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Abstract

Background: Large language models (LLMs) have substantially advanced natural language processing (NLP) capabilities but
often struggle with knowledge-driven tasks in specialized domains such as biomedicine. Integrating biomedical knowledge sources
such as SNOMED CT into LLMs may enhance their performance on biomedical tasks. However, the methodologies and
effectiveness of incorporating SNOMED CT into LLMs have not been systematically reviewed.

Objective: This scoping review aims to examine how SNOMED CT is integrated into LLMs, focusing on (1) the types and
components of LLMs being integrated with SNOMED CT, (2) which contents of SNOMED CT are being integrated, and (3)
whether this integration improves LLM performance on NLP tasks.

Methods: Following the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for
Scoping Reviews) guidelines, we searched ACM Digital Library, ACL Anthology, IEEE Xplore, PubMed, and Embase for
relevant studies published from 2018 to 2023. Studies were included if they incorporated SNOMED CT into LLM pipelines for
natural language understanding or generation tasks. Data on LLM types, SNOMED CT integration methods, end tasks, and
performance metrics were extracted and synthesized.

Results: The review included 37 studies. Bidirectional Encoder Representations from Transformers and its biomedical variants
were the most commonly used LLMs. Three main approaches for integrating SNOMED CT were identified: (1) incorporating
SNOMED CT into LLM inputs (28/37, 76%), primarily using concept descriptions to expand training corpora; (2) integrating
SNOMED CT into additional fusion modules (5/37, 14%); and (3) using SNOMED CT as an external knowledge retriever during
inference (5/37, 14%). The most frequent end task was medical concept normalization (15/37, 41%), followed by entity extraction
or typing and classification. While most studies (17/19, 89%) reported performance improvements after SNOMED CT integration,
only a small fraction (19/37, 51%) provided direct comparisons. The reported gains varied widely across different metrics and
tasks, ranging from 0.87% to 131.66%. However, some studies showed either no improvement or a decline in certain performance
metrics.

Conclusions: This review demonstrates diverse approaches for integrating SNOMED CT into LLMs, with a focus on using
concept descriptions to enhance biomedical language understanding and generation. While the results suggest potential benefits
of SNOMED CT integration, the lack of standardized evaluation methods and comprehensive performance reporting hinders
definitive conclusions about its effectiveness. Future research should prioritize consistent reporting of performance comparisons
and explore more sophisticated methods for incorporating SNOMED CT’s relational structure into LLMs. In addition, the
biomedical NLP community should develop standardized evaluation frameworks to better assess the impact of ontology integration
on LLM performance.
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Introduction

Background
The recent emergence of large language models (LLMs),
exemplified by Bidirectional Encoder Representations from
Transformers (BERT) [1] and GPT [2], has significantly
advanced the capabilities of machines in natural language
understanding (NLU) and natural language generation (NLG).
Despite achieving state-of-the-art performance on a range of
natural language processing (NLP) tasks, LLMs exhibit a
deficiency in knowledge when confronted with
knowledge-driven tasks [3]. These models acquire factual
information from extensive text corpora during training,
embedding this knowledge implicitly within their numerous
parameters and consequently posing challenges in terms of
verification and manipulation [4]. Moreover, numerous studies
have demonstrated that LLMs struggle to recall facts and
frequently encounter hallucinations, generating factually
inaccurate statements [5,6]. This poses a significant obstacle to
the effective application of LLMs in critical scenarios, such as
medical diagnosis and legal judgment [7].

Efforts have been made to address the black box nature of LLMs
and mitigate potential hallucination problems. Approaches
include enhancing language model (LM) veracity through
strategies such as retrieval chain-of-thought prompting [8] and
retrieval-augmented generation [9]. Another significant avenue
involves integrating knowledge graphs (KGs) or ontologies into
LMs using triple relations or KG subgraphs [7,10]. KGs,
renowned for their excellence in representing knowledge within
a domain, can provide answers when combined with LMs [11],
making them valuable for common sense–based reasoning and
fact-checking models [12]. However, LLMs often face
challenges when trained and tested predominantly on
general-domain datasets or KGs, such as Wikipedia and
WordNet [13], making it difficult to gauge their performance
on datasets containing biomedical texts. The differing word
distributions in general and biomedical corpora pose challenges
for biomedical text mining models [14].

Biomedicine-specific KGs may be a potential solution to the
abovementioned problems. In the biomedical domain, KGs,
also known as ontologies, are relatively abundant, with the
Unified Medical Language System (UMLS) [15] being one of
the most frequently used ontologies [16]. The UMLS serves as
a thesaurus for biomedical terminology systems such as the
Medical Subject Headings, International Classification of
Diseases, Gene Ontology, Human Phenotype Ontology, and
SNOMED CT, all curated and managed by the United States
National Library of Medicine.

Among UMLS member terminologies, SNOMED CT stands
out as the most comprehensive biomedical ontology,
encompassing a wide range of biomedical and clinical entities,
including signs, symptoms, diseases, procedures, and social
contexts [17]. These entities are represented by concepts (clinical
ideas), descriptions (human-readable terms linked to concepts),

and relations (comprising hierarchical is-a relations and
horizontal attribute relations). As SNOMED CT is increasingly
integrated into electronic health record (EHR) systems, as
required by the Fast Healthcare Interoperability Resource
(FHIR) to ensure interoperability among health care institutions
[18], terminology servers supporting SNOMED CT have
become ubiquitous. With its ready availability across health
care institutions, SNOMED CT has gained attention as a
knowledge source or ontology for representing biomedical and
clinical knowledge [17]. In this case, the abstract model of
SNOMED CT is used to describe and store biomedical facts in
a hierarchical and structured manner, readily available across
health care institutions.

