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Abstract

Background: Prediction models based on machine learning (ML) methods are being increasingly developed and adopted in
health care. However, these models may be prone to bias and considered unfair if they demonstrate variable performance in
population subgroups. An unfair model is of particular concern in bladder cancer, where disparities have been identified in sex
and racial subgroups.

Objective: This study aims (1) to develop a ML model to predict survival after radical cystectomy for bladder cancer and
evaluate for potential model bias in sex and racial subgroups; and (2) to compare algorithm unfairness mitigation techniques to
improve model fairness.

Methods: We trained and compared various ML classification algorithms to predict 5-year survival after radical cystectomy
using the National Cancer Database. The primary model performance metric was the F1-score. The primary metric for model
fairness was the equalized odds ratio (eOR). We compared 3 algorithm unfairness mitigation techniques to improve eOR.

Results: We identified 16,481 patients; 23.1% (n=3800) were female, and 91.5% (n=15,080) were “White,” 5% (n=832) were
“Black,” 2.3% (n=373) were “Hispanic,” and 1.2% (n=196) were “Asian.” The 5-year mortality rate was 75% (n=12,290). The
best naive model was extreme gradient boosting (XGBoost), which had an F1-score of 0.860 and eOR of 0.619. All unfairness
mitigation techniques increased the eOR, with correlation remover showing the highest increase and resulting in a final eOR of
0.750. This mitigated model had F1-scores of 0.86, 0.904, and 0.824 in the full, Black male, and Asian female test sets, respectively.

Conclusions: The ML model predicting survival after radical cystectomy exhibited bias across sex and racial subgroups. By
using algorithm unfairness mitigation techniques, we improved algorithmic fairness as measured by the eOR. Our study highlights
the role of not only evaluating for model bias but also actively mitigating such disparities to ensure equitable health care delivery.
We also deployed the first web-based fair ML model for predicting survival after radical cystectomy.

(JMIR Med Inform 2024;12:e63289) doi: 10.2196/63289
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Introduction

The development and use of prediction models is increasing in
many domains, including health care. These models can be used
to guide clinical decision-making as they can potentially provide
more accurate predictions of outcomes by adjusting for multiple
patient and clinical features, compared to clinician assessment
alone [1,2]. Machine learning (ML) methods are increasingly
being used to develop prediction models as their use often yields
models with superior predictive performance compared to
models developed using traditional statistical methods [3].
However, there have been growing concerns about the potential
for bias in ML models, as studies have demonstrated
discrepancies in model performance among different population
subgroups, which can lead to disparities in health care [4-6].
This concern for model bias, or an unfair model, has brought
attention to the concept of algorithm fairness, where a fair model
is described as one that works well for all populations, regardless
of personal characteristics that are considered protected or
sensitive, such as sex, race, age, sexual orientation, among others
[7,8].

An unfair model is of particular concern in bladder cancer,
where disparities in the likelihood of receiving treatment and
timing of treatment have been identified in sex and racial
subgroups [9]. While several predictive models have been
developed to predict survival in patients with bladder cancer
[10-12], the performance of these models among different
population subgroups remains understudied. Predicting survival
is an important component in counseling patients with bladder
cancer given the relatively high mortality rates in this disease
[13,14]. The use of a potentially unfair model may perpetuate
and even exacerbate existing disparities for vulnerable patient
populations.

In this study, we used the National Cancer Database (NCDB)
to develop a ML model that predicts survival after radical
cystectomy, the current standard treatment for muscle-invasive
bladder cancer [15], and evaluated for potential model unfairness
in sex and racial subgroups. We then applied and compared
model unfairness mitigation techniques to improve algorithm
fairness [16] and deployed the first web-based fair ML model
predicting survival after radical cystectomy.

Methods

Data Source
We used data from the NCDB, which captures approximately
70% of all new invasive cancer diagnoses in the United States
each year. The NCDB is a joint project of the Commission on
Cancer of the American College of Surgeons and the American
Cancer Society. Reporting hospitals are restricted to those
accredited by the American College of Surgeons Commission
on Cancer. Data reporting to the NCDB is highly standardized,
and all data submitted undergo a thorough review for verification
of data integrity [17].

