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Abstract

Background: Generative artificial intelligence (GAI) systems by Google have recently been updated from Bard to Gemini and
Gemini Advanced as of December 2023. Gemini is a basic, free-to-use model after a user’s login, while Gemini Advanced operates
on a more advanced model requiring a fee-based subscription. These systems have the potential to enhance medical diagnostics.
However, the impact of these updates on comprehensive diagnostic accuracy remains unknown.

Objective: This study aimed to compare the accuracy of the differential diagnosis lists generated by Gemini Advanced, Gemini,
and Bard across comprehensive medical fields using case report series.

Methods: We identified a case report series with relevant final diagnoses published in the American Journal Case Reports from
January 2022 to March 2023. After excluding nondiagnostic cases and patients aged 10 years and younger, we included the
remaining case reports. After refining the case parts as case descriptions, we input the same case descriptions into Gemini
Advanced, Gemini, and Bard to generate the top 10 differential diagnosis lists. In total, 2 expert physicians independently evaluated
whether the final diagnosis was included in the lists and its ranking. Any discrepancies were resolved by another expert physician.
Bonferroni correction was applied to adjust the P values for the number of comparisons among 3 GAI systems, setting the corrected
significance level at P value <.02.

Results: In total, 392 case reports were included. The inclusion rates of the final diagnosis within the top 10 differential diagnosis
lists were 73% (286/392) for Gemini Advanced, 76.5% (300/392) for Gemini, and 68.6% (269/392) for Bard. The top diagnoses
matched the final diagnoses in 31.6% (124/392) for Gemini Advanced, 42.6% (167/392) for Gemini, and 31.4% (123/392) for
Bard. Gemini demonstrated higher diagnostic accuracy than Bard both within the top 10 differential diagnosis lists (P=.02) and
as the top diagnosis (P=.001). In addition, Gemini Advanced achieved significantly lower accuracy than Gemini in identifying
the most probable diagnosis (P=.002).

Conclusions: The results of this study suggest that Gemini outperformed Bard in diagnostic accuracy following the model
update. However, Gemini Advanced requires further refinement to optimize its performance for future artificial
intelligence–enhanced diagnostics. These findings should be interpreted cautiously and considered primarily for research purposes,
as these GAI systems have not been adjusted for medical diagnostics nor approved for clinical use.
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Introduction

Diagnostic Team to Reduce Misdiagnoses
Diagnosis is a crucial step in clinical medicine, where a
significant proportion of medical errors and harms are related
to diagnostic errors [1]. The formation of a diagnostic team has
been proposed as an effective strategy to mitigate the risks
associated with misdiagnosis [2,3]. This team should promote
collaboration among medical professionals, patients, and their
families, and the integration of digital tools to enhance
diagnostic accuracy [4]. Several research, including systematic
reviews, have shown that the implementation of clinical decision
support systems (CDSSs) in clinical settings has significantly
improved diagnostic accuracy, patient care, and health care
process [5-7].

Digital Tool for Medical Diagnosis
Various digital tools, particularly diagnostic CDSSs, have
emerged for medical diagnostics. These systems are designed
to provide diagnostic suggestions based on clinical data, aiding
medical professionals in clinical decision-making [8].
Traditionally, diagnostic CDSSs, such as symptom checkers
and differential diagnosis generators, have relied on fixed
algorithms and rule-based systems derived from medical
databases and expert input [9-11]. Unfortunately, these systems
often experience poor accuracy and inadequate integration into
clinical workflows, limiting their practical use in real-world
medical settings [4]. In this context, artificial intelligence (AI),
especially generative AI (GAI), has introduced a new category
of CDSS [12]. This advancement suggests a future shift in how
digital tools can support diagnostic processes.