Integrating SNOMED CT into LLMs holds significant potential
for advancing various aspects of health care and biomedical
research. By incorporating the comprehensive and structured
biomedical knowledge from SNOMED CT, LLMs can better
understand medical terminology, relationships between clinical
concepts, and domain-specific context, potentially reducing
errors and hallucinations when understanding or generating
biomedical texts. This integration could enhance clinical
decision support systems, improve the accuracy of automated
coding and billing processes, facilitate more precise information
retrieval from medical literature, and support the development
of personalized medicine approaches. Furthermore, it may
enable more accurate NLP of clinical notes and medical records,
potentially leading to improved patient care and outcomes
through better data analysis and insights.

Objectives
This scoping review aimed to examine the use of SNOMED
CT as a knowledge source to be incorporated into LLMs,
specifically focusing on the methodology of integrating these
2 modalities. This review sought to answer the following
research questions: (1) What are the dominant types and
components of LLMs being integrated with SNOMED CT? (2)
Which contents of SNOMED CT (ie, descriptions, relations, or
entity classes) are being integrated into LLMs? and (3) Does
the integration of SNOMED CT into LLMs improve the
performance on NLP tasks in terms of NLU and NLG? Answers
to these questions could suggest future methodological
approaches for more effectively integrating human-engineered
knowledge into LLMs.

Methods

This scoping review was guided by the PRISMA-ScR (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews) framework, which outlines the
recommended steps and reporting standards for conducting
scoping reviews (Multimedia Appendix 1) [19].

Study Identification
We defined LLMs as transformer-based LMs pretrained on
large-scale corpora [20] (Multimedia Appendix 2). Given that
transformer-based models currently dominate in the field and
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are likely to continue doing so in the coming years, reviewing
other LMs, such as recurrent neural networks and more
conventional statistical models, does not hold scientific
significance for current and future applications. Therefore,
focusing on transformer-based models allows a more cohesive
and in-depth analysis of the most relevant and cutting-edge
techniques in the field.

To explore scientific literature describing transformer-based
models, we conducted our literature search on ACM Digital
Library, ACL Anthology, IEEE Xplore, PubMed, and Embase
on March 12, 2024, using the following query terms: (1)
(“language *model” OR “pretrained *model” OR “language
processing” OR “embedding”) AND (“SNOMED” OR “Unified
Medical Language System” OR “UMLS” OR “*medical”) AND
(“knowledge graph” OR “ontolog*” OR “knowledge*base” OR
“knowledge infusion”) and (2) (“SNOMED”) AND (“large
language model” OR “BERT” OR “GPT”). Queries were
modified according to the bibliographic databases when
necessary. Queries were designed to search for articles published
from 2018 to 2023. The start date of the query was set to 2018
when BERT, the first transformer-based LM to gain widespread
adoption, was introduced, marking the beginning of significant
research into transformer-based LLMs.

Study Selection
Articles were extracted from ACM Digital Library, ACL
Anthology, IEEE Xplore, PubMed, and Embase. Duplicates

were removed, and 2 authors (SS and EC) examined the full
text of the retrieved articles for the presence of the term
“SNOMED.” We prioritized a full-text search first before title
and abstract review because many potentially eligible papers
do not explicitly mention “SNOMED” in their titles or abstracts.
To be eligible for our review, articles had to have SNOMED
CT incorporated into NLP pipelines, which encompass processes
from text cleansing through pretraining and inference to model
evaluation, specifically for tasks involving NLU and NLG. We
then further excluded studies that met ≥1 of the following
criteria: (1) published in languages other than English; (2)
categorized as reviews, surveys, keynotes, or editorial articles;
(3) did not incorporate SNOMED CT at any stage of the NLP
pipeline; (4) aimed to create, develop, enrich, or enhance
ontologies or graphs; (5) did not involve the processing of
natural language (NL) text; or (6) solely used SNOMED CT
codes for retrieving patients of interest from EHRs or for
annotating instances with SNOMED CT codes as gold-standard
target labels for LM training.

Result Synthesis
Through discussions and qualitative assessments, we analyzed
the included articles according to the following characteristics:
chronological and geographic publication trends, baseline LLM
and its output, dataset used for training and testing the model,
methods for integrating SNOMED CT into the LLM, and the
model’s end task and performance (Textbox 1).

Textbox 1. Methods for synthesizing the review.

Synthesis of results

• Chronological and geographic publication trends

• Baseline large language model (LLM) and its output

• Dataset used for training and testing the model

• Methods for integrating SNOMED CT into the LLM (methodologies for knowledge graph [KG]–enhanced LLMs [7])

• KG-enhanced LLM pretraining: works that apply KGs during the pretraining stage and improve the knowledge expression of LLMs

• KG-enhanced LLM interpretability: works that use KGs to understand the knowledge learned by LLMs and interpret the reasoning process
of LLMs

• KG-enhanced LLM inference: research that uses KGs during the inference stage of LLMs, which enables LLMs to access the latest knowledge
without retraining

• End task and performance

• End task natural language understanding: entity recognition or typing, entity or relation extraction, document classification, question
answering (multiple choice), and inference End task natural language generation: text summarization, question answering (short or essay
answers), translation, and dialogue generation Performance analysis: nominal percentage gains in performance after SNOMED CT integration

We elucidated the methodology for incorporating SNOMED
CT into NLP pipelines following the categorization methods
previously outlined by Pan et al [7]. These methods categorized
methodologies for KG-enhanced LLMs into three distinctive
types: (1) KG-enhanced LLM pretraining, (2) KG-enhanced
LLM interpretability, and (3) KG-enhanced LLM inference.
The end tasks of LLMs after SNOMED CT integration included
NLU and NLG. Regarding the performance analysis, we
presented the nominal percentage gains in performance after
SNOMED CT integration without analyzing their statistical
significance, as most studies did not perform statistical

significance testing. We refrained from conducting direct
study-to-study comparisons due to concerns about the
heterogeneity of testing corpora and evaluation metrics across
different studies.

