factorsin Digital Care

Considering the best models, we analyzed the top 20 outcome
predictors at each session based on absolute mean SHAP values

https://medinform.jmir.org/2024/1/e64806

RenderX

[41]. Figure 4 depicts cumulative values of features aggregated
by domains over timefor the LightGBM (Figure 4A) and RNN
(Figure 4B). Detailed feature stratification for both models is
available in Figures S6 and S7 in Multimedia Appendix 1,
respectively.

Although both models incorporated features from comparable
domains, the importance of each feature varied depending on
the model. The flagged domains included pain-associated
metrics, exercise performance, and motivation and compliance
data, which utilized real-time passive data collection.

JMIR Med Inform 2024 | vol. 12 | €64806 | p. 11
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS

CAreiaset a

Figure4. Model explainability. Cumulative Shapley Additive Explanations (SHAP) values per domain considering the top 20 features at each session
for both (A) light gradient boosting machine (LightGBM) and (B) recurrent neural network (RNN). SHAP values depicting the relationship between
the outcome (ie, pain response) and the feature of interest: (C) average pain felt during exercising, (D) time between sessions (days), and (E) feeling
nervous, anxious, or on edge (7-item General Anxiety Disorder Scale [GAD-7] scale). As LightGBM models differ in the number of features across
time, and because we are interested in qualitative comparisons, SHAP values were normalized at each session by dividing by the SD of SHAP values.
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Although the pain domain was highly predictive for both models
(Figures 4A and B), LightGBM placed greater emphasis on
exercise performance, mativation, and compliance data than
the RNN. Within the exercise performance domain, the most
informative features included time spent exercising, exercise
accuracy, and the execution of specific exercisesrelated to trunk
motion. Notably, lower training time or poorer performancein
particular sessions was associated with an increased likelihood
of nonresponse (Figure SBA in Multimedia Appendix 1). Low
motivation and compliance, specifically characterized by low
exercise consistency—evaluated by longer intervals between
sessions (>3 days, Figure 4D)—was associated with a higher
likelihood of being a nonresponder. This observation was
consistent across other variables reflecting motivation toward
compliance, such asthe time between registration and program

https://medinform.jmir.org/2024/1/e64806
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start, aswell asthe reasons preventing patients from completing
the program.

The RNN was more reliant on the temporal patterns of mental
health and other clinical variables (eg, medication intake, intent
to undergo surgery) for its predictions. The presence of mental
distress was associated with a higher likelihood of being a
nonresponder across all sessions, as exemplified by the item
“Feeling nervous, anxious, or on edge”’ from the GAD-7 scale
(Figure 4E). Even though LightGBM did not rank mental health
featuresamong thetop 20 predictors, higher GAD-7 and PHQ-9
scoreswere correlated with poorer outcomes, particularly inthe
later sessions (eg, Figure S8B in Multimedia Appendix 1).
Additionally, other clinical features, such as prescribed
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medication, were associated with a lower probability of being
aresponder.

Both models utilized features related to individual
characteristics, including demographics and socioeconomic
status. Subgroup analyses evaluating potential imbalances
between the training and test sets indicated that similar results
could be obtained regardless of demographic or clinical
characteristics (Table $4 in Multimedia Appendix 1). Overall,
women and individuals from more socialy deprived aress,
particularly those from regionswith higher unemployment rates,
had aworse prognosi s compared with their counterparts (Figure
S8C and S8D in Multimedia Appendix 1).

Model Applicability

Figure 5 illustrates an example of the output from the tool
provided on the PT portal for 2 patients during session 4. This
output includes the model’s prediction of nonresponders (ie,
true positives, with an RNN precision of 70% on the test set)
and the key drivers behind this classification. For patient A, the

CAreiaset a

classification is primarily influenced by high pain reported
during exercise in session 4 (NPRS = 6 out of 10), baseline
characteristics indicating severe clinical presentation (such as
high ODI and mental distress), and self-reported potential
barriersto motivation. Patient B also reported high pain during
exercise in session 4 (NPRS = 8 out of 10) and exhibited low
exercise performance for that session (3.5 out of 5 stars).
Additionally, patient B indicated prescribed medication intake
(eg, opioids) and the presence of at least one clinical red flag,
despite being cleared by a physician to participate in the
program. With an ODI score of 50 and low educational
attainment, this information is subsequently analyzed by the
PT, allowing for necessary refinementsto theintervention. This
may involve adjusting exercise intensity or type or prioritizing
specific components of the DCP, such as education and
cognitive behavioral therapy. These adjustments will
subsequently impact future model predictions in a dynamic
closed-loop optimization that contributes to the refinement of
thetool.