GAI in Medical Diagnosis
GAI systems have shown rapid development and are
increasingly influencing various fields, including medicine.
This advancement is partly due to the development of machine
learning techniques, such as neural networks and natural
language processing. GAI represents a shift from rule-based
systems to models that can autonomously generate and evaluate
new data patterns. Overcoming many limitations faced by
traditional CDSSs, GAI systems could significantly enhance
future diagnostic processes. Notable examples include ChatGPT
developed by Open AI, and Gemini and Gemini Advanced from
Google [13]. These systems use advanced large language models
(LLMs), which are complex neural networks trained on vast
data sets through natural language processing [14]. Recent
studies, including one evaluating dermoscopy image descriptions
with chatbot responses, have demonstrated promising results

in accuracy and diagnostic completeness by ChatGPT [15]. The
language model for dialogue applications (LaMDA) developed
by Google AI is one such LLM. Their ability to process and
generate outputs is particularly promising for future applications
in medical diagnostics, where they will analyze complex clinical
information and collaborate as part of a diagnostic team.

From Bard to Gemini and Gemini Advanced
Originally, Bard was developed using the LaMDA model
primarily for text generation and conversational AI and later
transitioned to the Pathways Language Model (Palm 2).
Subsequent developments led to the release of Gemini and
Gemini Advanced in December 2023. Gemini Advanced, an
upgraded version of Gemini, leverages Ultra 1.0, Google’s most
advanced model, offered as a fee-based service [16,17]. These
developments reflect the rapid pace at which GAI technology
is advancing. Recent updates have transformed Bard into Gemini
and Gemini Advanced, enhancing their functionalities and
applications in various fields. Previous research, including our
own, has demonstrated that Bard showed promising results in
medicine [18-21]. Moreover, a recent study has shown that
several GAI systems, including Gemini Advanced, could achieve
notable diagnostic accuracy for multiple-choice questions about
clinical vignettes [22]. These findings suggest that even without
specific training or reinforcement for diagnostics, GAI systems
show potential for reliable use in diagnostics. Despite these
advancements, the comparative diagnostic accuracy of
differential diagnosis lists by these GAI systems across
comprehensive medical fields remains to be fully explored. This
study aims to fill that gap by evaluating the diagnostic accuracy
of the differential diagnosis lists generated by Gemini Advanced,
Gemini, and Bard for case report series across various medical
disciplines.

Methods

Overview
An experimental study was conducted to assess the diagnostic
accuracy of Gemini Advanced, Gemini, and Bard for a
comprehensive case report series. This study was conducted at
the Department of Diagnostic and Generalist Medicine (General
Internal Medicine) at Dokkyo Medical University, Japan. This
study consisted of preparing case materials, generating
differential diagnosis lists, evaluating the lists, and analyzing
the diagnostic accuracy. Figure 1 shows the study flow,
including the inclusion of case materials and the generation of
differential diagnosis lists.
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Figure 1. Study flow of inclusion case materials and generation of differential diagnosis.

Preparing Case Materials
We focused on a comprehensive series of case reports from the
American Journal of Case Reports, covering a broad range of
medical fields. The structured format of the journal facilitated
easy identification of sections containing the case reports and
the final diagnoses. Initially, the inclusion criteria were the case
reports published in the American Journal of Case Reports from
January 1, 2022, to March 1, 2023. A PubMed search identified
557 consecutive case reports. After excluding 130 nondiagnostic
case reports and 35 pediatric case reports (patients aged 10 years
and younger), 392 case reports remained. The exclusion criteria
were based on previous research for CDSS [23]. We refined the
case reports to prepare the case materials, which typically
included the initial case report part to the definitive tests for
final diagnosis. The relevant final diagnoses were typically
described by the authors. We used only textual data exclusively,
omitting image data. Specifically, the title, background, final
diagnosis, clinical course following diagnosis, discussion,
conclusion, figures, tables, and supplemental materials were
excluded from the case materials. The main investigator (TH)
conducted this process with validation from another investigator
(YH). The PubMed search keywords are shown in Multimedia
Appendix 1. For example, in a case report titled “Herpes Zoster

Following COVID-19 Vaccine Booster,” the final diagnosis
was herpes zoster [24]. We extracted the case report part from
“An 82-year-old..” to “Vesicular breath sounds were heard
equally on both lung fields.”