Results

Selected Papers
The query yielded 876 articles from the 5 bibliographic
databases, with 634 (72.4%) obtained from the first query and
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242 (27.6%) from the second query (Figure 1). After the removal
of duplicates, 812 (92.7%) articles were reviewed to check
whether the term “SNOMED” was mentioned in their full texts.
A total of 325 (37.1%) articles were then reviewed according
to the inclusion and exclusion criteria. Consequently, 37 (4.2%)
publications were finally selected for the scoping review (Figure

1). The characteristics of the individual papers and other
features, including the language of used datasets and SNOMED
CT descriptions, other ontologies used, and the types of entities
represented by SNOMED CT, are detailed in Multimedia
Appendix 3.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram of article selection. SCT: SNOMED CT.

Chronological and Geographic Publication Trends
Table 1 presents the publication trends noted in the review.
Although our literature search covered publications from 2018
onward, no studies published in 2018 were included in the final
review. The largest volume of studies was published in 2022
(13/37, 35%), followed by those published in 2020 (10/37,
27%).

When the number of countries was counted according to the
first authors’ institutional affiliations, the largest number of
studies was noted to originate from the United States (10/37,
27%). While most of the studies (26/37, 70%) were conducted
in countries that are members of SNOMED International, some
were performed in nonmember countries such as Bulgaria and
China, where separate license fees and in-house translation of
SNOMED CT descriptions to the local language were required.
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Table 1. Chronological and geographic publication trends among the included studies.

StudiesStudy characteristics

Publication year

[21-23]2019

[24-33]2020

[34-36]2021

[37-49]2022

[50-57]2023

Countries

[26,35]Australia

[34,52]Bulgaria

[55]Canada

[28,38,39,41,43,45,48,50,56]China (including Hong Kong)

[47,51]Germany

[22,31,32]India

[53]Israel

[21,29,30,37,40]Spain

[54,57]United Kingdom

[23-25,27,33,36,42,44,46,49]United States

Publication type

[23-26,36,42-46,50,55-57]Journal paper

[21,22,27-35,37-41,45,47-49,51-54]Conference paper

Baseline LLMs and Their Outputs
Most of the included studies (27/37, 73%) used BERT and its
variants as the baseline LLMs for NLU and NLG tasks. Variants
such as RoBERTa [58] and ALBERT [59] were also used to
address BERT’s relatively small training corpora and long
training time [31,37,38,50,53]. To overcome the limited
applicability of these general-purpose LLMs to biomedical texts,
many studies (13/37, 35%) used LLMs trained on large-scale
biomedical corpora, such as BioBERT [14] and PubMedBERT
[60], which were trained on PubMed articles, and ClinicalBERT
[61] and EHRBERT [23], which were trained on clinical notes.
SapBERT [62], initialized by PubMedBERT, was further
fine-tuned using contrastive learning with UMLS synonyms to
better accommodate SNOMED CT synonym descriptions
[44,47]. To support biomedical NLP tasks in languages other
than English, LLMs trained on corpora in those languages were
also adopted, such as medBERT.de [63], designed specifically
for the German medical domain [51], and ERNIE-health,
pretrained from Chinese medical records [41]. Aside from these
BERT-based models, GPT emerged as a new baseline LLM

since 2023. Makhervaks et al [53] used BioGPT [64], whose
decoder was pretrained on biomedical corpora, to enhance the
generation of artificial sentences. In addition, Xu et al [55] used
GPT-3.5 for ranking suggested annotation terms in their study
(Table 2).

A primary assertive role of LLMs was representing biomedical
entities from text data. While most proposed methods produced
embedding vectors to convey contextual information about the
biomedical entities that appeared in texts, Kalyan and Sangeetha
[31] introduced a Siamese RoBERTa model to generate concept
vectors from synonym relationships defined by SNOMED CT.
These basic outputs of LLMs might undergo additional
task-specific layers to perform desired end tasks, which will be
discussed later. Beyond producing embedding representations
of entities, some studies required LLMs to perform classification
or ranking tasks after fine-tuning, predicting the most likely
relevant standard concepts [23,24,26,34,41,55], entity types
[35,38,51], sentences [49,53], or matched foreign language
words, enabling machine translation [28-30,39]. LLMs with
encoder-decoder architectures, such as BART [65], were used
for dedicated NLG tasks [32,57].
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Table 2. Large language models used in the included studies.

StudiesBase and fine-tuned models

BERTa

[22,24,26,27,33,40,42-44,50,53,54,56,57]Vanilla BERT

[31,37,38,50]RoBERTa

[53]ALBERT

[53]ELECTRA

[53]DeBERTa

[37,45]mBERT

[27,33,34,46,48,49,52]BioBERT

[25,33,35,36]ClinicalBERT

[45,46]PubMedBERT

[44,47]SAPBERT

[23]EHRBERT

[46]SciBERT

[53]BioELECTRA

[51]German BERT models

GPT

[55]GPT-3.5

[53]BioGPT

[57]BART

Transformer neural networks

[21,28-30,39]Transformer NMTb model

[32]Denoising autoencoder

ERNIEc

[41]ERNIE-health

aBERT: Bidirectional Encoder Representations from Transformers.
bNMT: neural machine translation.
cERNIE: Enhanced Language Representation with Informative Entities.