Figure 5. Example of the integration of the model in the physical therapist portal. Example of model explainability for 2 patients, A and B, classified
as high-risk nonresponders (recurrent neural network [RNN] precision 70%) at session 4. In the physical therapist portal, each patient's health record
includes the prediction of the tool along with the variables that sustained the model's classification, providing insights into the specific factors affecting
the patient's prognosis. The most influential factors contributing to a nonresponder prediction are highlighted in red, with factors positioned toward
higher "base values" (ig, to the right) indicating a stronger impact. For example in the case of patient A, the pain felt during exercise and the baseline
pain are the most influential for the model output. After analyzing the case, the physical therapist reevaluates the patient's program and the potential
need for further support. Those adjustments will be subsequently fed into the tool reinforcing the dynamic optimization close loop. GAD-7: 7-item

General Anxiety Disorder Scale; ODI: Oswestry Disability Index.
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Discussion

Principal Findings

This study leveraged passively and automatically collected
patient data from a digital MSK intervention to develop a
predictive tool that assists PTs in optimizing treatment. These
models utilize continuously updated data from each enrolled
patient to identify early those who are less likely to achieve a
clinically meaningful reduction in pain. Model performance
significantly increased over time, achieving an ROC-AUC of
0.70 (95% CI 0.65-0.71, from bootstrap resampling) for the
RNN and 0.71 (95% CI 0.67-0.72) for the LightGBM at session
7. These models identified features from domains related to
pain, exercise performance, motivation, and compliance asthe
most predictive of outcomes. Thisinformation can inform PTs
for continuous treatment adjustments to maximize response
rates. This predictivetool operatesthrough adynamicloop, and
when applied in clinical practice, it continuously enhances
treatment refinement and improvestool performance over time.

Comparison Prior Work

Previous ML models designed to support LBP management
without real-time data collection have reported performances
(ROC-AUCS) ranging from 0.49 to 0.71 [6,7,9,10,21], with 1
model achieving a higher AUC of 0.84, but only near the end
of treatment [11]. Additionally, the currently used STarT Back
prediction tool has reported AUCs of 0.63 and 0.60-0.62 when
predicting pain intensity at 12 weeks and 1 year, respectively
[6,7]. The wide range of reported model performances reflects
not only the challenges associated with each proposed objective
but also the level of uncertainty that thesetools generate. In this
study, both models’ performances significantly improved over
time, achieving an AUC of 0.70-0.71 at session 7 using
real-world data. This AUC suggests that pain response at an
early stage of the intervention is partially explained by the
variablesused. However, astreatment progresses, it isplausible
that model performance will continue to improve toward the
end. Asan example, Brennan et a [11] demonstrated a1.3times
increase in model performance when using PROMs collected
at session 3 to predict outcomes at session 6. Our study aimed
to be less reliant on PROMs and more focused on a scalable
solution capable of improving over time [47,48]. While
specificity and sensitivity depend on the threshold applied, the
results presented here align with those previously reported
[6,7,9-11,21]. The choice of threshold to balance precision and
recall must align with the clinical setting’s needs, taking into
account the costs and implications of false positives and false
negatives.

In addition to real-time predictions, these models may offer
timely insights that enable PTs to determine the need for
referring patients to specialized care (eg, escalation to
psychol ogists) through shared decision-making with the patient.
Both models identified similar feature domains, including
pai n-associated metrics, exercise performance, motivation, and
compliance, thereby surpassing the predictive value of individual
demographic prognostic factors. These domains cannot be
captured solely through PROMSs, further emphasizing the
relevance of such modelsin managing LBP.

https://medinform.jmir.org/2024/1/e64806
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To predict the pain that patients experience during daily
activities, the model incorporates pain levels reported during
exercise, alongside baseline clinical presentations (including
the NPRS, the “pain intensity” item from the ODI, and
acuity)—features previously established as poor prognostic
indicators [49-51]. This underscores the importance of pain
experienced during exercise as a predictor of outcomes.
Specifically, exercising with pain levels exceeding 4 out of 10
has been shown to predict negative outcomes [52], suggesting
that these patients may benefit from adjustmentsto their exercise
prescriptions. The use of analgesic medications, such asopioids,
has also been linked to a poorer prognosis, as noted in previous
studies[53-55].

Aside from pain, both models prioritized motivation,
compliance, and exercise performance data for predictions.
Regarding motivation, indicators such as self-reported resistance
to commit to the intervention, delayed program initiation, and
extended intervals between sessions (>3 days) were associated
with a lower likelihood of response, reinforcing previous
findings [56]. In the exercise performance domain, the models
emphasized exercise execution data, including the time
dedicated to sessions, performance scores, and the number of
incorrect exercises, with lower scoreslinked to worse outcomes.
Challenges associated with compliance frequently contribute
to increased frustration and decreased adherence to treatment
[57,58] and have been previously described as risk factors for
poor outcomes [5,59]. Co-occurring with low adherence rates,
anxiety and depression were associated with alower likelihood
of response in one of the models (RNN). This finding is
unsurprising, considering the well-established negative feedback
loop between mental health and MSK pain [60,61].

Although the demographic and socioeconomic profiles of
patients are relevant, they may be of lower importance than the
previously mentioned domains. Certain groups, such aswomen
and the unemployed, may encounter systemic barriersthat hinder
their ability to achieve pain relief.