Generating Differential Diagnosis Lists
We used Gemini Advanced, Gemini, and Bard as GAI systems
for this research. This was because these systems are popular
AI platforms available to the public. These GAI systems were
not specifically enhanced for medical diagnosis. Details about
the GAI systems used in this study are provided in Table 1. To
generate the top 10 differential diagnosis lists from GAI systems,
the main investigator typically copied and pasted the case
materials into the AI systems with the prompt, that is “Tell me
the top 10 suspected illnesses for the following case: (case
materials).” This prompt, developed through preliminary
research, aimed to generate the top 10 differential diagnosis
lists. The first list produced by the GAI systems was used as
the differential diagnosis list. The data control setting was
adjusted to “Not saving activity,” to avoid the influence from
the previous conversations. In addition, before starting a new
session, the main investigator refreshed the previous session to
prevent any influence from previous conversations.
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Table 1. The details of generative artificial intelligence systems used in this study.

BardGeminiGemini Advanced

AIa model

Pathways Language Model (Palm 2)-basedProUltra 1.0

Availability

DiscontinuedFree with user loginFee-based subscription

The setting of the app activity

Not saving activityNot saving activityNot saving activity

Access date

July 1, 2023-August 8 2023March 12-28, 2024April 4-9, 2024

Prompt

“Tell me the top 10 suspected illnesses for the
following case: (case materials).”

“Tell me the top 10 suspected illnesses for the
following case: (case materials).”

“Tell me the top 10 suspected illnesses for the
following case: (case materials).”

Evaluating the Differential Diagnosis Lists
A total of 2 expert researchers (TI and T Suzuki) independently
evaluated the differential diagnosis lists from GAI systems. A
score of “1” was assigned if the differential accurately and
specifically identified the final diagnosis or was sufficiently
close to the final diagnosis. Conversely, a score of “0” was
assigned if it diverged significantly from the final diagnosis
[25]. When a GAI system could not output the differential
diagnosis list, a score of “0” was labeled. When the score was
“1,” the evaluator assessed its ranking within the list. Any
discrepancies were resolved by another expert researcher (KT).
All evaluators were blinded to which GAI systems produced
the differential diagnosis lists.

Analyzing the Diagnostic Accuracy
In this study, we defined diagnostic accuracy as the inclusion
of the final diagnoses in the differential diagnosis lists.

Outcome
In terms of the outcomes, the primary outcome was the total
score for correctly identifying the final diagnosis in the top 10
differential diagnosis lists generated by Gemini Advanced,
Gemini, and Bard. The total number of included case reports
was used as the denominator. The numerator was the number
of case reports that correctly identified the final diagnosis in
the top 10 differential diagnosis lists. The secondary outcomes
were the total score for correctly identifying the final diagnosis
in the top 5 differential diagnosis lists and as the top diagnosis
generated from Gemini Advanced, Gemini, and Bard.

In addition, we evaluated the top 10 rankings of the most
frequently named differential diagnoses across generated
differential diagnosis lists by a GAI system to find the
underlying patterns. We also assessed whether the items in the
differential diagnosis lists corresponded to the names of existing
diseases.

Moreover, we analyzed how Gemini Advanced, Gemini, and
Bard rank the correct diagnosis on average when it appears in
the differential diagnosis lists. This metric helps evaluate not
only whether the correct diagnosis is included but also its

relative priority among other suggested diagnoses. For cases
where the correct diagnosis was missing, we assigned a penalty
rank; specifically, we used 11 as the penalty rank.

Statistical Analysis
A chi-square test was used for the categorical or binary
variables. The Mann-Whitney U test was applied to analyze the
average rankings. For multiple comparisons, the Bonferroni
correction was applied [26]. The Bonferroni correction adjusts
the P value by dividing it by the number of comparisons being
made, namely 3 GAI systems, that consist of Gemini Advanced,
Gemini, and Bard, setting a more stringent threshold for
individual tests to be considered significant. The
Bonferroni-corrected significance level was defined as a P value
of <.02. Note that all statistical tests were performed using the
R (version 4.2.2; The R Foundation for Statistical Computing)
for macOS X.

Ethical Considerations
Given the study’s method of using published case reports,
approval from an ethical committee was deemed not applicable.