Data for Training and Testing Models
When using general-domain LLMs, authors deployed additional
fine-tuning or pretraining on biomedical corpora to better adapt
their models for biomedical NLP tasks. The pretraining corpora
included PubMed or MEDLINE articles [28,30,38,39,46] and
other publicly available datasets, such as Wikipedia articles
[29] and tweets [37] related to biomedical topics. Synthetic
sentences were also used to address data scarcity, which was
generated based on SNOMED CT descriptions or relations
[21,29].

While some studies (8/37, 22%) used real-world clinical
narrative records [21,30,48,52] or customized (ie, manually
annotated by researchers) data [25,27,41,56] for testing their
models, most of the studies (29/37, 78%) used publicly available
datasets, especially when researchers were participating in
shared task competitions or dealing with English texts. CADEC
[66] and PsySTAR [67], open datasets built from drug review
posts in which concept mentions were mapped to SNOMED

CT concepts, were used for validating and testing concept
normalization models [31,45]. The Medical Concept
Normalization (MCN) corpus, drawn from discharge summaries
annotated using SNOMED CT and RxNorm concepts, was
experimented on by concept normalization models [24,26]. The
WMT corpora, provided by the annual Conference on Machine
Translation Shared Tasks, were used to test multilingual machine
translation tasks by participating researchers [28,29,39].
Makhervaks et al [53] and Chopra et al [22] used sentence pairs
in the MedNLI corpus [68], annotated by medical doctors into
3 categories—contradictory, entailing, and neutral—for NL
inference tasks. The MedMentions corpus [69] identifies
>350,000 mentions from >4000 PubMed abstracts, linking them
to the UMLS concepts; it was used in the studies by Zotova et
al [40] and Dong et al [54], in which SNOMED CT was loaded
onto the UMLS. The ShARe/CLEF 2013 corpus [70] consists
of deidentified clinical notes annotated with disease mentions
using the SNOMED CT subset of the UMLS; it was used for
testing concept normalization tasks [44,54].
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SNOMED CT Content Integration Into NLP Pipelines

Overview
While the categorization methods by Pan et al [7] pertained to
the integration of LLMs with general-purpose KGs, we treated
SNOMED CT as a specified form of KG. Their third
category—KG-enhanced LLM interpretability—was omitted

due to the lack of relevant studies in our review. In addition,
we found no studies that fit into the subcategories “Integrating
KGs into Training Objectives” (under “KG-enhanced LLM
pretraining”) and “Dynamic Knowledge Fusion” (under
“SNOMED CT–enhanced LLM inference”). The overarching
categorization of all included methods is shown in Textbox 2.

Textbox 2. Summarized categorizations of SNOMED CT–incorporated large language model (LLM) methods (allowed duplicated counting of studies).

Category and subcategory

• SNOMED CT–enhanced LLM pretraining

• Integrating SNOMED CT into LLM inputs (n=28, 76%)

• Integrating SNOMED CT into additional fusion modules (n=5, 14%)

• SNOMED CT–enhanced LLM inference

• Retrieval-augmented knowledge fusion (n=5, 14%)

Integration of SNOMED CT Into LLM Inputs

Overview

Research in this area concentrated on developing new training
objectives for LLMs that incorporate knowledge awareness.
More specifically, this line of research aimed to incorporate
relevant portions or subsets of SNOMED CT as additional input
to LLMs during training. Because a disproportionately large
number of included studies (28/37, 76%) fell into this category,
we analyzed the methodology by two additional themes: (1) the
content of SNOMED CT that was integrated into an LLM and
(2) the part of the NLP pipeline into which the aforementioned

content was incorporated. After qualitative analysis of the
included articles and heuristic discussions among reviewers,
we categorized the former theme into descriptions (including
descriptions of synonyms), relations, and entity types (classes)
and the latter theme into encoders and training data. SNOMED
CT contents could be incorporated into LLM encoders either
as embedding vectors or as annotations or tags when
incorporated into the training corpus.

Table 3 shows the distribution of models across SNOMED CT
contents and NLP pipelines, allowing for duplicated counting
of a single study if it adopted ≥2 methods.

Table 3. Distributions of models across SNOMED CT contents and natural language processing (NLP) pipelines.

Part of the NLP pipeline where SNOMED CT contents were integrated intoSNOMED CT content integrated into the NLP pipeline

Training corpora (as annotated text)Encoder (as vector embedding)

[21,23,24,28-30,32,34,39,40,47-50,52,54,57][31,35,41,43,44,54]Description

[21,34,40,52,53][31,45]Relation

[25,38,42,51]—aEntity type (class)

aNot available.

Integration of SNOMED CT Descriptions

Vector representations of SNOMED CT concept descriptions
were created to facilitate seamless fusion into LLM encoders.
The vectors for SNOMED CT description embeddings were
used to calculate cosine similarity between the original mentions
and SNOMED CT descriptions for concept normalization tasks
[35,41,43,54].

Instead of transforming text descriptions into vector embeddings,
NL description texts were directly added to training corpora to

expand the size of in-domain vocabulary (Figure 2). The
description texts of synonyms were either concatenated in the
training corpora before being input into an LLM for pretraining
[24,47,49,54,57] or they replaced the original entity mentions
in the text with standardized terms [32,48]. The descriptions of
SNOMED CT codes were also prepended to the word sequences
as classifier tokens for LLM pretraining [23]. The multilingual
feature of SNOMED CT descriptions was exploited to address
the limited availability of training datasets in foreign languages
by adding the translated SNOMED CT descriptions into the
training corpora [28-30,39,50].
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Figure 2. Integrating SNOMED CT descriptions into large language models. CLS: classification; SYN: synonym.