Study Population
We identified patients with a histologic diagnosis of invasive
urothelial carcinoma of the bladder between 2004 and 2016 and

selected those who underwent radical cystectomy for clinically
localized, muscle-invasive (cT2-4N0XM0X) disease. We
excluded patients with missing dates of cystectomy; patients
who received radiation, hormonal, immunotherapy, or other
therapies prior to radical cystectomy; as well as patients who
were treated with palliative intent.

For individuals included in our sample, we extracted patient
and disease features. The patient features of interest were age
at diagnosis, sex, race, ethnicity, facility type, insurance status,
median income quartile, and comorbidity score; the disease
factors were the year of diagnosis, pathological tumor stage,
pathological nodal stage, and receipt of neoadjuvant or adjuvant
chemotherapy.

We used the race and ethnicity features in the NCDB to
categorize patients into the following National Institutes of
Health (NIH) racial groups [18]: White, Black, Hispanic, or
Asian. We a priori excluded American Indian or Alaska Native
and Native Hawaiian or other Pacific Islanders as separate
groups given their anticipated limited sample size [19,20]. The
outcome of interest was overall survival at 5 years.

Model Development and Evaluation
We used stratified splitting to separate the sample into training
(13,184/16,481, 80%) and test (3297/16,481, 20%) sets, ensuring
balance on sex, NIH racial group, and the outcome of interest.

We trained and compared various machine learning
classification models, including random forest, decision tree,
extreme gradient boosting (XGBoost), and logistic regression,
to predict 5-year overall survival. We used 5-fold
cross-validation to select the hyperparameters that optimized
the F1-score. The baseline models were trained on the full
training set, with optimized hyperparameters. We used a
classification threshold of 0.5 for our baseline models.

Our primary model performance metric was the F1-score, which
is the harmonic mean of the positive predictive value, also
known as precision, and sensitivity, also known as recall; the
formulas have been provided previously [21]. The F1-score can
range from 0 to 1, with a value of 1 indicating perfect precision
and recall. Secondary model performance metrics included true
positive rate (TPR), false positive rate (FPR), and accuracy.

We evaluated model performance in the full test set and
subgroups based on sex and race. The “best” naïve model was
selected based on the highest F1-score in the full test set.

Evaluation of Fairness
Several group fairness metrics have been described and fall
under 3 broad principles: independence, separation, and
sufficiency [8]. Independence is closely associated with
demographic parity, which requires equivalent positive
prediction rates across sensitive groups. Demographic parity is
important when there are known historical biases in the dataset
or objectivity of the target variable [8]. Separation is related to
equalized odds and their relaxed variations; separation is suitable
when the target variable is an objective ground truth and equality
of error rates across sensitive groups is a priority. Equalized
odds compare the TPR and FPR between different groups and
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are useful when true and false positives are considered to be of
similar importance. Relaxed versions such as equality of
opportunity and predictive equality can be used if prioritizing
equal TPRs or FPRs, respectively. Separation-based criteria
should not be used when the target variable may be prone to
bias [8]. Finally, sufficiency is satisfied when for any predicted
score, the probability of belonging to the positive or negative
class is the same across all sensitive groups [8,22]. Unlike
separation approaches, which may prioritize equalizing error
rates across groups potentially at the expense of a specific
group’s precision, sufficiency emphasizes fairness by ensuring
similar prediction calibration for all groups without directly
penalizing the overall model’s performance on any 1 group
[22,23].

As some fairness criteria are not mutually compatible [24-26],
for our clinical context, we used the equalized odds ratio (eOR)
to estimate model fairness since we prioritized a model that
minimized known disparities in bladder cancer by satisfying
equality of error rates across sex and racial subgroups [8,27],
there was no major concern for the retrospective data to contain
measurement bias or historical bias, and true and false positive
predictions of 5-year overall survival were of equal importance.
The eOR ranges from 0 to 1, where a value of 1 indicates
equivalent true positive and false positive rates across sensitive
groups.