Results

Overview of Outputs From GAI Systems
In total, 392 case reports were included. The distribution of
diagnoses in these reports highlighted the prevalence of complex
medical conditions, with 22.7% (89/392) of cases being
diagnosed as malignancy, 22.4% (88/392) as various infections,
and 17.1% (67/392) as vascular diseases.

Bard generated differential diagnosis lists for all 392 cases. In
contrast, both Gemini Advanced and Gemini encountered
challenges with 3 cases, failing to produce outputs. The cases
where outputs were not generated involved complex clinical
scenarios that were directly described in the reports as involving
overdose, psychological conditions, and vaccination side effects.
Representative outputs from Gemini Advanced, Gemini, and
Bard are shown in Table 2. The data set of differential diagnoses
generated by AI systems in this study, alongside the final
diagnosis, are shown in Multimedia Appendix 2.
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Table 2. Representative outputs from Gemini Advanced, Gemini, and Bard for final diagnoses.

BardGeminiGemini Advanced

Herpes Zoster

••• Herpes zoster (Shingles)Shingles (Herpes Zoster)Shingles (Herpes Zoster)
••• Myocardial infarction (heart attack)Myocardial ischemia (Angina)Myocardial ischemia

• ••Costochondritis Aortic dissectionCostochondritis
•• •Musculoskeletal strainPericarditis Pulmonary embolism

••• PneumoniaPleurisyPleuritis
• ••Pulmonary embolism Thoracic radiculopathyIntercostal neuritis

•• •Pulmonary embolismPneumonia Costochondritis
••• Intercostal neuralgiaPericarditisMetastatic malignancy

• ••Aortic dissection Costoclavicular syndromeGastritis
•• •EsophagitisEsophageal spasm Tietze syndrome

Diffuse alveolar hemorrhage

••• Acute radiation pneumonitisPulmonary alveolar hemorrhagePulmonary alveolar hemorrhage
••• Acute hypersensitivity pneumonitisTrastuzumab-induced pneumonitisNocardia pneumonia

• ••Pulmonary embolism Pulmonary edemaAspirin-exacerbated respiratory disease
•• •Acute heart failureAcute eosinophilic pneumonia Pulmonary embolism

••• Aspiration pneumoniaPulmonary edemaDrug-induced pneumonitis
• ••Legionnaires' disease Bronchogenic carcinomaNocardia pneumonia

•• •Pulmonary hypertensionHypersensitivity pneumonitis Sarcoidosis
••• LymphomaAcute interstitial lung diseaseIdiopathic pulmonary fibrosis

• ••Bronchiolitis obliterans organizing pneumo-
nia

Wegener’s granulomatosisAcute chronic kidney disease
• •Occult gastrointestinal bleed Goodpasture syndrome

• Acute interstitial pneumonitis

Glomus tumor

••• LipomaMeralgia parestheticaMeralgia paresthetica
••• FibromatosisLumbar radiculopathySoft tissue sarcoma

• ••Fibroma MyositisFemoral neuropathy
•• •Piriformis syndromeMyositis ossificans Neoplasm

••• InfectionMuscle strainNeuroma
• ••Hemangioma InflammationMyofascial pain syndrome

•• •Glomus tumorLiposarcoma Trauma
••• HematomaNeuromaLymphoma

• ••Abscess Varicose veinSoft tissue sarcoma (unlikely)
•• •Abscess (unlikely)Malignant peripheral nerve sheath tumor Cellulitis

Diagnostic Accuracy
In terms of diagnostic accuracy, the inclusion rates of the final
diagnoses within the top 10 differential diagnosis lists were
73.0% (286/392) for Gemini Advanced, 76.5% (300/392) for
Gemini, and 68.6% (269/392) for Bard. For the top 5 differential
diagnoses, the rates were 60.5% (237/392) for Gemini
Advanced, 66.3% (260/392) for Gemini, and 59.9% (235/392)
for Bard. The top diagnoses matched the final diagnoses in
31.6% (124/392) for Gemini Advanced, 42.6% (167/392) for

Gemini, and 31.4% (123/392) for Bard. Gemini demonstrated
higher diagnostic accuracy than Bard both within the top 10
differential diagnosis lists (P=.02) and as the top diagnosis
(P=.001). In addition, Gemini Advanced achieved lower
accuracy in identifying the most probable diagnosis, compared
with Gemini with this result being statistically significant
(P=.002). Other comparisons were statistically insignificant.
Table 3 and Figure 2 show the diagnostic accuracy by Gemini
Advanced, Gemini, and Bard.