Integration of SNOMED CT Relations

This line of research introduced relevant subgraph information
of SNOMED CT, representing SNOMED CT relations as graph
edges, into LLMs (Figure 3). Kalyan and Sangeetha [31]
encoded SNOMED CT concept descriptions to generate concept
embedding vectors and learn representation vectors of concept

mentions in the text, further improving the representations by
retrofitting the target concept vectors with SNOMED CT
synonym relations. CODER [45] used KG embedding methods
such as DistMult and ANALOGY [71] to learn relational
knowledge from SNOMED CT, enabling the quantification of
term-relation-term similarity as well as term-term similarity.

Figure 3. Integrating SNOMED CT relations into large language models. CLS: classification.

A different approach was taken to introduce textual relation
triplets defined by SNOMED CT to expand the size of training
corpora. Soto et al [21] exploited the relations defined in
SNOMED CT, such as is_a and occurs_in, to generate synthetic
training corpora. Relations defined in SNOMED CT were also
used to apply weak supervision to sentence pairs extracted from
PubMed to establish contradiction labels in the dataset [53].
Other authors exploited the existing mappings to other
ontologies (eg, International Classification of Diseases-10 and

UMLS) to enrich the training corpus with the description texts
from the linked ontology concepts [34,40,52].

Integration of SNOMED CT Entity Types

The type of entities was incorporated into training corpora by
distantly labeling the identified entities with SNOMED CT
semantic tags (eg, diseases and chemicals; Figure 4) [25,38].
In other studies, training corpora were annotated with SNOMED
CT top-level hierarchies [51] or subclasses of top-level
hierarchies [42] to label sentences per their respective tasks.
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Figure 4. Integrating SNOMED CT entity type information into large language models. CLS: classification.

Integration of SNOMED CT Into Additional Fusion
Modules
In this approach, concept information was processed separately
before being concatenated and fused with the LLM embedding
output (Figure 5). Authors created knowledge-directed
embeddings using SNOMED CT graphs, where concepts were
represented as nodes and relations as edges, and concatenated
them with the LLM contextual embeddings. The merged
representations of text and graph embeddings were then passed

through a task-specific knowledge fusion module to achieve
end tasks such as semantic similarity measurement [36,46],
classification [22,27], and question answering [33,46]. To
represent the graph information of SNOMED CT concepts,
Chang et al [36] used a graph convolutional network [72] for
encoding node features and edges. Chopra et al [22] proposed
the Bio-MTDDN model, which introduced the shortest path
information between corresponding SNOMED CT concepts
into knowledge-directed embeddings.

Figure 5. Integrating SNOMED CT into additional fusion modules.

Retrieval-Augmented Knowledge Fusion
In this approach, SNOMED CT was located outside LLMs as
a fact-consulting knowledge base, injecting knowledge during
inference (Figure 6). The module functioned as a gazetteer
(dictionary), matching mentions in texts against the dictionary

of SNOMED CT descriptions to filter out irrelevant entities
from the models and map textual mentions to the most likely
SNOMED CT concepts [24,26,37,55,56]. These methods
primarily concentrated on entity recognition and question
answering, capturing both textual semantic meanings and
up-to-date real-world knowledge.
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Figure 6. Retrieval-augmented knowledge fusion. LLM: large language model.

End Task and Performance Gain After SNOMED CT
Integration

Overview
Most of the included studies (30/37, 81%) focused on NLU
tasks, such as entity typing and classification. NLG tasks,
including translation and summarization, were also attempted
by a substantial number of studies (9/37, 24%), often involving
various NLU pipelines before producing the final text output.
Therefore, notably, works on NLU may also appear in the NLG
category. Herein, we also compared the performance of models
integrated with SNOMED CT to that of their counterparts
without SNOMED CT integration.

NLU Tasks

Entity Extraction and Typing

Entity typing or named entity recognition tasks aim to detect
specific types of entities by identifying the spans of their
mentions in the text. These can be regarded as multiclassification

tasks, where the number of classes is arbitrarily chosen by
researchers. To fine-tune LLMs for type classification, authors
annotated entities in texts by matching domain gazetteer strings
(eg, “BIO” tagging scheme) [37,38,49] or using off-the-shelf
automatic concept extractors [27]. The identified entities were
then classified into human-annotated entity types [37,38] or
topmost nodes in the SNOMED CT hierarchies [27,51]. In
addition to typing individual entities, extraction and typing of
relations between 2 entities were also attempted to align the
detected entities with FHIR resources [25], such as protein to
chemical and gene to disease [46] as well as disease to inflicted
family members [35].

Many researchers did not conduct a comparative performance
analysis of their SNOMED CT–integrated models against
out-of-domain vanilla models. Among the few researchers who
reported such comparisons, Jha and Zhang [46] demonstrated
a gain in the F1-score after the integration of SNOMED CT,
while Montañés-Salas et al [37] found a positive impact only
on recall (Table 4).

Table 4. Percentage performance gain in biomedical entity typing tasks after SNOMED CT integration into large language models.

AUCa gain (%)Recall gain (%)Precision gain (%)F1-score gain (%)Studies

—b+8.60 (0.872→0.947)−7.97 (0.928→0.854)−0.11 (0.899→0.898)Montañés-Salas et al [37] (Best 2
model)

———+4.08 (0.80982→0.84287)Jha and Zhang [46] (PubMedBERT
on BC2GM)

aAUC: area under the receiver operating characteristic curve.
bNot available.

