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Abstract
Cardiovascular drug development requires synthesizing relevant literature about indications, mechanisms, biomarkers, and
outcomes. This short study investigates the performance, cost, and prompt engineering trade-offs of 3 large language models
accelerating the literature screening process for cardiovascular drug development applications.
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Introduction
Cardiovascular drug development requires synthesizing
information about indications, mechanisms, biomarkers, and
outcomes [1,2]. Large language models (LLMs) leveraging
billions of data points could accelerate fundamental, resource-
intensive aspects of this process, like screening published
literature [3]. However, this depends on the design, devel-
opment, and implementation of LLM instructions (prompt
engineering) that work effectively within the context of
cardiology [4-6]. To our knowledge, this is one of the
first studies investigating LLMs to accelerate the litera-
ture screening process for cardiovascular drug development
applications [3,4,6,7].

Methods
Study Design
Leveraging prior work, a PubMed query using both available
Medical Subject Headings (MeSH) and the title and abstract

keyword search of MeSH Entry Terms identified observatio-
nal studies of heart failure that (1) were published from
2013 to 2023, (2) contained at least one relevant biomarker
(brain natriuretic peptide, N-terminal pro–atrial natriuretic
peptide, N-terminal pro–brain natriuretic peptide, and peak
oxygen consumption), and (3) measured long-term outcomes
(hospitalization and mortality) [2].

Abstracts were extracted through the PubMed appli-
cation programming interface (API), and LLM instruc-
tions (prompts) were created to assess different screening
optimization strategies (Figure 1) across LLMs (GPT-3.5
Turbo [OpenAI], GPT-4 [OpenAI], and Claude 2 [Anthropic
PBC]) [5]. The “base” LLM prompt (1) presented abstract
text, (2) listed two eligibility screening criteria (ie, values
found for at least one biomarker and outcome), and (3)
instructed LLMs to determine if abstracts met eligibility
criteria and return results in a standardized format. “Techni-
cal” optimization was defined as adding delimiters to the
base prompt delineating key sections (abstract and criteria),
while “content” optimization further instructed LLMs to (1)
assume a scientific role and (2) address a cardiology drug
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development target audience [3,5]. The different prompts
used in this study are described in Multimedia Appendix 1.
Total units of text processed (“tokens”) were estimated using
spaCy, and LLM abstract screening costs were estimated
using current API prices per million input and output tokens,
respectively, for GPT-3.5 (US $0.50 and US $1.50), GPT-4
(US $30 and US $60), and Claude 2 (US $8 and US $24).

A Python script performed data processing and analy-
sis. Accuracy was assessed by comparing LLM outputs

against manual epidemiologist review of study suitability
for inclusion, with descriptive statistics calculated for each
LLM and prompt type. Performance differences between fully
optimized prompts (GPT-3.5 vs GPT-4, GPT-3.5 vs Claude 2,
and GPT-4 vs Claude 2) were evaluated using the chi-square
test. A P value of <.05 was considered statistically signifi-
cant.

Figure 1. Biomedical informatics pipeline for comparing different LLM and prompt optimization approaches to abstract screening for cardiovascular
drug development. LLM: large language model.

Ethical Considerations
This study did not meet the definition of human participants
research and thus did not require institutional review board
approval.

Results
Of 69 articles found in PubMed, 32 (46%) met eligibility
criteria after manual review; corresponding LLM screen-
ing accuracies are summarized in Table 1. By LLM, the
best performances came from the base prompt (GPT-3.5),

technical and combined prompts (GPT-4), and technical
prompts (Claude 2). Overall, combined prompts for GPT-3.5
and GPT 4 performed similarly against each other (P>.99)
and against Claude 2 (P=.61 against both).

GPT-3.5 processed a total of 124,826 tokens, while
GPT-4 and Claude 2 processed 14.4% (N=142,750) and
15.9% (N=144,703) more tokens, respectively. Total costs for
GPT-4 (US $4.89) and Claude 2 (US $1.52) were 75.4 and
23.4 times higher, respectively, than total costs for GPT-3.5
(US $0.06).

Table 1. Abstract screening accuracies reflecting total abstracts correctly identified by large language models (LLMs) for inclusion and exclusion
based on manual review of study suitability, by LLM and prompt optimization type (abstracts: N=69).
Prompt optimization type Accuracy, n (%)

GPT-3.5 GPT-4 Claude 2
Base (none) 43 (62) 40 (58) 35 (51)
Technical 34 (49) 41 (59) 43 (62)
Content 42 (61) 38 (55) 38 (55)
Technical and content 41 (59) 41 (59) 37 (54)

Discussion
Despite the complex and limited public cardiology data
integrated into LLMs, our findings were consistent with
similar studies for oncology and current LLM abilities to

pass medical licensing exams [4,8]. Performance could be
further improved by adding specific examples to the prompt
(few-shot prompting) or to the LLM training data (fine-tun-
ing) [4,8,9].
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Technical optimizations showed modest performance
improvements across some LLMs, indicating one practical
way to improve accuracy and prompt readability without
significantly expanding the size of input prompts. Standardiz-
ing outputs helped generate valid responses, although GPT-4
and Claude 2 still had higher costs as a result of more verbose
output. Enterprise LLM–based abstract screening will require
balancing prompt performance, cost, and complexity with
cardiology subject matter expert capabilities and workflows.

Limitations include a small cardiovascular dataset
leveraging proprietary LLMs and only a subset of available
optimization techniques. Future efforts must engage diverse
scientific communities; develop guardrails to ensure safe and
responsible LLM use; and apply data-driven best practices
that generalize, optimize, and validate LLM applications and
their impact on patients with cardiovascular disease.
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Multimedia Appendix 1
Approach for creating prompts focused on abstract screening for cardiovascular drug development, starting with the base
prompt (black) and including content optimization (A) and technical optimization (B-E).
[PNG File (Portable Network Graphics File), 405 KB-Multimedia Appendix 1]
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