Mitigating Unfairness
Techniques to mitigate algorithm unfairness can be applied in
the 3 different phases of model development: preprocessing,
in-processing, and postprocessing [8,28]. Techniques in the
preprocessing category transform input data before they are
passed to the training algorithm. For example, correlation
remover is a preprocessing technique that applies a linear
transformation to the nonsensitive features in order to remove
any correlation with sensitive features. In practice, however,
preprocessing approaches can still result in classifiers that result
in substantial algorithm unfairness [29]. In-processing
techniques incorporate fairness constraints within the model
training process. These techniques aim to steer the model toward
producing fair predictions. One such example is the
exponentiated gradient method, which implements a reduction
approach. In reduction approaches, the model is treated as a
black box optimizer. The algorithm iteratively reweights the
training data points based on the current model’s predictions
and a chosen fairness metric. The model is then retrained with
these reweighted points, aiming to reduce the unfairness
observed in the previous iteration [29,30]. In postprocessing
techniques, algorithms transform the output of a trained model.
A threshold optimizer is an example of a postprocessing
technique that takes as input an existing machine learning
classifier and the sensitive feature, uses its predictions as a
scoring function, and identifies a separate threshold for each
group defined by a sensitive feature in order to optimize the

specified fairness constraints [22]. Some limitations to note of
the postprocessing approach are that they are not guaranteed to
find the most accurate fair classifier and they require test time
access to the protected attribute, which may not be available
[29,31].

In this study, we compared 3 different techniques to mitigate
unfairness in the different phases of model development:
correlation remover (preprocessing), exponentiated gradient
(in-processing), and threshold optimizer (postprocessing). The
final “fair” model was chosen based on the mitigated model
with the highest eOR in the full test set.

Software and Analyses
All analyses were completed using Python (Python Software
Foundation), and packages from scikit-learn and Fairlearn [16].
We estimated 95% CIs using 1000 bootstrap samples.

Ethical Considerations
The study was exempted by our institutional review board
committee since the NCDB does not contain any identifiable
patient information.

Results

Population Characteristics
We identified 374,881 patients with a histologic diagnosis of
invasive urothelial carcinoma of the bladder between 2004 and
2016 and selected those that underwent radical cystectomy for
clinically localized, muscle-invasive (cT2-4N0XM0X) disease.
After applying exclusion criteria, our overall final sample
consisted of 16,481 patients, and their characteristics are shown
in Table 1. The full sample was 23.1% (n=3800) female and
77% (n=12,681) male; with regard to the NIH racial groups,
91.5% (n=15,080), 5% (n=832), 2.3% (n=373), and 1.2%
(n=196), were “White,” “Black,” “Hispanic,” and “Asian,”
respectively (Multimedia Appendix 1). The median age at
diagnosis in the overall sample was 71.0 (IQR 63.0-77.0) years,
the majority of patients had pathological tumor stage 2 disease
(n=7329, 44.5%; Table 1), and most patients were found to have
negative pathological (pN0) lymph nodes (n=14,049, 85.2%).

Patient characteristics stratified by sex and race are shown in
Table 2. Black male patients were the youngest (median age
66.5, IQR 58.0-74.0 y), on average, and had the highest
proportion of pathological tumor stage 4 disease (116/512, 23%),
while pathological lymph node involvement was highest in
White male and Hispanic male patients (n=1599 and n=38
respectively, both 3.5%).

Of the 16,481 patients, there were 12,290 (75%) deaths within
5 years. Stratified by sex and race, death rates within 5 years
were the highest in Black male patients (407/512, 80%) and the
lowest in Asian male patients (101/148, 68.2%; Table 2).
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Table 1. Baseline characteristics of patients undergoing radical cystectomy for bladder cancer.

Test sample (n=3297)Training sample (n=13,184)Full sample (N=16,481)Baseline characteristics

71.0 (63.0-77.0)71.0 (63.0-77.0)71.0 (63.0-77.0)Age (years), median (IQR)

Sex, n (%)

761 (23.1)3039 (23.1)3800 (23.1)Female

2536 (77)10,145 (77)12,681 (77)Male

NIHa racial group, n (%)

39 (1.2)157 (1.2)196 (1.2)Asian

166 (5)666 (5)832 (5)Black

75 (2.3)298 (2.3)373 (2.3)Hispanic

3017 (91.5)12,063 (91.5)15,080 (91.5)White

Facility type, n (%)

157 (5)628 (5)785 (5)Community cancer program

1081 (33%)4191 (32%)5272 (32%)Comprehensive cancer program

1503 (46%)6024 (46%)7527 (46%)Academic or research program

541 (16.4)2294 (17.4)2835 (17.2)Integrated network program

15 (0.4)47 (0.4)62 (0.4)Unknown

Insurance status, n (%)

894 (27.1)3674 (28)4568 (28)Private insurance

2109 (64)8414 (64)10,523 (64)Medicare

146 (4.4)470 (4)616 (4)Medicaid

24 (0.7)115 (1)139 (1)Other government

74 (2.2)306 (2.3)380 (2.3)Not insured

50 (1.5)205 (2)255 (2)Unknown

Median income quartile (US $), n (%)