Classification

We defined classification tasks as occurring at the sentence or
document level, rather than at the word, entity, or phrase level.
When classification tasks were implemented, semantic similarity

[36] or the conditional probability of a positive case [22,33,53]
was calculated, and the case was categorized as positive if the
probability exceeded a threshold. Binary classification was
performed to determine whether a sentence pair was entailed
[33], contradictory [22,53], or similar [36]. Multilabel
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classification was conducted to categorize utterances by clinical
encounter components, such as symptoms, complaints, and
medications [27]; social determinants of health [42]; or
narrators’ intent [48].

Table 5 shows the percentage performance gain after SNOMED
CT integration in classification tasks. While Yadav et al [33]
and Zhang et al [48] estimated the performance of their models
based on the F1-score, precision, and recall, Khosla et al [27]

and Makhervaks et al [53] measured performance in terms of
the area under the receiver operating characteristic curve, which
improved by 0.87% to 14.83% after the integration of SNOMED
CT. Chang et al [36] reported the Pearson correlation to assess
clinical semantic textual similarity, and the incorporation of
SNOMED CT into ClinicalBERT improved the performance
of the model by 1.77% and 2.36% using cui2vec [73] and KG
embeddings, respectively.

Table 5. Percentage performance gain in classification tasks after SNOMED CT integration into large language models.

Accuracy gain (%)AUCa gain (%)Recall gain (%)Precision gain (%)F1-score gain (%)Studies

+0.99————bChopra et al [22]

+17.27
(0.4790→0.5617)

—+16.41
(0.4826→0.5618)

+36.87
(0.4616→0.6318)

+26.05
(0.4718→0.5947)

Yadav et al [33]

—+0.85
(0.468→0.472)

———Khosla et al [27]

Zhang et al [48]

————+1.15 (0.701→0.693)BioBERT for intent
detection

——+12.15 (0.724→0.812)−0.90 (1.000→0.991)—Semantic matching
for content recogni-
tion

Makhervaks et al [53]

—+14.83
(0.661→0.759)

———BERT based on
MedNLI-General

—+10.34
(0.725→0.800)

———Bio-GPT on
MedNLI-General

aAUC: area under the receiver operating characteristic curve.
bNot available.

MCN Tasks

The most prominent end task in NLU was MCN, with 15 studies
involved. MCN, the task of linking textual mentions to concepts
in an ontology, provides a solution for unifying different ways
of referring to the same concept. All the studies approached
concept recognition as a multilabel classification task involving
entity extraction and entity typing from words, phrases, or
sentences. Models were trained on corpora annotated with
SNOMED CT concepts and semantic types to identify concept
mentions and generate a list of candidate SNOMED CT concepts
that best match those mentions from testing texts. When training
from annotated corpora was not available, MetaMap [74] was
used to extract biomedical entities mentioned in free texts and
map them to ontology concepts [25,26,35,50]. When candidate
concepts were ranked, representation vectors of mentions and
concept descriptions were generated, and their similarity was

calculated using cosine similarity [31,35,44,45,54], linear
transformation such as support vector classifiers [52], or softmax
function [23,41,43]. In a more rule-oriented approach, Borchert
and Schapranow [47] calculated weights based on semantic type
and preferred term status from a gazetteer to reorder candidate
lists. In other studies [24,26,50], sieve-based multipass entity
linking systems [75] were used to rank the most likely concepts
and achieved superior performance compared to neural
classifiers.

Most of the studies observed positive gains in accuracy in MCN
tasks after SNOMED CT integration (Table 6). Two authors
reported the pre- and postintegration F1-scores, recall values,
and precision values and observed inconsistent results, with one
reporting positive gains in the F1-score and precision value and
the other demonstrating a loss in the F1-score and precision
value after the integration of SNOMED CT.

JMIR Med Inform 2024 | vol. 12 | e62924 | p. 11https://medinform.jmir.org/2024/1/e62924
(page number not for citation purposes)

Chang & SungJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 6. Percentage performance gain in medical concept normalization tasks after SNOMED CT integration into large language models.

Accuracy gain (%)Recall gain (%)Precision gain (%)F1-score gain (%)Studies

—a0 (0.94→0.94)−1.04 (0.96→0.95)−1.05 (0.95→0.94)Peterson et al [25]

+27.36 (0.6013→0.7658)———Wang et al [26] (vs training data dictio-
nary with exact match, ignore order

“yes”)b

+73.21 (0.56→0.97)———Hristov et al [34]

+45.08 (0.417→0.605)———Dai et al (2021) [35]

+0.68 (0.8333→0.8277)———Xu and Miller [44] (on ShARe/CLEF
2013)

+10.68 (0.777→0.860)−3.62 (0.912→0.879)+15.11 (0.741→0.853)+5.87 (0.818→0.866)Dong et al [54] (BLINKout on
ShARe/CLEF 2013)

aNot available.
bThe training data dictionary was constructed based on the Medical Concept Normalization corpus data. The SNOMED CT dictionary included the
RxNorm dictionary.

NLG Tasks

Machine Translation

Several studies that participated in the WMT Biomedical Shared
Task [76] described their methods for translating biomedical
texts from various foreign languages, such as Spanish, French,
German, and Chinese, as well as less-resourced languages, such
as Basque, into English or vice versa. Transformer-based
multilingual neural machine translation systems were the

mainstream architectures, which were trained on dictionaries
derived from SNOMED CT [28,30,39] or clinical notes
artificially generated from SNOMED CT terminology contents
[21,29].