Table 3. Diagnostic accuracy of Gemini Advanced, Gemini, and Bard.

P valueaBard (N=392), n (%)Gemini (N=392), n
(%)

Gemini Advanced
(N=392), n (%)

Variable

Gemini versus
Bard

Gemini Advanced
versus Bard

Gemini Advanced
versus Gemini

.02.21.29269 (68.6)300 (76.5)286 (73.0)Within the top 10

.08.94.10235 (59.9)260 (66.3)237 (60.5)Within the top 5

.001.99.002123 (31.4)167 (42.6)124 (31.6)Top diagnosis

aChi-square test. The Bonferroni-corrected significance level at a P value <.02.
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Figure 2. Diagnostic accuracy of Gemini Advanced, Gemini, and Bard. P values were derived from the chi-square test. The Bonferroni-corrected
significance level at a P value <.02.

Most Frequently Named Differential Diagnoses
Regarding the top 10 most frequently named differential
diagnoses, all rankings included sepsis, pneumonia, pulmonary
embolism, lymphoma, and meningitis. Notably, the top 3 most

frequently named differential diagnoses by Gemini Advanced
and Gemini were the same. Table 4 shows the top 10 most
frequently named differential diagnoses generated by Gemini
Advanced, Gemini, and Bard.

Table 4. The top 10 most frequently named differential diagnoses were generated by Gemini Advanced, Gemini, and Bard.

Bard (n)Gemini (n)Gemini Advanced (n)The raking in the top 10 most fre-
quently named differentials, (N)

Sarcoidosis (51)Sepsis (42)Sepsis (43)1

Sepsis (42)Pneumonia (28)Pneumonia (34)2

Pneumonia (41)Pulmonary embolism (20)Pulmonary embolism (33)3

Lymphoma (40)Sarcoidosis (15)Acute kidney injury (28)4

Pulmonary embolism (39)Pericarditis (14)Lymphoma (25)5

Meningitis (31)Meningitis (14)Urinary tract infection (24)6

Inflammatory bowel disease (29)Lymphoma (13)Heart failure (23)7

Tuberculosis (26)Myocarditis (13)Meningitis (22)8

Encephalitis (25)Acute kidney injury (12)Myocardial infarction (20)9

Myocarditis (24)Systemic lupus erythematosus (12)Pericarditis (18)10

Inappropriate Diseases Names
From all differential diagnosis lists output by generative AIs,
we identified inappropriate disease names: 11 items from
Gemini Advanced, 9 items from Gemini, and 5 items from Bard.
Notably, Gemini Advanced and Gemini both erroneously listed

“Wegner’s granulomatosis,” a misspelling of the previous
correct term, “Wegener’s granulomatosis,” which has now been
updated to “Granulomatosis with Polyangiitis” [27]. Another
error by Gemini Advanced involved “Microcytic colitis,” likely
a confusion between “microcystic anemia” and “microscopic
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colitis.” Table 5 lists the inappropriate disease names generated by Gemini Advanced, Gemini, and Bard.

Table 5. Inappropriate disease name generated by Gemini Advanced, Gemini, and Bard.

Inappropriate disease name
by Bard

Inappropriate disease name by GeminiInappropriate disease name by
Gemini Advanced

Correct disease name, [cell number in
Multimedia Appendix 2]

——aDrug reation (Dasatinib) [O15]Drug reaction (Dasatinib)

—Nonketotic hyperglycemia hyperosmo-
lar coma [X29]

—Nonketotic hyperglycemic hyperosmolar
coma

—Lipoderma [U34]—Lipedema

—Small bowel angiodisplasia
[M40]

Small bowel angiodysplasia

—Wegner’s granulomatosis [U186]Granulomatous with polyangiitis
(L68), Wegner’s granulomatosis
[N111]