493 (15)1910 (14.5)2403 (15)<38,000

796 (24.1)3004 (23)3800 (23.1)38,000-47,999

808 (24.5)3327 (25.2)4135 (25.1)48,000 - 62,999

888 (27)3699 (28.1)4587 (28) 63,000

312 (10)1244 (9.4)1556 (9.4)Unknown

Charlson-Deyo comorbidity score, n (%)

2208 (67)8693 (66)10,901 (66.1)0

783 (24)3167 (24)3950 (24)1

222 (6.73)1000 (7.58)1222 (7.4)2

84 (2.55)324 (2.46)408 (2.48)3

2009 (2007-2012)2010 (2007-2012)2009 (2007-2012)Year of diagnosis, median (IQR)

Pathological tumor stage, n (%)

1460 (44.3)5869 (44.5)7329 (44.5)pT2

1391 (42.3)5569 (42.2)6960 (42.2)pT3

446 (13.5)1746 (13.2)2192 (13.3)pT4

Pathological nodal stage, n (%)

359 (11)1612 (12)1971 (12)pNX

2853 (86.5)11,196 (85)14,049 (85.2)pN0

85 (3)376 (3)461 (3)pN+
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Test sample (n=3297)Training sample (n=13,184)Full sample (N=16,481)Baseline characteristics

Receipt of chemotherapy, n (%)

288 (9)1213 (9.2)1501 (9.1)Neoadjuvant only

243 (7.4)1049 (8)1292 (8)Adjuvant only

2766 (84)10,922 (83)13,688 (83.1)Both neoadjuvant and adjuvant

aNIH: National Institutes of Health.
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Table 2. Baseline characteristics of patients undergoing radical cystectomy for bladder cancer, stratified by sex and race.

Hispanic
male patients
(n=283)

Hispanic fe-
male patients
(n=90)

Asian male
patients
(n=148)

Asian female
patients
(n=48)

Black male
patients
(n=512)

Black female
patients
(n=320)

White male
patients
(n=11738)

White female
patients
(n=3342)

Baseline characteris-
tics

70 (63-75)73 (66.0-
77.0)

71.0 (62.0-
77.3)

75.0 (64.0-
79.0)

66.5 (58.0-
74.0)

67.0 (58.0-
74.0)

70.0 (63.0-
77.0)

72.0 (64.0-
78.0)

Age (years), medi-
an (IQR)

Facility type, n (%)

11 (4)5 (6)5 (3.4)4 (8.3)19 (4)8 (2.5)565 (5)168 (5)Community
cancer program

68 (24)15 (17)30 (20.3)13 (27.1)113 (22.1)89 (28)3819 (32.5)1125 (34)Comprehensive
community can-
cer program

167 (59)55 (61.1)89 (60.1)23 (48%)279 (54.5)164 (51.3)5328 (45.4)1422 (42.5)Academic pro-
grams

35 (12.4)12 (13.3)24 (16.2)8 (17)99 (19.3)56 (17.5)1996 (17)605 (18.1)Integrated net-
work cancer
program

2 (1)3 (3.3)0 (0)0 (0)2 (0.4)3 (1)30 (0.3)22 (1)Unknown

Insurance status, n (%)

74 (26.1)20 (22.2)46 (31.1)14 (29.2)152 (30)83 (26)3343 (28.5)836 (25)Private insur-
ance

174 (61.5)59 (66)79 (53.4)26 (54.2)285 (56)190 (59.4)7447 (63.4)2263 (68)Medicare

14 (5)8 (9)16 (11)4 (8.3)45 (9)31 (10)382 (3.2)116 (3.5)Medicaid

1 (0.4)1 (1.1)6 (4)1 (2.1)5 (1)2 (1)117 (0.1)12 (0.4)Other govern-
ment

12 (4.2)2 (2.2)1 (1)2 (4.2)19 (4)11 (3.4)262 (2.2)66 (2)Not insured

8 (3)0 (0)0 (0)1 (2.1)6 (1.2)3 (1)187 (2)49 (1.5)Unknown

Median income quartile (US $), n (%)

71 (25.1)21 (23.3)5 (3.4)2 (4.2)194 (38)113 (35.3)1550 (13.2)447 (13.4)<38,000

67 (24)20 (22.2)24 (16.2)3 (6.2)110 (21.5)64 (20)2692 (23)820 (24.5)38,000-47,999