The translation performance was reported using the Bilingual
Evaluation Understudy (BLEU) score [77]. While most studies
(4/5, 80%) presented improved BLEU scores by up to 131.66%
[21] compared to their out-of-domain models, some studies
(1/5, 20%) reported nonsuperior results [30] (Table 7).

Table 7. Performance comparison of biomedical translation tasks with and without SNOMED CT integration into large language models (LLMs).

BLEU score gain after
SNOMED CT integration into
an LLM (%)

Performance on test data with
SNOMED CT integration into an
LLM (BLEU score)

Performance on test data without
SNOMED CT integration into an

LLM (BLEUa score)

Studies and translation direction

Soto et al [21]

+131.6624.4410.55Basque to Spanish

Soto et al [30]

−0.6356.8957.25Spanish to English

−0.0847.1547.19English to Spanish

Corral and Saralegi [29]

+5.9113.6112.85English to Basque

Peng et al [28]

+6.8841.6638.98English to French

+0.3438.4438.31French to English

Wang et al [39]

+25.7742.1733.53English to Italian

+20.0143.7236.43Italian to English

+29.4150.1238.73English to Portuguese

+30.8354.7441.84Portuguese to English

+43.5636.2525.25English to Russian

+18.4447.0939.76Russian to English

aBLEU: Bilingual Evaluation Understudy.
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Text Summarization

For medical text summarization, encoder-decoder LLMs were
used to process input embeddings and produce simplified texts.
Pattisapu et al [32] primarily focused on the simplification of
verbose sentences. They substituted biomedical mentions with
UMLS-preferred names and tokenized them at the subword
level to produce noisy input sentences for training. In contrast,
Searle et al [57] summarized entire hospital encounters into a
few sentences by ranking the most salient ones to constitute the
summary. To address the hallucination problem arising from
LLMs, authors used SNOMED CT semantic tags of the
extracted biomedical terms to configure guidance signals for
clinical problems and interventions.

Recall-Oriented Understudy for Gisting Evaluation recall [78]
measures how many n-grams in the source text appear in the
summarization. Pattisapu et al [32] reported no gain in ROUGE
recall when incorporating SNOMED CT into NLP pipelines.
Searle et al [57] presented ROUGE-F1, a harmonized measure
of the recall and precision for ROUGE, and observed
improvements by 3.6% (from 11.1 to 11.5) and 48.84% (from
8.6 to 12.8) on the Medical Information Mart for Intensive Care
III and King’s College Hospital corpora, respectively, after
incorporating SNOMED CT.

Question Answering and Generation

Generating answers for short-answer or essay questions, as
opposed to multiple-choice questions, can be classified as NLG.
The task of question answering may involve preliminary NLU
pipelines, such as intent and content recognition. Zhang et al
[48] developed a clinical communication training dialogue
system incorporated with SNOMED CT synonyms for the
augmentation of textual data and BioBERT for intent
recognition. They qualitatively evaluated the performance of
the conversation system using scales rated by physicians from
29 training records, which indicated a comparable precision as
clinical experts.

Discussion

LLMs and SNOMED CT
In this scoping review, we observed that BERT was the
mainstream LLM integrated with SNOMED CT. Considering
the significant time required to publish state-of-the-art
methodologies, especially in peer-reviewed journals [79], it is
unsurprising that more recent inventions, such as GPT-3.5 and
BART, were less prevalent in articles published from 2018 to
2023. Researchers in this field exploited biomedically oriented
BERT variants, such as BioBERT and PubMedBERT, reflecting
the need for biomedical tasks to be trained or fine-tuned on
specialized corpora [16]. However, due to privacy and
confidentiality concerns, there is a dearth of clinical documents
and patient notes, making it difficult to sufficiently train
biomedical LLMs to an extent comparable to those in the general
domain [80]. SNOMED CT can supplement or even substitute
biomedical pretraining corpora, addressing the chronic shortage,
as noted in this review. A substantial number of studies included
in this review used SNOMED CT to expand pretraining corpora
by concatenating synonyms or relations in documents or

generating synthetic texts based on SNOMED CT descriptions
or relations.

We identified 3 approaches to incorporating SNOMED CT into
LLMs: LLM input, additional fusion modules, and knowledge
retriever, with the former 2 intervening in the pretraining process
of LLMs. While either lexical or graph information from
SNOMED CT could be incorporated into the pretraining stage,
the lexicon of SNOMED CT descriptions was the predominant
form of integration. This underscores that SNOMED CT chiefly
introduces synonym information to LLMs, yet relation
information remains underused in NLP research. The advantage
of SNOMED CT in defining relations between biomedical
entities through semantic networks needs to be adopted for more
sophisticated tasks such as knowledge inference and validation
and highlighted within the biomedical NLP research community.

End Tasks and Performance Reports
A significant number of studies included in this review engaged
in the concept recognition process from free texts, whether as
the final task or an intermediate step for subsequent tasks.
Recognizing and extracting SNOMED CT concepts from the
unstructured sections of EHRs is becoming crucial in clinical
settings, where substantial patient information, such as social
history and socioeconomic status, remains untapped in free-text
clinical notes [81]. Leveraging previously unrepresented
SNOMED CT concepts from free-text clinical data holds great
potential in significantly enhancing clinical care and research,
especially in the era of smart applications where
patient-generated data can be integrated into EHRs through the
representation of patient-authored texts with SNOMED CT
concepts [82].