Granulomatosis with polyangiitis

——Costochondritisa [P86]Costochondritis

—Maxillary sinus cycinoma [L106]—Maxillary sinus carcinoma

——Conrictive pericarditis [L110]Constrictive pericarditis

—Scleroderma-related interstitial lung
disease [S117]

—Scleroderma-related interstitial lung dis-
ease

Pericoronatitis [AA133]——Pericoronitis

Osteoitis [AC133]——Osteitis

——Microcytic colitis [L152]Microscopic colitis

Pneumocystis jerovecii
[AG156]

——Pneumocystis jirovecii

—Leukoencephalomyopathy [X195]—Leukoencephalopathy

—Struma carcinoid [W208]—Strumal carcinoid

——Restricted ventilatory impairment
[J360]

Restrictive ventilatory impairment

—Mobius syndrome [Z369]—Moebius syndrome

Endometrios [AE385]——Endometriosis

Chryptococcus neoformans
[AJ389]

——Cryptococcus neoformans

—Y-type appendicitis [V197]Ytzinger hernia [M197]Unknown

——(There was partly Arabic lan-
guage) [L292]

Unknown

——Transaminitis elevation (N354)Unknown (Transaminase elevation is also
not disease name)

aNot applicable.

Average Ranking
In terms of average ranking, the scores were 5.25 (SD 4.16) for
Gemini Advanced, 4.54 (SD 4.21) for Gemini, and 5.33 (SD
4.29) for Bard. The differences in average rankings were not
statistically significant between Gemini Advanced and Gemini
(P=.99), between Gemini Advanced and Bard (P=.17), and
between Gemini and Bard (P=.99).

Discussion

Principal Findings
In the following, we discuss our principal findings. Our findings
indicate that Gemini demonstrated superior diagnostic accuracy
compared with Bard, not only within the top 10 differential
diagnosis lists but also in identifying the most likely diagnosis.
Specifically, Gemini’s diagnostic accuracy for the top 10 lists
was 76.5% (300/392), compared to Bard’s 68.6% (269/392),
with a statistically significant difference (P=.02). Moreover, as
the top diagnosis, Gemini’s diagnostic accuracy was 42.6%
(167/392) versus Bard’s 31.4% (123/392), also significant
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(P=.001). This enhancement in Gemini’s diagnostic performance
may be attributed to its advanced algorithmic framework, which
likely incorporates more nuanced medical data and learns from
recent case inputs, leading to more refined diagnostic
predictions.

However, the performance of Gemini did not statistically
outperform in the top 5 differential diagnosis lists. This outcome
may suggest that while Gemini’s algorithm is effective in a
broader exploratory context, its precision may falter when
constrained to a narrower list of top diagnoses. This indicates
that a balance between breadth of exploration and depth of focus
is crucial for optimizing diagnostic accuracy in such AI systems.

Conversely, our analysis showed that Gemini Advanced did not
perform as well as expected when compared with Gemini.
Despite expectations that the advanced model would provide
enhanced diagnostic capabilities, it achieved lower accuracy in
identifying the most probable diagnosis with 31.6% (124/392)
compared to Gemini’s 42.6% (167/392), with this result being
statistically significant (P=.002). This outcome suggests that
the additional features or complexity added in Gemini Advanced
may not necessarily translate into improved diagnostic
performance. These findings underscore the need for further
refinement and optimization of Gemini Advanced to harness
its potential for future AI-enhanced diagnostics.

In addition, our analysis identified issues with inappropriate
disease naming in the outputs from GAI systems, with Gemini
Advanced and Gemini producing outdated or misspelled terms
for vasculitis, instead of using the updated name. These
inaccuracies highlight the challenges in ensuring up-to-date and
precise medical terminology in AI outputs, which is crucial for
maintaining trust and reliability in AI-assisted diagnostics.
Furthermore, these misspellings are often found in published
medical articles, suggesting that GAIs may have learned these
errors from these sources. The fact that both Gemini Advanced
and Gemini exhibited the same mistakes indicates potential
similarities in their underlying models or training data.

Regarding average rankings, there were no statistically
significant differences among generative AI systems. This
indicates a level of parity in how each model ranks diagnoses
when they include the correct diagnosis, suggesting that while
there are differences in overall accuracy, the ranking
mechanisms of each model are relatively similar.