69 (24.4)22 (24.4)38 (26)13 (27.1)95 (19)54 (17)3014 (26)830 (25)48,000-62,999

60 (21.2)24 (27)71 (48)28 (58.3)73 (14.3)51 (16)3351 (28.5)929 (28) 63,000

16 (6)3 (3.3)10 (7)2 (4.2)40 (8)38 (12)1131 (10)316 (9.5)Unknown

Comorbidity score, (n (%)

192 (68)57 (63.3)97 (65.5)39 (81.3)375 (73.2)201 (63)7648 (65.2)2292 (69)0

64 (23)20 (22.2)42 (28.4)8 (17)89 (17.4)80 (25)2880 (24.5)767 (23)1

16 (6)8 (9%)7 (5)1 (2.1)33 (6.4)34 (11)910 (8%)213 (6.4)2

11 (4)5 (6)2 (1.4)0 (0)15 (3)5 (2)300 (3)70 (2.1) 3

2010 (2006-
2013)

2009 (2007-
2013

2009 (2007-
2012)

2010 (2007-
2013)

2010 (2007-
2013)

2010 (2008-
2013)

2009 (2007-
2012)

2009 (2006-
2012)

Year of diagnosis,
median (IQR)

Pathological tumor stage, n (%)

131 (46.3)26 (29)60 (40.5)18 (37.5)213 (42)141 (44.1)5290 (45.1)1450 (43.4)pT2

114 (40.3)47 (52.2)68 (46)20 (42)183 (36)145 (45.3)4849 (41.3)1534 (46)pT3

38 (13.4)17 (19)20 (13.5)10 (21)116 (23)34 (11)1599 (14)358 (11)pT4

Pathological nodal stage, (n (%)

44 (15.5)10 (11.1)16 (11)4 (8.33)73 (14.3)40 (12.5)1353 (11.5)431 (13)pNX

229 (81)78 (87)130 (88)44 (92)423 (83)271 (85)10081 (86)2793 (84)pN0

10 (3.5)2 (2.2)2 (1.4)0 (0)16 (3.1)9 (3)304 (3)118 (3.5)pN+
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Hispanic
male patients
(n=283)

Hispanic fe-
male patients
(n=90)

Asian male
patients
(n=148)

Asian female
patients
(n=48)

Black male
patients
(n=512)

Black female
patients
(n=320)

White male
patients
(n=11738)

White female
patients
(n=3342)

Baseline characteris-
tics

Receipt of chemotherapy, (n (%)

24 (8.5)12 (13.3)8 (5.4)0 (0)43 (8.4)41 (13)1056 (9)317 (9.5)Neoadjuvant

21 (7.4)14 (16)7 (5)3 (6.2)35 (7)19 (6)930 (8)263 (8)Adjuvant

238 (84.1)64 (71.1)133 (90)45 (94)434 (85)260 (81.3)9752 (83.1)2762 (83)Neither

219 (77.4)62 (69)101 (68.2)34 (71)407 (80)240 (75)8790 (75)2437 (73)Death within 5
years, n (%)

Naïve Model Performance and Evaluation of Fairness
The performance of the naïve models is shown in Table 3. The
“best” naïve model based on F1-score was XGBoost (F1-score
0.860; 95% CI 0.8490.869). When evaluated for fairness, the
“best” naïve model had an eOR ratio of 0.619 (Table 4).

In sex and racial subgroups, the “best” naïve model achieved
the highest F1-score in Black male patients (F1-score 0.907;
95% CI 0.859-0.947) and the lowest in Asian female patients
(F1-score 0.824; 95% CI 0.571-0.947; Figure 1).

Table 3. Comparison of the naïve machine learning models predicting 5-year survival in patients undergoing radical cystectomy for bladder cancer.

AccuracyFalse positive rateTrue positive rateF1-score

0.765 (0.749-0.778)0.830 (0.803-0.869)0.970 (0.960-0.973)0.860 (0.849-0.869)XGBoosta

0.742 (0.728-0.757)0.585 (0.552-0.621)0.854 (0.841-0.867)0.832 (0.820-0.842)Random forest

0.632 (0.616-0.647)0.367 (0.336-0.400)0.632 (0.611-0.649)0.719 (0.701-0.734)Decision tree

0.756 (0.742-0.771)0.775 (0.745-0.803)0.9378 (0.928-0.946)0.852 (0.841-0.862)Logistic regression

aXGBoost: extreme gradient boosting.