Only a small fraction of the included models disclosed
performance comparisons before and after SNOMED CT
integration. For example, only 6 (40%) out of 15 studies on
MCN tasks provided information about the gain in the F1-scores
or accuracy after SNOMED CT incorporation. This suggests
that many biomedical NLP researchers do not focus on the role
of SNOMED CT or other ontologies in improving their models.
Moreover, some authors chose to demonstrate only selected
metrics, potentially leading to publication bias that favors
improved performance at first glance. In our review, we
identified 7 studies that presented only 1 metric without
disclosing others (excluding those that reported only the BLEU
score, which is widely recognized as the best metric for
measuring translation performance). This focus on a single
metric may encourage researchers to optimize their models for
that metric, potentially leading to underperformance in other
areas. The NLP community needs to propose standardized
methods for presenting performance and, if possible, develop
new metrics that better reflect the specifics of NLU and NLG
tasks performed by LLMs.

Implications for Future Endeavors
The knowledge-intensive approaches to enhancing LMs, which
are often renounced by those favoring deep learning–based
approaches, still comprise a small portion of the artificial
intelligence research community. However, in the face of
immense computational power and the availability of data
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required by LLMs and deep learning–based systems, an
increasing number of researchers now advocate the
harmonization of the 2 approaches [83], and a plethora of
KG-enhanced LLMs is developed in the general domain [10,84].
In addition to improving the performance of artificial
intelligence models, ontologies and human-curated knowledge
bases can address the explainability and controllability of
artificial intelligence, probing facts within the
human-interpretable form of system architectures [85].
Exploring the trade-offs in combining the 2 approaches is
anticipated to contribute toward trustworthy and reliable
artificial intelligence.

Among various biomedical terminology systems and ontologies,
SNOMED CT was the primary focus in this review as a KG
integrated with LLMs. Although the UMLS continues to
dominate NLP research in the biomedical domain [16],
SNOMED CT has the potential to expand its influence, given
its governance over the health care industry. Consequently, the
use of SNOMED CT as a reliable knowledge source becomes
more feasible, considering its presence in various EHR systems
or common data models. While this review did not identify
real-world SNOMED CT–incorporated LLM applications
directly tied to EHR systems, SNOMED CT is implicitly
expected to support these systems as a standardized terminology
system bound to syntactic interoperability structures such as
FHIR and OpenEHR. In addition, medical institutions already
implementing SNOMED CT in their EHR systems are
anticipated to incorporate LLM applications and use SNOMED
CT at the point of care [86]. Explicit descriptions of SNOMED
CT in technical specifications or scientific papers by developers
of these applications would have been valuable to include in
this review.

Limitations
One of the limitations of this scoping review is that we examined
LLMs that accepted SNOMED CT only as a working ontology,
leaving other biomedical ontologies out of our scope. To the
best of our knowledge, however, there is no comprehensive
review of the use of other biomedical ontologies within LLMs.
The queries used in this review, especially the first one, retrieved
articles that used a variety of biomedical ontologies, such as
the UMLS, Medical Subject Headings, Gene Ontology, and
Medical Wikidata. We chose to limit the scope of our review
to SNOMED CT due to the heterogeneity of components among
different ontology systems and the difficulty in delineating the
contributions of each ontology in a standardized way. A more
consolidated analysis of different ontologies used within LLMs
awaits more comprehensive work.

A significant proportion of the included studies (23/37, 62%)
were retrieved from conference proceedings. While we excluded
short abstract articles and included only those that provided
sufficient information to be categorized by our preset features,

interested readers might find it challenging to delve into detailed
methodologies from these proceedings articles. However, many
of these papers refer to additional materials, such as GitHub
(GitHub, Inc) repositories, to provide raw data and source codes;
for example, Khosla et al [27] provided the source code of their
system on GitHub [87]. We encourage more studies to share
additional materials on open developer platforms to enhance
methodology transparency and accelerate NLP research.

Another limitation of this review is that we could not conclude
on how the integration of SNOMED CT improved the
performance of LLMs. While most of the studies (14/18, 78%)
observed a positive impact on performance after SNOMED CT
integration, their statistical significance was not indicated.
Moreover, the diversity of evaluation methods prevented us
from performing a meta-analysis across all the included studies.
While we examined whether SNOMED CT integration improved
LLM performance by presenting percentage gains across various
metrics, these results are prone to being misleading due to
potential publication bias and the insufficient number of
included studies. Nevertheless, this before-and-after comparison
method, often adopted for comparative studies, effectively
measures the effect of interventions (SNOMED CT in our case)
within a single group or entity [88]. To control for confounding
factors, we excluded models whose performance differences
could be attributable to modalities other than SNOMED CT
integration. For example, we excluded the study by Zotova et
al [40] from our analysis because their performance might have
been affected by the use of a different testing corpus. An
evenhanded testing bed, such as a shared task competition under
a single testing method requiring all participants to report
performance differences before and after KG integration, could
provide a controlled evaluation to reliably and objectively
measure the contributions of KGs.

Conclusions
In conclusion, this scoping review explored the methodologies
and effectiveness of integrating SNOMED CT into LLMs. The
predominant approach involved using SNOMED CT concept
descriptions or graph embeddings as inputs for LM encoders,
many of which were involved in MCN tasks. The endeavor to
identify and extract SNOMED CT concepts from free texts was
proven to be instrumental in enhancing the understanding and
generation of NL texts for downstream tasks in the biomedical
realm. However, our study revealed both a lack of standardized
methods for assessing KG integration into LLMs and a scarcity
of explicit performance reporting in existing research,
highlighting significant gaps in current evaluation practices.
These findings underline the need for more consistent reporting
and evaluation practices in this field of research. Future research
is anticipated to be more aware of the advantage of SNOMED
CT when incorporating it into LLMs and to report findings in
a manner that facilitates comparison across different works.
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