Given the current performance metrics, our analysis supports
prioritizing the adjustment and enhancement of Gemini for
future applications in medical diagnostics, rather than Gemini
Advanced. Despite the theoretically superior capabilities of
Gemini Advanced [17], Gemini’s framework appears more
aligned with practical diagnostic needs and shows greater
promise in real-world applications. However, it is essential to
verify this trend across a variety of sources to ensure that these
findings are not specific to the data sets used in this study.
Further investigations involving diverse clinical environments
and different types of medical data are crucial to confirm the
consistency and reliability of Gemini’s superior performance.

Finally, the comparative analysis of the differentials by Gemini
Advanced, Gemini, and Bard revealed consistent inclusion of

sepsis, pneumonia, pulmonary embolism, lymphoma, and
meningitis among their top 10 differentials. This underscores
not only a shared prioritization of these conditions but also the
effectiveness of systems in recognizing critical and prevalent
diseases. The consistent identification of sepsis, particularly its
second-place ranking by Bard, underscores the potential of these
AI systems to enhance diagnostic accuracy and reduce errors
in the identification of life-threatening conditions [28].
Importantly, the top 3 differentials by Gemini Advanced and
Gemini—sepsis, pneumonia, and pulmonary embolism—are
among the most harmful diseases where reducing diagnostic
errors is crucial [1]. This suggests a potential for GAI systems
to alert medical professionals about the inclusion of these
important diseases during diagnosis. Such an understanding
could facilitate more effective use of these GAI systems in future
diagnostics processes.

Strengths
This study had several strengths. First, the strengths of this study
lie in its direct comparison of 3 cutting-edge AI systems and its
demonstration of the dynamic improvements in their diagnostic
accuracy. Unlike some CDSSs like symptom checkers, whose
performance has plateaued [29], these GAI systems evaluated
in this research show considerable enhancements with each
iteration. Second, we evaluated the diagnostic accuracy of GAI
systems using a series of case reports. These case reports often
describe rare diseases and atypical presentations, as opposed to
common diseases and typical presentations [30]. This showcases
the system’s diagnostic capabilities under challenging
conditions. Third, the comprehensive range of medical
conditions covered by the differential diagnosis lists generated
by the AI systems represents a significant strength of this study.
This extensive coverage demonstrates the systems’ capacity to
handle a broad spectrum of medical knowledge and its
applicability to various clinical scenarios.

Limitations
Several limitations should be discussed. First, the use of case
report series might not fully reflect real-world clinical scenarios.
This limitation arises because case reports typically focus on
novel or rare aspects of diseases rather than typical presentations
and common diseases [30]. Second, the exclusive use of a single
case report journal could introduce selection bias. Third, there
was no well-established method for evaluating AI diagnostics.
In our study, we used binary evaluation methods. In contrast,
other research on CDSSs used several rating methods [31,32]
and the ranking averages in the differential diagnosis lists [33].
Fourth, we used only text data; excluding image data could
influence the diagnostic performance. These factors limit the
generalizability of these findings.

Concerning the GAI systems, all platforms used in this study
were not designed for clinical use and have not received
approval for medical diagnostics. These systems were not
specifically reinforced or enhanced for medical diagnostic
purposes. According to a preprint, Med-Gemini, a specialized
model in medicine, was developed [34] but is not available to
the public. In addition, we could not include all currently
available GAI systems; thus, these findings cannot be
generalized to other systems or different clinical scenarios.
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There was also a risk that these GAI systems may have learned
from the published case reports used in this study.

Moreover, the use of user data to refine models, as seen in
Gemini Advanced and Gemini, highlights significant privacy
concerns [35]. Future research should address the development
of locally deployable LLM solutions tailored specifically for
CDSS. Although our data set is sourced from an open journal,
careful consideration must be given to the ethical deployment
of these models within health care settings. Finally, given the
rapid pace of GAI technology development, such as the
evolution from Bard to Gemini and from ChatGPT-3 to
ChatGPT-4 and ChatGPT-4o, our findings may have a limited
shelf-life.