Table 4. Comparison of the best naive and mitigated models to predict 5-year survival in patients undergoing radical cystectomy for bladder cancer.

AccuracyFalse positive rateTrue positive rateF1-scoreEqualized odds
ratio

0.765 (0.749-0.778)0.830 (0.803-0.869)0.970 (0.960-0.973)0.860 (0.849-0.869)0.619Naive model

0.766 (0.751-0.787)0.819 (0.792-0.843)0.966 (0.959-0.973)0.861 (0.851-0.870)0.750Correlation remover

0.767 (0.752-0.781)0.807 (0.780-0.834)0.963 (0.956-0.971)0.861 (0.851-0.870)0.667Exponentiated gradient

0.742 (0.727-0.757)0.889 (0.868-0.910)0.958 (0.949-0.965)0.847 (0.837-0.857)0.750Threshold optimizer
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Figure 1. Comparison of F1-scores between best naïve and mitigated models, in sex and racial subgroups.

Mitigating Unfairness
We compared the preprocessing, in-processing, and
postprocessing algorithm unfairness mitigation techniques of
correlation remover, exponentiated gradient, and threshold
optimizer, respectively. We found that all techniques improved
the eOR, with the largest improvements observed after applying
correlation remover and threshold optimizer; application of
these techniques resulted in an equivalent eOR of 0.750 (Table
4). The mitigated model using correlation remover had a higher
F1-score and was selected as our final “fair” model (Table 4).

The comparison of the “best” naïve and “fair” final models in
sex and racial subgroups is shown in Figure 1. We found that
compared to the “best” naïve model, the F1-score of the “fair”
final model did not change significantly for any of the subgroup
populations. Secondary performance metrics in subgroups are
shown in Multimedia Appendix 2.

Discussion

In this study, we used the NCDB to develop a ML model
predicting survival after radical cystectomy for bladder cancer
and found that the naïve model would be considered unfair due
to inferior performance in certain sex and racial subgroups. We
then compared and used algorithm unfairness mitigation
techniques in the 3 different phases of model development and
found that all techniques improved model fairness, with
negligible impact on overall classifier accuracy. Our study
highlights the importance of evaluating prediction models in
health care for potential unfairness and demonstrates different
techniques that can be applied to mitigate model unfairness.

We also deploy the first web-based “fair” model predicting
survival in patients undergoing radical cystectomy for
muscle-invasive bladder cancer.

The potential consequences of algorithm unfairness have been
highlighted in previous studies. In a study that evaluated
software used by courts in the United States to decide whether
to release an offender or to keep them in prison, they found
higher FPRs for Black offenders, compared to White offenders
[6]. The bias in this model is partly due to the skewed training
data in which the 2 populations had unequal base rates of being
charged with new crimes [32]. These discrepant base rates may
be partially attributable to heavier policing in predominantly
Black neighborhoods or bias in the decision to make an arrest
[33]. Another study evaluated a model used by health insurers
to select patients for complex care management programs and
found that for the same level of model-predicted risk, Black
patients have significantly higher illness burdens, compared to
White patients [5]. This bias was attributed to the algorithm’s
objective of accurately predicting costs, which biases against
Black patients who have been shown to generate lower medical
expenses, conditional on health. A review of clinical ML
algorithms found that the majority of models exhibited some
form of racial bias [28]. The application of these unfair models
could amplify and perpetuate disparities for vulnerable
populations. Fairness methods can be used to mitigate known
biases; in the context of the prison software, for example,
historical biases in the data could be addressed by developing
a model to optimize demographic parity [8]. In the context of
the biased complex care algorithm, fairness would be improved
by having the model’s objective changed to accurately predict
active chronic conditions, rather than costs [5].
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In bladder cancer, several prediction models have been
developed to predict survival [10-12], although none have been
evaluated for potential unfairness in sex and racial subgroups.
In this study, we found that a model predicting survival after
radical cystectomy demonstrated unfairness whereby specific
subgroups, such as Black male patients, had superior model
performance compared to others, such as Asian female patients.
If such an algorithm was used to support decision-making,
quality-of-service harm may result in subgroups with less
accurate predictions [31].