In summary, implementing this tool would enhance care
coordination and patient management by identifying individuals
at higher risk for poor pain outcomes. This, in turn, can
streamline workflows, fostering informed decision-making and
tailored treatment programs. The continuous stream of data
generated by patients enables refined predictions at each
interaction, allowing PTs to make timely adjustments to the
program. These adjustments could then be fed back into the
system to further enhance its recommendations. To assess
potential biases, the subgroup analyses conducted in this study
focused on demographic characteristics and socioeconomic
factors, indicating a low risk of bias. However, further
evaluation of algorithmic biaswill be necessary once the model
is fully operational and deployed in real-world settings.
Continuous monitoring will be essential to ensure that the model
does not disproportionately impact specific populations or
reinforce existing health disparities.

While there may be concerns among PTs regarding the “ black
box” nature of Al, model explainability will be crucia in
overcoming this barrier. Before full implementation, training
for PTs(or clinicians) isessential to ensurethey understand and
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can effectively use the tool, thereby mitigating fears and
preventing erroneous use of Al. Nevertheless, the design of this
Al tool ensuresthat final clinical decisions remain with the PT,
preserving human judgment and critical reasoning. This
approach can foster trust in the system and promote the safe
integration of Al into clinical workflows.

Future research on the devel opment of this predictivetool should
concentrate on clinically validating the closed feedback loop.
Additionally, optimizing the performance of the Al tool may
be further enhanced by incorporating supplementary data
sources, such asreal-life context data variables obtainable from
smartwatches (eg, pedometry and sleep quality) and clinical
context information (eg, presence of specific comorbiditiesand
clinical records). Thiscould reveal additional datapatternsand,
consequently, contribute to improved model accuracy. With the
nearly exponential increasein data, it is plausible that RNNs or
other deep sequence models will continue to enhance their
performance and eventually surpass LightGBM, given their
natural ability to handle sequential data [47,48]. Additionally,
the integration of continuous volumes of data may expand the
model’s predictive capabilities to assess long-term outcomes.
In particular, for LBP, predicting long-term outcomeswill help
determine which types of interventions lead to more sustained
recovery with functional improvement, and reduce thelikelihood
of relapse or chronicity over time.

Finally, asthe Al model relies on protected health information,
implementing robust safeguards and establishing data
stewardship protocols are essential to maintain confidentiality,
integrity, and security.

Other future considerations include exploring the application
of such toolsto other MSK conditions.

Strengths and Limitations

This study has important strengths. First is the novelty of
exploring how data collected from a DCP can be applied in an
ML model to continuously predict patient outcomes and foster
personalized care. Second, this cohort's demographic and
clinical characteristicsmirror that of the US population reporting
LBP [62,63], with the percentage of nonresponders for pain
being consistent with previous studies eval uating in-person and
digital LBP management [11,22,64,65]. Finally, the nature of
the data that are automatically and passively collected, which
are less reliant on PROMs, makes it easy to obtain and less
burdensome for both patients and clinicians. However, this
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study also haslimitations that warrant noting: (1) Although the
cohort was large and decentralized, we cannot dismiss the
possihility of overfitting; additionally, as the popul ation focuses
on beneficiaries of health plans, this may limit generalizability
to populations not covered by health insurance. Therefore,
extended testing on new cohorts is critical for the external
validation of the Al tool. Such validation would provide amore
accurate assessment of the model’s performance, ensuring that
its effectiveness and robustness are maintained across different
populations that may enroll in the program. Additionaly, it
could help identify areasin need of improvement. Furthermore,
external validation studies should be followed by real-world
applications to evaluate the usefulness of the deployed model
in clinical settings; (2) despite being highly used and
recommended by clinical guidelines, transforming the pain
outcome into a binary classification may obscure subtle
variations in patient responses. This smplification could lead
to misclassification of patients who are close to the threshold.
Future approaches could consider modeling the outcome as a
continuousvariable. Additionally, devel oping acomposite score
that reflects improvements across multiple core outcome
domains—including Patient Global Impression of Change and
Activities of daily living functionality—could better capture
the multifactorial nature of LBP and provide a more
comprehensive assessment of patient improvement in asingle
metric; (3) we used an extensive number of featuresthat capture
critical domains in the rehabilitation realm; however, other
potential features, such as measures of self-efficacy and
indicators depicting transitional states between clusters of
trajectories, which could hold high predictive power, were not
included. Incorporating these features in future designs could
enhance the model’s predictive accuracy; (4) finally, the early
stage of this tool’s development hampers the ability to assess
its impact on clinical outcomes. Future steps should focus on
implementing and evaluating the tool’s dynamic loop to better
understand its effectiveness and feasibility, as well as to
ascertain its net benefits.

Conclusions

This study underscores the potentia of a predictive tool
leveraging ML models to enhance the management of LBP in
a digital setting, redirecting care pathways early on and
throughout the treatment course, thereby fostering personalized
care. The application of such astrategy is particularly important
for managing a heterogeneous population with diverse
phenotypes across different cultural contexts.
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