Future Direction
Future research will aim to explore the diagnostic accuracy of
GAI systems following medical enhancements and adjustments.
Once approved for medical use, it will also be essential to
investigate the performance of GAI systems across various
populations and settings, including remote medical
consultations, to ensure their effectiveness in real-world
diagnostics. Moreover, assessing the impact of AI-enhanced
diagnostics on the decision-making process of medical
professionals will be crucial.

In addition, future studies should focus on integrating GAI
systems with existing electronic health record systems to
understand how AI can augment data accessibility and analysis.
This integration will be essential to evaluate how GAI can
improve clinical workflows, reduce the cognitive burden and
the time to diagnosis, and enhance patient outcomes.

Finally, the development of ethical guidelines and governance
frameworks for the use of GAI in diagnostics is imperative [36].
As AI technologies become more prevalent in health care, it is
crucial to establish clear protocols that safeguard patient privacy,
ensure data security, and maintain transparency in AI
decision-making processes.

Comparison With Previous Work
Our research builds on previous findings. We revealed that the
diagnostic accuracy of ChatGPT-4 was 86.7% (340/392) for
the final diagnoses included in the top 10 differential diagnosis
lists, and 54.6% (214/392) for the top diagnosis [37].
ChatGPT-4’s performances were still higher than that of Gemini
in the lists (76.5% vs 86.7%) and as a top diagnosis (42.6% vs
54.6%); it was similar to Gemini Advanced in the lists (73.0%
vs 86.7%) and as a top diagnosis (31.6% vs 54.6%).

Expanding our findings, another study showed that Isabel Pro,
a successful CDSS developed by Isabel Healthcare, Ltd [38],
correctly identified diagnoses in 87.1% (175/201) of cases,
compared with 82.1% (165/201) for ChatGPT-4 in a series of
clinical cases [33]. These findings are partly attributed to the

earlier launch of Isabel Pro and the ChatGPT series, allowing
them to receive more user feedback and undergo updates to
improve performance.

In addition, another research focused on multiple choice
questions on clinical vignettes revealed that ChatGPT-4 achieved
a high accuracy rate of 73.3% for Clinical Challenges from the
Journal of the American Medical Association (JAMA) and 88.7%
for Image Challenges from the New England Journal of
Medicine (NEJM). In contrast, Gemini, referred to as Gemini
Pro in that study, achieved 63.6% for Clinical Challenges from
JAMA and 68.7% for Image Challenges from the NEJM [22].
While these previous findings and current results revealed
certain diagnostic performances of generative AI systems,
comparing these results poses significant challenges due to
methodological differences. Variations stem from differences
in data set preparation, the types of clinical vignettes used, and
the specific challenges or images included, which may influence
performance outcomes. In addition, the evaluation criteria used
to assess accuracy might differ significantly, affecting the
comparability. For instance, the scoring systems or the
definitions of a “correct” answer could vary, necessitating
caution when drawing direct comparisons between these findings
and those of this study.

In contrast to the serial evaluation approach of a symptom
checker [29], which demonstrated an accuracy of 44.3%
(97/219) in the first year and 47.7% (43/90) in the third year
without significant difference, the performance of generative
AI systems presents a different dynamic. Specifically, the serial
evaluation of generative AI indicated that Gemini outperformed
Bard over a relatively short period. This superiority can be
attributed in part to the adaptability of generative AI systems
to incorporate additional data. However, it is crucial to note that
this adaptability does not consistently translate into improved
diagnostic accuracy, as evidenced by the current comparison
between Gemini Advanced and Bard. This observation
highlights the nuanced interplay between technological
advancement and clinical efficacy, underscoring the need for
continued research and validation in integrating these systems
into medical practice effectively.

Conclusions
The results of this study suggest that Gemini outperformed Bard
in diagnostic accuracy following the model update. However,
Gemini Advanced requires further refinement to optimize its
performance for future AI-enhanced diagnostics. These findings
should be interpreted cautiously and considered primarily for
research purposes, as these GAI systems have not been adjusted
for medical diagnostics nor approved for clinical use. The
potential and limitations highlighted by this study underscore
the need for ongoing development and evaluation of GAI
systems within medical diagnostics.
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