Identifying the source of model unfairness can be challenging,
and several potential causes have been described [7,8,28,31].
Sampling bias occurs when the model performs worse in
minority populations due to insufficient sampling during training
[7]. This source of bias is of potential concern when developing
prediction models in diseases such as bladder cancer, where the
epidemiology is significantly skewed by sex and race;
worldwide, bladder cancer is approximately 4 times more
common in male patients than female patients [34] and in the
United States, bladder cancer is approximately 2 times more
common in White populations compared to Black, Hispanic,
and Asian populations [35]. Given this skewed demographic,
which was reflected in our study, a naïve ML model may not
perform equally well in all subgroups of patients. However,
despite Black male patients representing only 3.1% of our
sample, we found that the naïve model performed best in this
subgroup. Notably, Black male patients had the highest mortality
rate at 5 years, and this imbalanced data may partly explain the
superior model performance in this subgroup. This aligns with
prior research where a ML model predicting survival in patients
with prostate cancer undergoing radical prostatectomy showed
superior performance in Black patients, which was also the
minority group with the highest mortality rate in that study [4].

While the potential for model bias has been described in
previous studies, research on applying techniques to mitigate
algorithmic unfairness remains limited [28]. However, a recent
scoping review found that all studies implementing methods to
address racial bias successfully improved fairness metrics [28].
This underscores the value of using such techniques before
model deployment to optimize fairness. Beyond metrics,
ensuring that a model is perceived as fair is particularly
important in health care as it can enhance trust among both
patients and clinicians, potentially leading to greater acceptance
and integration of the model’s predictions into clinical
decision-making. Our study also highlights the importance of
evaluating and comparing multiple techniques to achieve optimal
fairness, as there was variability in the degree of improvement
observed between each approach.

Our study is not without limitations. Despite the use of model
unfairness techniques which improved the eORs of the naïve
model, the final “fair” model did not achieve an eOR of 1,
indicating the presence of residual unfairness; however, some
might argue that an eOR of 1 is theoretical and could not be
achieved in practice. This concept was illustrated in a study that
demonstrated the restrictive conditions required for a
deterministic classifier to achieve perfect equalized odds [36].
Therefore, while approaches can be used to reduce algorithmic
unfairness, clinicians and patients should still be aware of
residual potential discrepancies in model performance. Another
limitation of optimizing eOR is that it violates other definitions
of fairness and may compromise performance in certain
subgroups [26]. In our study, we found that while the F1-score
of the mitigated model improved or was unchanged in some
subgroups, performance decreased in certain subgroups,
highlighting the potential trade-off between fairness and
performance. This raises an ethically complex question
regarding what is considered “fair,” and the answer varies
depending on what conceptual framework of fairness is used.
We specifically focused on the pillar of inclusion which seeks
to ensure that the benefits and harms from prediction models
are distributed in an equitable manner [37]. The eOR is also
challenged as a metric in the context of imbalanced data, as is
common in health care, as baseline differences can contribute
to disparities in performance. However, despite the expected
differences across sex and racial subgroups in our study, we
prioritized the eOR to develop a model that satisfied equality
of error rates across subgroups [8,27] and where true and false
positive predictions of 5-year overall survival were of equal
importance. Finally, our study uses NIH racial groups, which
are composed of heterogeneous subgroups; we did not evaluate
model performance in these subgroups given their expected
limited sample size. Additionally, we chose to focus on sex and
race given the existing disparities in bladder cancer among these
subgroups [9], but other sensitive subgroups, such as those based
on socioeconomic status or rurality, could be studied for
potential bias in model performance. Despite these limitations,
our study demonstrates the importance of evaluating model
unfairness and, to the best of our knowledge, is the first to apply
unfairness mitigation techniques to reduce disparities from
potential algorithmic unfairness in bladder cancer.

In conclusion, we developed a ML model to predict survival
after radical cystectomy for bladder cancer and found that a
naïve model exhibited bias, as certain subgroups of patients,
based on sex and race, had inferior performance compared to
others. Using algorithm unfairness mitigation techniques to
minimize potential disparities arising from biased models, we
improved model fairness and deployed the first web-based fair
ML model for predicting survival after radical cystectomy.
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Distribution of sample by sex and race of patients undergoing radical cystectomy for bladder cancer.
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Multimedia Appendix 2
Comparison of best naïve and fair models in sex and race subgroups.
[DOCX File , 19 KB-Multimedia Appendix 2]
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